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Data from farmer-managedfields have not been used previously to
disentangle the impacts of daily minimum and maximum temper-
atures and solar radiation on rice yields in tropical/subtropical Asia.
We used a multiple regression model to analyze data from 227
intensively managed irrigated rice farms in six important rice-
producing countries. The farm-level detail, observed over multiple
growing seasons, enabled us to construct farm-specific weather
variables, control for unobserved factors that eitherwere unique to
each farmbut did not vary over timeorwere common to all farms at
a given site but varied by season and year, and obtain more precise
estimates by including farm- and site-specific economic variables.
Temperature and radiation had statistically significant impacts
during both the vegetative and ripening phases of the rice plant.
Higher minimum temperature reduced yield, whereas higher
maximum temperature raised it; radiation impact varied by growth
phase. Combined, these effects imply that yield at most sites would
have grown more rapidly during the high-yielding season but less
rapidly during the low-yielding season if observed temperature
and radiation trends at the end of the 20th century had not
occurred, with temperature trends being more influential. Looking
ahead, they imply a net negative impact on yield from moderate
warming in coming decades. Beyond that, the impact would likely
become more negative, because prior research indicates that the
impact of maximum temperature becomes negative at higher
levels. Diurnal temperature variation must be considered when
investigating the impacts of climate change on irrigated rice in Asia.
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The impacts of temperature and solar radiation on rice yield
remain imperfectly understood, despite decades of agronomic

research. Current knowledge is based primarily on field trials and
greenhouse experiments. These experimental studies indicate that
increased temperature (1–4) and decreased radiation (1, 3, 5) can
reduce yield, with the impacts varying across the plant’s three
growth phases (vegetative, establishment to panicle initiation;
reproductive, panicle initiation to flowering; ripening, flowering to
mature grain). Unresolved issues remain with respect to the rela-
tive impacts of temperature during daytime (Tmax) vs. nighttime
(Tmin), potentially confounding impacts of temperature and radi-
ation, and the magnitude of impacts in nonexperimental settings.
Here, we investigate these issues by analyzing data from the largest
farm-level rice study conducted in Asia since the mid-1980s. We
use disaggregated data from farmer-managed fields to disentangle
the impacts of Tmin, Tmax, and solar radiation on rice yield.
With few exceptions (6, 7), most statistical studies on temper-

ature and rice yield have focused on the impact of daily mean
temperature (Tave), despite evidence that that the effects of Tmin
and Tmax on crop phenological development and physiological
processes differ (4). It is well-established that extremely high levels
of Tmax during flowering can drastically reduce rice yield because

of spikelet sterility, but recent studies have provided evidence that
yield might be more sensitive to Tmin than to Tmax in locations
where spikelet sterility is rarely observed (8). Rice simulation
models began to include Tmin and Tmax as separate variables only
recently (4). Better understanding of the impacts of temperature
at different points in the diurnal cycle is needed, because Tmin has
been rising faster than Tmax in some important Asian rice-growing
countries, including the two largest, China (9) and India (10), and
is projected to continue doing so in the future (p 882 in ref. 11).
Potentially confounding impacts of Tmin and radiation on rice

yield in field experiments have attracted recent attention (8, 12),
although this was recognized as a challenge for yield studies
decades ago (5). The difficulty stems from the complex meteo-
rological effects of clouds, which reduce not only insolation but
also back radiation, thus possibly increasing Tmin by enhancing
long-wave surface warming at night (12, 13). Understanding the
relative impacts of Tmin and radiation is important in view of ev-
idence of a declining trend in surface radiation (global dimming)
(14), which probably results from increased cloudiness caused by
a combination of global warming and regional brown clouds of
aerosol pollution (13–16). A study based on a small number of
annual observations (twelve) from a research station in the
Philippines reported that the yield of irrigated rice decreased by
10% for each 1 °C increase in Tmin averaged over the growing
season (8). A reanalysis of the data from that study concluded
that the actual impact of Tmin was much smaller, because Tmin
was negatively correlated with radiation, thus confounding the
observed impact of Tmin with the omitted impact of radiation
(12). A recent review of the impacts of climate change on rice
concluded that “the effect of high night temperature is not un-
derstood well” (p 75 in ref. 4).
Although experimental studies are essential for understanding

