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Quantum criticality arises when a macroscopic phase of matter
undergoes a continuous transformation at zero temperature.While
the collective fluctuations at quantum-critical points are being
increasingly recognizedas playingan important role in awide range
ofquantummaterials, thenatureof theunderlyingquantum-critical
excitations remains poorly understood. Here we report in-depth
measurements of the Hall effect in the heavy-fermion metal
YbRh2Si2, a prototypical system for quantum criticality. We isolate
a rapid crossoverof the isothermalHall coefficient clearly connected
to the quantum-critical point from a smooth background contribu-
tion; the latter exists away from the quantum-critical point and is
detectable through our studies only over a wide range of magnetic
field. Importantly, the width of the critical crossover is proportional
to temperature, which violates the predictions of conventional
theory and is instead consistent with an energy over temperature,
E∕T , scalingof the quantum-critical single-electron fluctuation spec-
trum. Our results provide evidence that the quantum-dynamical
scaling and a critical Kondo breakdown simultaneously operate
in the same material. Correspondingly, we infer that macroscopic
scale-invariant fluctuations emerge from the microscopic many-
body excitations associated with a collapsing Fermi-surface. This
insight is expected to be relevant to the unconventional finite-
temperature behavior in a broad range of strongly correlated
quantum systems.

YbRh2Si2 ∣ Kondo effect ∣ magnetotransport ∣ antiferromagnetism ∣
local quantum criticality

Quantum criticality epitomizes the richness of quantum effects
in macroscopic settings (1). The traditional description is

based on the framework of Ginzburg and Landau (2), which
focuses on the notion of an order parameter, a classical variable.
The order parameter delineates the symmetry breaking of the
macroscopic phases, while its fluctuations at ever-increasing
length and time scales characterize the approach toward a sec-
ond-order quantum phase transition. For metallic antiferromag-
nets, this theory appears in the form of a spin-density-wave
quantum-critical point (QCP) (3, 4). Here, the macroscopic
fluctuations of the order parameter are described by a Gaussian
theory at the fixed point, with a vanishing effective coupling
among the collective modes in the zero-temperature (T ¼ 0),
zero-energy (E ¼ 0) and infinite-length limit. Consequently
(5), the collective fluctuations will violate E∕T scaling.

By contrast, an unconventional class of quantum criticality,
emerging from studies in recent years (1), incorporates not only
the slow fluctuations of the order parameter, but also some
inherent quantum modes. For heavy-fermion metals, the addi-
tional quantum modes are associated with a critical breakdown
of the Kondo screening effect and the concomitant single-elec-
tron Kondo resonance excitations (6–8). These additional critical
modes can lead to a critical field theory that is interacting, instead
of Gaussian, and the collective fluctuations will satisfy E∕T scal-
ing (9, 10). The critical Kondo effect itself is manifested in the

nature of microscopic single-electron excitations, with the Fermi
surface undergoing a severe reconstruction at the QCP.

To date, there has been no experiment to determine that the
critical Kondo destruction is the underlying mechanism for the
dynamical E∕T scaling. In the heavy-fermion quantum-critical
material CeCu5.9Au0.1, the magnetic dynamics have been shown
to display such a scaling (9). In this material, however, the uncon-
ventional QCP appears only by tuning of chemical doping or
pressure (11); consequently, it has so far not been possible to probe
its Fermi surface and related single-electron properties with
sufficient resolution. The heavy-fermion system YbRh2Si2 fea-
tures an unconventional QCP that is accessible by the application
of a relatively small magnetic field (12, 13), thereby allowing the
study of magnetotransport across the QCP. Although indications
of a rapid Fermi-surface change in YbRh2Si2 have appeared
through the observation of a crossover in the Hall effect (14),
no information has been extracted on the dynamical fluctuation
spectra of either the magnetic or single-electron excitations.
Moreover, the Hall crossover has alternatively been interpreted
in terms of a background contribution in the nonmagnetic
heavy-fermion phase through either minute valence variations
(15) or Zeeman splitting of the bands (16, 17), leaving the nature
of the quantum-critical single-electron excitations uncertain.
In addition, the observation of sample dependences in the low-
temperature Hall coefficient raises the important question of
how these affect the Hall crossover (18, 19). To resolve these fun-
damental issues, we carry out comprehensive, in-depth Hall-effect
measurements over a wide range of the control parameter, the
magnetic field, down to very low temperatures. We establish a
sample-dependent background component of the Hall crossover,
which in turn allows us to isolate a critical component of the cross-
over with properties that are sample-independent. In addition,
we identify a robustly linear-in-temperature width of the critical
Hall crossover, which is compatible with a quantum-dynamical
scaling of the critical single-electron excitations. Our findings
lead to an unexpectedly direct linkage between the scale-invariant
macroscopic fluctuations and the microscopic physics of a
collapsing Fermi surface.