physiological relationships and constructing crop simulation
models, they do not necessarily replicate real agricultural settings.
Researchers typically apply agronomically optimal levels of inputs
that are not being investigated, which can accentuate the impact
of weather by making it the factor that limits yield. Data from
farmer-managed fields allow one to study how weather affects
yield in a setting in which farmers make decisions based on the
weather they observe every day and the prices they pay for inputs
and receive for harvested crops. Although other studies have used
nonexperimental data to study the relationship between weather
(or climate) and agriculture (17–21), including for rice (6, 7, 22),
with one exception, they have analyzed aggregate data (e.g., na-
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tional, state, or county), which precludes careful matching of
weather variables with farm-specific planting and harvesting dates
and crop-growth phases. The exception was a farm-level study
on rice yield in a single country (Thailand), which presented no
detail on statistical results and evidently did not examine diurnal
temperature variation or solar radiation (23).
The data analyzed here are from a multiyear (1994–1999) study

on productivity of intensively managed irrigated rice farms in Asia
by the International Rice Research Institute (IRRI) and its
partners in six countries (24). The farms were located in seven
important rice-growing regions (sites) (Fig. 1) in six of the most
important countries in terms of contributions to global rice sup-
ply. Each site represented an irrigated rice-growing area of more
than 200,000 ha, ranging up to several million ha. All were located
in inland plains or large river deltas with humid tropical or sub-
tropical climate, with at least two rice crops grown each year. Such
double- and triple-crop rice systems in similar climatic conditions
occupy a land area of about 24 million ha in Asia, feed about 1.8
billion Asians, and account for 40% of global rice supply (25).
Most of the sites are in areas where monthly average Tmax is
considered to be high (>33 °C) during the reproductive or rip-
ening phase of one of the annual crops (p 97 in ref. 26).
Farms at each site were selected to represent a range of themost

common soil types, cropping systems, farm-management practices,
and farm sizes. They were early adopters of Green Revolution
technologies (modern high-yielding varieties adapted to local
conditions, irrigation, fertilizers, pesticides, and mechanization)
and had been under intensivemanagement for decades. They were
generally representative of intensively managed irrigated rice
farms in their countries in terms of demographics, access to capital,
and capital intensity of production (27). We analyzed all of the
farms with complete data (227 farms) (Table S1).
Our objective was to determine the relative sensitivity of rice

yield to changes in Tmin, Tmax, and radiation in a real-world set-
ting, net of any responses (e.g., input adjustments) by farmers to

these changes. Our general approach was to regress yield on
weather variables and in some specifications, exogenously de-
termined economic variables, whose inclusion improved the
precision of the estimated weather impacts. IRRI and its partners
collected data on crop establishment and harvest dates, pro-
duction inputs, and yields for each farm in each season of each
year. They also collected daily weather data from a single moni-
toring station at each site, which was within 15–20 km of nearly all
farms at a site. This detail enabled us to construct farm-specific
measures of weather variables defined according to the rice
plant’s three growth phases (for each phase, means for Tmin, Tmax,
and radiation and sums for rainfall). The fact that the dataset
included observations over multiple growing seasons enabled us
to use fixed effects to control for unobserved factors that varied
across space (i.e., were unique to each farm, such as soil) or time
(were common to all farms at a given site in a given season and
year, such as ambient CO2 concentration). The inclusion of these
fixed effects increased the likelihood that the impacts that we
identified were indeed caused by temperature and radiation and
not variables omitted from the regression models.

Results
Data Variability and Correlations. Yield varied substantially in the
sample (5,182 ± 1,468 kg·ha−1; range = 288–10,838 kg·ha−1), as
did weather (Table S2). An understanding of correlations among
the weather variables is important for interpreting the regression
results. Three features of the correlation matrix are most notable
(Table S3): Tmin and radiation were not highly correlated, unlike
in the Philippines study (8, 12), both variables were moderately
(and positively) correlated with Tmax, and their correlations with
rainfall were smaller in absolute value than their correlations with
Tmax. These features suggest that the dataset affords the possi-
bility to disentangle the impacts of Tmin and radiation and that
a failure to control for Tmax could bias estimates of the impacts
more than a failure to control for rainfall.

Fig. 1. Locations of study sites.
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Regression Results. Multiple regression results support these con-
tentions (Table S4). Fig. 2 shows, for different specifications of the
regression model, parameter estimates for the temperature and
radiation variables. Given the linear specification of the model,
the estimates are interpretable as marginal effects: the impact of
a one-unit change in a weather variable on yield, holding other
variables constant. For example, in the model that included eco-
nomic variables (Model 5), a 1 °C increase in Tmin during the
ripening phase reduced yield by 322.4 kg·ha−1.
Impacts varied by growth phase, with the most significant

impacts occurring during the ripening and vegetative phases. Tmin,
Tmax, and radiation had significant impacts (P < 0.05) during both
of these phases in the more complete model specifications, with
the exception of Tmax during the ripening phase (P = 0.087 in
Model 5). The lower significance of the latter variable resulted
from its correlation with radiation during the same phase. The two
variables were jointly significant (P < 0.001 in Model 5), however,
and excluding either one sharply improved the significance of the
other without affecting the signs or general magnitudes of the
parameter estimates on the other weather variables (Table S5).
These additional results imply that yield was significantly affected
by both Tmax and radiation during the ripening phase.
Tmin and Tmax had opposite impacts (negative and positive, re-

spectively), whereas the impact of radiation differed between phases
(positive for ripening and negative for vegetative). Differences in
parameter estimates between the vegetative and ripening phases
weremore significant for radiation andTmin than forTmax (Table S6).
Parameter estimates on Tmin changed only moderately when

radiation was added (Fig. 2), which is expected given the small
correlation between the two variables. The addition of Tmax had
a larger influence, causing the Tmin parameter estimates to in-
crease 1.5–2 times during both the vegetative and ripening
phases. This resulted from the combination of the positive cor-
relation of the two temperature variables and their opposing
impacts on yield. Including Tmax was, thus, necessary to accu-
rately identify the impact of Tmin. Otherwise, the Tmin parameter
estimate reflected the net impact of both temperature measures
and was biased toward 0. In models that included both temper-
ature measures, the absolute value of the (negative) impact of
Tmin differed significantly from the positive impact of Tmax dur-
ing the ripening phase (Table S6), which indicates that including

both measures is more appropriate than including their mean,
Tave. This can also be shown by estimating the same models with
Tave included instead of Tmin and Tmax. Consistent with previous
studies (28), Tave tended to have negative impacts on yield during
the reproductive and ripening phases, but the impacts were
highly insignificant in nearly all specifications (Table S7).
Rainfall had a significant impact only during the ripening

phase. The addition of rainfall affected the parameter estimates
less than the addition of Tmax, which is not surprising in view of
the lower correlations of Tmin and radiation with rainfall than
with Tmax. Correlations of the economic variables with the
weather variables were very small, and therefore, their addition
had a negligible impact on the parameter estimates. It mainly
increased the precision of the estimates (lower SEs and P values).
The different units of the weather variables in Fig. 2 impede

comparison of the variables’ impacts on yield. This can be overcome
by expressing the marginal effects per SD of the weather variables
(Table S8). The SDs were calculated after removing any variation
explained by the fixed effects for farms and site/season-years, be-
cause only this residual variation was used to identify the variables’
impacts in the regressionmodels. The largest marginal effect per SD
was for Tmin during ripening (−174.4 kg·ha−1), followed by Tmax and
radiation during the vegetative phase (122.9 kg·ha−1 and −124.1
kg·ha−1). The smallest was for rainfall (68.4 kg·ha−1), which is
expected given that the farms were irrigated.
The marginal effects in Fig. 2 came from regression models

that did not allow nonlinear responses of yield to weather. To
examine the implications of this restriction, we also estimated
a quadratic specification. The estimated parameters on the
quadratic terms were mostly insignificant, and the marginal
effects evaluated at mean values had the same signs as and were
similar in magnitude to those in Fig. 2 (Table S9).

Joint Impacts. The opposing effects of Tmin and Tmax indicate that
warming has an ambiguous impact on rice yield. The effect that
dominates depends on the magnitudes of not only the effects but
also the trends in the two variables. Even if the absolute values of the
variables’ opposing effects are not significantly different, as they are
not during the vegetative phase (Table S6), differences in the vari-
ables’ trends could still result in a nonzero net impact of warming.
For each site and season, we investigated the joint impact of re-

cent warming trends by summing the products of the marginal
effects and corresponding trends in the two temperature variables
during the vegetative and ripening phases. Analyzing observed
trends instead of hypothetical future ones that might occur under
accelerated warming is appropriate, because recent trends have
been relatively small; combining marginal effects to calculate the
joint impact of multiple temperature changes is valid only if the
changes themselves are small (i.e., marginal). We also included ra-
diation during the vegetative and ripening phases in the analysis, in
view of concerns about its potentially confounding effect with Tmin.
The analysis answered the question of how yield growth would

have differed if observed weather trends had not occurred. Al-
though our analysis is not the first to examine the impact of
recent climate changes on agricultural yields, including for rice
(6, 22), it differs in being based on farm-level data from multiple
countries. Data series from the weather stations at the sites were
too short to determine trends. Instead, trends in Tmin and Tmax
were based on a global analysis of ground-station data for 1979–
2004, whereas trends in surface radiation were based on satellite
data for 1983–2004. Combining temperature data from ground
stations with satellite data for radiation provides reliable esti-
mates of weather impacts on crop yields (29). Trends were de-
termined separately for each quarter of the year (December to
February, etc.) and were assigned to seasons and growth phases
using site-specific crop calendars (p 13 in ref. 24).
As expected, evidence of warming was stronger at night (Table

S10); 16 of 28 site quarters had significant trends (P < 0.05) in
the case of Tmin, with 13 being positive, whereas only eight site
quarters had significant trends in the case of Tmax, with all being
positive. Significant trends occurred for radiation in nine cases,

Fig. 2. Impacts of temperature and radiation on rice yield, expressed per °C
for temperature and per MJ·m−2·d−1 for radiation. Each cluster shows esti-
mates for a given variable from different regression-model specifications,
distinguished by rice-growth phase (vegetative, reproductive, and ripening).
Model 1 included only Tmin. Model 2 added radiation. Model 3 added Tmax.
Model 4 added rainfall. Model 5 added economic variables. Bars show 95%
confidence intervals.
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with eight being negative. Significant warming and dimming thus
occurred at some but not all sites.
Table 1 shows the joint impacts of these trends. The most ob-

vious result is that the impacts varied substantially between sea-
sons and sites. At most sites, yield would have grown more rapidly
during the high-yielding season but less rapidly during the low-
yielding season. The absolute values of the joint impacts were
relatively large for one or both seasons at most sites, being
equivalent to a fifth or more of the actual annual yield trends for
the countries where the sites were located. The direction of the
joint impact was influenced more by temperature than by radia-
tion; the absolute value of the joint impact of Tmin and Tmax
exceeded the absolute value of the impact of radiation for 11 of 14
season-sites and matched it for one.

Discussion
The estimated impacts of weather variables reported here are
unique in being based on repeated observations from a large
number of farmer-managed fields in multiple countries. This data
structure enabled us to investigate the simultaneous impacts of
multiple weather variables, broken out by growth phase of the rice
plant, and to control for unobserved factors that varied across
farms and at the site level over time. Despite these methodolog-
ical differences compared with previous studies, our findings
corroborate recent ones that Tmin has a large, negative impact on
yield (8, 30). Although the mechanisms responsible for the neg-
ative impact have yet to be conclusively identified (4), our results
could be explained by increased respiration losses during the
vegetative phase (8) and reduced grain-filling duration and en-
dosperm cell size during the ripening phase (31).
Our finding of a positive impact of Tmax during the vegetative

and ripening phases is perhaps more surprising. The literature
emphasizes a negative impact of elevated Tmax during all growth
phases because of reduced photosynthesis caused by chloroplast
damage (vegetative phase), spikelet sterility caused by reduced
pollen production (reproductive), and increased energy con-
sumption caused by higher respiration demand (ripening) (4). This
difference can be explained by the fact that Tmax within our sample
seldom reached the extremes that cause these negative impacts.
For example, fewer than 4%of the observations of Tmax during the
reproductive phase in our sample exceeded the frequently cited
threshold of 35 °C, above which spikelet sterility becomes common

under humid conditions (2, 4). Field trials for rice grown under
ambient temperatures have reported a positive impact of Tmax (5),
and most controlled-environment studies use 29–30 °C as the
optimal daytime growing temperature (32). Mean Tmax was within
or not much above the latter range at most of our sites (Table S2).
Although our finding of a negative correlation between yield

and radiation during the vegetative phase contrasts with the lit-
erature’s emphasis on a positive correlation during the ripening
phase (which we found also), there is experimental evidence that
yields of some crops can rise if small reductions in total radia-
tion, which is what we measured, coincide with increases in dif-
fuse radiation (14). Other possible explanations include photo-
inhibition and excessive production of tillers, which could cause
mutual shading and reduced panicle size.
Our most important methodological finding is that it is neces-

sary to analyze the impacts of Tmin and Tmax jointly. Because these
two variables were moderately correlated in our data and had
opposing impacts on yield, excluding Tmax biased parameter esti-
mates for Tmin in a positive direction. Moreover, the absolute
values of the impacts of the two variables were significantly dif-
ferent during the ripening phase. Although the absolute values
were not significantly different during the vegetative phase, their
opposing effects would cancel only if trends in the two variables
were identical, but this has not been the case in recent decades.
Recent efforts to develop rice simulation models that include both
Tmin and Tmax are clearly justified. Our results for these two vari-
ables differ from those in two recent studies of national rice-yield
data (6, 7), which reported that Tmin and Tmax (6), or Tave and
diurnal temperature range (Tmax − Tmin) (7), had insignificant
impacts in most countries during 1961–2002. Our finding of sig-
nificant impacts is likely because of a combination of reasons, in-
cluding the larger number of observations in our sample, our
ability to define weather variables specific to farms and rice-growth
phases, and our inclusion of controls for solar radiation and eco-
nomic variables, which increased the precision of the estimates.
We emphasize that the impact estimates in Fig. 2 refer to

marginal effects of climate changes. They should not be extrapo-
lated to the nonmarginal warming that is projected to occur in Asia
by the end of the century (Table S11), which lies well outside the
residual variation in the weather data that was used to identify
warming impacts in our regression models (Table S8). For mod-
erate warming in coming decades, however, our results imply a net

Table 1. Predicted changes in annual growth rate of rice yield if observed weather trends at the end of the 20th century had not
occurred at each site

Predicted change in yield growth
(kg·ha−1·y−1) resulting from elimination of trend Net impact relative to

mean observed yield for
site/season (%·y−1)

Observed national yield
growth rate (annual, not

seasonal; %·y−1)Season and site Tmin Tmax Radiation Net impact

High yielding
China (Jinhua) 0.0 0.0 0.0 0.0 0.00 1.48
India (Aduthurai) 6.3 −12.6 4.1 −2.2 −0.04 2.05
Indonesia (Sukamandi) 12.0 0.0 0.3 12.3 0.22 1.13
Philippines (Maligaya) 21.8 0.0 −2.3 19.5 0.31 1.51
Thailand (Suphan Buri) 11.7 0.0 0.0 11.7 0.23 1.55
Vietnam (Hanoi) 16.6 0.0 6.2 22.8 0.38 3.18
Vietnam (Omon) −9.0 0.0 −10.7 −19.8 −0.33 3.18

Low yielding
China (Jinhua) 9.8 −14.0 0.0 −4.1 −0.07 1.48
India (Aduthurai) 7.2 −10.7 0.0 −3.5 −0.07 2.05
Indonesia (Sukamandi) 7.1 0.0 0.0 7.1 0.17 1.13
Philippines (Maligaya) 12.5 0.0 0.0 12.5 0.32 1.51
Thailand (Suphan Buri) 0.0 −10.9 −6.8 −17.7 −0.35 1.55
Vietnam (Hanoi) 0.0 0.0 −11.8 −11.8 −0.22 3.18
Vietnam (Omon) −16.9 −13.7 0.0 −30.6 −0.76 3.18

Second through fourth columns show annual changes in yield growth because of elimination of trends in individual weather variables summed across rice-
growth phases. Fifth column (net impact) shows sum of these changes. Sixth column shows net impact expressed as change in annual growth rate. Seventh
column shows observed growth rate in rice yield at national level (not site level) for both seasons combined (seasonal data were not available). Time periods
for estimating trends: temperature and observed yield growth rate, 1979–2004; radiation, 1983–2004.
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negative impact on yield, because Tmin is projected to rise more
rapidly than Tmax, and the combined negative marginal effects of
Tmin during the vegetative and ripening phases exceed the com-
bined positive effects of Tmax (Fig. 2 and Table S6). Beyond that,
the impact would likely become even more negative, because
increases in Tmax would push it out of the optimal growth range
and closer to, or beyond, the extremely high levels where it can
damage chloroplasts and cause spikelet sterility.
Another caveat is that our estimates refer just to irrigated rice,

not all rice, in tropical and subtropical regions of Asia, not all
rice-growing areas of the world. The lack of a substantial rainfall
impact in our study does not mean that irrigated rice is ultimately
unaffected by rainfall. Rainfall is the primary source of irrigation
water at all seven sites, but it had a negligible impact in our
sample simply because we analyzed a period when it did not limit
irrigation. This could change in the future, because climate
models predict that the area of Asia affected by drought will
likely increase (11).

Data and Methods
Data. The farms were not selected randomly (24), which is one reason we pre-
ferred fixed-effects estimates to random-effects estimates. A consequence of
the use of fixed effects is that our results do not necessarily generalize to farms
outside the sample, but the regression results changed little if we used random
effects instead (see below). Each farm had a parcel dedicated to a nutrient-
management study, but the parcel was small comparedwith total farm size.We
used only data from the remaining area of each farm, which was controlled by
the farmer.

Although IRRI collectedweather data from just a single station at each site,
the staggering of crop establishment and harvest dates across farms created
variation in the weather variables within each site, even for a given season-
year.We included only farms with nomore than 2 d of weather datamissing
in a particular season. We used standard definitions of the three growth
phases of rice in constructing the weather variables: vegetative, crop es-
tablishment through 66 d before harvest; reproductive, 31–65 d before
harvest; and ripening, last 30 d of the growing season, excluding the harvest
date. We constructed the temperature and radiation variables as farm-
specific means and the rainfall variables as farm-specific sums of the daily
observations for each phase.

Some recent studies on future agricultural impacts of climate change have
defined temperature variables in other ways, including growing-degree days
(GDD) and number of days in 1° temperature bins, with the latter fitted
either linearly or with flexible polynomials (19–21). We did not use GDD,
because low temperature rarely constrains rice growth at tropical and sub-
tropical sites. Temperature bins are useful for identifying significant non-
linearities in the relationship between yield and temperature, which is
especially important when simulating the impacts of projected large future
increases in temperature. We were unable to implement this approach for
two reasons: we had too few observations to estimate precisely the large
number of parameters involved, and the tails of our temperature distribu-
tions were too thin to detect the nonlinearities.

Rice price was farm-specific. Rice price reflected variation in the varieties
grown, which changed little over time on a given farm, and the quality of the
harvested crop. Some farms sold parts of their harvest at different prices; in
those cases, the rice-price variable was the average of the reported prices.
Wage rate was calculated at the site level by dividing aggregate expenditure
on hired labor across farms by the aggregate number of person-days hired.
This was done separately for each season in a given year. The price of nitrogen
fertilizer was also calculated at the site/season-year level. Nutrient-specific
fertilizer prices were generally not available because of the prevalence of
compound fertilizers. The price of nitrogen fertilizer was approximated by the
corresponding parameter estimate from a regression of total fertilizer ex-
penditure on the total quantities of nutrients applied. The use of uniform
wages and fertilizer prices across farms at a given site in a given season is
reasonable, because the farms at each site were located in villages adjacent to
each other and were well-served by transportation infrastructure.

Regression Analysis. We used multiple regression to estimate the following
statistical model (Eq. 1),

yit ¼ ci þ θ jt þ w itβþ uit; [1]

where yit is the yield of farm i in season-year t, ci is a farm-level fixed effect,
which equals 1 for observations from farm i and 0 otherwise, θjt is a site-specific

season-year fixed effect, which equals 1 for observations from site j in season-
year t and 0 otherwise, wit is an N × K matrix of weather variables, where N is
the number of observations across farms and season-years andK is the number
of variables, β is a K × 1 vector of parameters that gives the impact of weather,
anduit is a randomerror term that represents the impacts of factors other than
weather on yield. (We discuss the inclusion of economic variables below.) Be-
cause the model included farm-level fixed effects, the impacts of climate
change were identified from the random variation in weather over time as
opposed to the mean differences between farms. This identification strategy
has been used in other recent studies (19–23).

We used a Box-Cox transform to guide model specification (33). The es-
timate of the Box-Cox theta parameter for a model with the same variables
as Model 5 in Table S4 was 0.886, which implied that a linear specification
was more appropriate than log-log, semilog, or inverse specifications.

We intentionally excluded any variable over which farmers had control
from the right-hand side of Eq. 1, which could have caused endogeneity bias.
As a result, the parameters in β are more inclusive than the marginal effects
of weather that would be obtained from a regression model that controlled
for farm inputs such as labor and fertilizer. To see this, suppose that instead
of Eq. 1, the model was (Eq. 2)

yit ¼ ai þ θ jt þ w itαþ γzit þ εit: [2]

The key change is the addition of zit, which is a farmer-controlled input (an
N × 1 vector) whose impact on yield is given by the parameter γ. The farm-
level fixed effects are now given by ai, the parameters on wit by α, and the
error term by εit. Suppose further that farmers’ decisions about how much of
the input to use are affected by weather in the following way (Eq. 3):

zit ¼ δ0i þ w itδ1 þ ξit: [3]

δ0i and δ1 are parameters, and ξit is a random-error term. Inserting Eq. 3 into
Eq. 2 yields an equation identical to Eq. 1, with ci ≡ ai + γδ0i , β ≡ α + γδ1, and
uit ≡ εit + γξit . Hence, the expected value of estimates of β obtained by es-
timating Eq. 1 is the total marginal effect of weather on yield: the sum of
the direct impact (α) and the indirect impact through weather’s influence on
input use (γδ1).

The addition of exogenous economic variables does not fundamentally
change this explanation. According to standard producer theory (34), input
demand by farmers is determined by not only weather but also crop price
(rice in our model), prices of inputs (labor and nitrogen), and stocks of fixed
inputs (area planted with rice). The exclusion of these variables from Eq. 3
and thus, from Eq. 1 can bias estimates of β when the variables are signifi-
cantly correlated with the weather variables. When the correlations are
small, however, as they are in our dataset, then the bias is small, and ex-
clusion of these variables mainly makes estimates of β less precise. Consistent
estimates also require that the economic variables are not simultaneously
determined with yield. This condition was met in our data: farmers were
price takers in rice, labor, and fertilizer markets, and the area planted was
determined months before each season’s crop was harvested.

The panel structure of our data (i.e., both cross-sectional and time-series
variation) allowed the estimation of models that included either fixed effects
or random effects to control for unobserved farm characteristics. We used the
generalized form of the Hausman test to test the validity of the random-
effects model (pp 290–291 in ref. 35). We rejected the null that the regressors
were uncorrelated with the farm-level random effects (P < 0.0001 in all
cases). However, the random-effects estimates did not differ greatly from
the fixed-effects estimates (Table S12). The results remained similar if we
did not include either fixed or random effects to control for unobserved
farm characteristics, but they changed substantially if we excluded fixed
effects for site/season-years (Table S12). Evidently, the most influential
unobserved effects in our sample were ones that varied over time at the
sites. This suggests that parameter estimates from future studies that use
cross-sectional farm-level data instead of panel data might not be very
biased if the data are from multiple sites and regression models include
site-level fixed effects.

Residuals in the models could be spatially correlated across farms within
a site and serially correlated over time, despite the inclusion of the site-
specific season-yearfixed effects.We addressed this issue by clustering the SEs
at the village/district level. The number of clusters was relatively small (just
32), which could cause the SEs to be inconsistent. To check this, we imple-
mented a bootstrapping method for estimating consistent t statistics with
a small number of clusters (36). Parameter estimates for Tmin, radiation, and
Tmax during the vegetative phase and Tmin during the ripening phase
remained significant (P < 0.05) according to the bootstrapped t statistics, but
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estimates for Tmax and radiation during the ripening phase did not (P = 0.118
and P = 0.148, respectively). Each of the latter two variables became sig-
nificant (P = 0.002 and P = 0.02, respectively), however, if the other
was excluded.

Analysis of Joint Impacts. Estimated quarterly trends in Tmin and Tmax (°C y−1)
during 1979–2004 were provided by the US National Climatic Data Center
and were generated using the methods described in ref. 37. They referred to
5 × 5° grid cells containing the sites. Trends in surface radiation were based
on analysis of the series Insolation on Horizontal Surface (megajoules·m−2·d−1)
from the National Aeronautics and Space Administration Climatology Re-
source for Agroclimatology website (http://earth-www.larc.nasa.gov/cgi-bin/
cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov).Daily data for this series
were downloadedby entering the latitude, longitude, and elevation of each
site. Data were averaged within each quarter of the year during 1983–2004
(1983 was the first year in the dataset), and then, the natural logarithm of
each quarterly series for each site was regressed on an annual time trend.
Hence, the radiation trends were expressed in percent change per year.
Significance was tested using Newey–West SEs, which were robust to het-
eroskedasticity and first-order serial correlation.

Impacts in Table 1 were calculated by multiplying (i) temperature trends
(Table S10) by the corresponding regression coefficients (Model 5 in Fig. 2)
and (ii) radiation trends by the corresponding regression coefficients and
means of the radiation variables. National yield trends were estimated by
regressing the natural logarithm of national yield data (FAOStat; http://
faostat.fao.org/default.aspx) on an annual time trend. Impacts changed lit-
tle if they were based on weather trends that were significant at P < 0.1
instead of P < 0.05.
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