Results
We study the magnetotransport in tetragonal YbRh2Si2 using a
crossed-field setup, in which two external magnetic fields are
applied in perpendicular directions. This separation allows for
a disentanglement between field tuning of ground states through
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B2 and generation of Hall response through B1: One field, B1,
along the magnetic hard c axis and perpendicular to the electrical
current, is used to extract the initial slope of the Hall resistivity,
ρH, i.e., the linear-response Hall coefficient, RH (see SI Text I).
The second field, B2, applied within the magnetically easy ab
plane and along the current direction, is used as the control
parameter that tunes the system from an antiferromagnetic
ground state at low fields across the QCP toward a high-field
paramagnetic state. The adjacent phases on both sides of the
QCP obey Fermi-liquid properties, like a quadratic temperature
dependence of the resistivity (13). We consider two samples,
which span the whole range of sample dependences in the Hall
coefficient (see SI Text II).

Fig. 1 shows the isothermal linear-response Hall coefficient of
our highest-quality sample as a function of B2. Two features are
evident. First, for B2 much larger than the quantum-critical field,
B2c, the Hall coefficient shows a sizable variation with the
magnetic field; within the experimental error it is linear inB2. This
background feature is likely due to Zeeman splitting (17) because
no indication for a valence change (15) has been observed. The
identification of this background feature is possible only because
we have measured in a substantially extended range of B2 (see
SI Text I). Second, there is a sharp crossover feature that rides
on top of the background contribution. This sharp feature is
located near B2c and will henceforth be termed the critical
Hall-crossover component.

The inset of Fig. 1 further illustrates the systematic decompo-
sition of the Hall crossover into the background and critical com-
ponents. It plots −∂RH∕∂B2 as a function of B2. The background
term appears as an underlying nonzero offset, whereas the critical
term manifests itself as a sharp peak near B2c. More quantita-
tively, Fig. 1 shows the separation of the two components using
a fitting procedure specified in Materials and Methods.

The critical component is characterized by the difference
between R0

H, the Hall coefficient before the crossover, and
R∞
H , the Hall coefficient after the crossover. The temperature

dependence of R0
H and R∞

H in the low-T range for both samples

is shown in Fig. 2A. The experimental finding of a pronounced
quadratic temperature dependence of R0

H below TN allows a
proper extrapolation to T → 0 yielding a finite difference between
R0
H and R∞

H persisting to zero temperature (see SI Text V). This
difference is naturally associated with a change of the Fermi
surface. The magnitudes of R0

H and R∞
H , on the other hand, are

different for the different samples rendering the sample depen-
dences of the Hall coefficient a common property of the two
phases at either side of the QCP. Recent ab initio calculations
of the Hall coefficient in YbRh2Si2 suggest that these sample
dependences are the effect of multiple Fermi-surface sheets.
The “small” (4f-core) and “large” (4f-itinerant) Fermi surfaces
at fields below and above B2c in YbRh2Si2 are respectively domi-
nated by two hole and one hole/one electron Fermi-surface sheets
(19). Correspondingly, the step of RH as B2 increases through B2c
is expected to be negative, as is indeed seen here.

By contrast, the crossover position and the crossover width of
the critical component show essentially no sample dependence
within the experimental error. This is seen in Fig. 3, which plots
the FWHM of ∂RH∕∂B2 isotherms (Fig. 1 Inset), and in Fig. 4,
which depicts the crossover field, B0, extracted from the fits to
RHðB2Þ for a range of low temperatures in the temperature-
magnetic field phase diagram.

To corroborate this fundamental finding, we have carried out
two additional measurements. The standard single-field Hall-
effect setup is used to monitor the differential Hall coefficient
~RH as a function of the magnetic field B1 applied along the crys-
tallographic c axis (see SI Text I). In addition, the magnetoresis-
tivity, ρ, is measured as a function of a single field, B2, applied
within the ab plane. Both ρðB2Þ and ~RHðB1Þ can similarly be de-
composed into background and critical terms (see SI Text IV),
with the critical crossover terms occurring near the basal-plane
critical field, B2c, and near the c-axis critical field, B1c, respec-
tively; the ratio B2c∕B1c will be used as the anisotropy ratio to
convert the B1 scale into an equivalent B2. The zero-field and
high-field values extracted from fits of the crossover function
(Eq. 5) to magnetoresistivity (ρ0 and ρ∞) and differential Hall
coefficient ( ~R0

H and ~R∞
H) are presented in Fig. 2B and in

SI Text V, respectively. Each quantity shows a similar sample de-
pendence: As found for the crossed-field results, the differences

Fig. 1. Crossed-field Hall-effect results of YbRh2Si2. Selected isotherms of
the initial-slope Hall coefficient RH as a function of B2 for sample 2 [which
has the smallest residual resistivity (cf. SI Text II)]. The solid lines are best fits
of the empirical crossover function given in Eq. 5 in Materials and Methods,
extending up to 2 T. The anomalous contribution to the Hall effect can be
neglected as explained in SI Text III. (Inset) Illustration of the decomposition
of the crossover in RHðB2Þ into the critical and background components. Here,
−∂RHðB2Þ∕∂B2 is plotted as a function of B2 together with the derivatives of
the fitted functions (solid lines). The background crossover term corresponds
to the nonzero constant offset. The critical crossover term is represented by
the sharp peak near B2c (marked by vertical arrow), whose FWHM is defined
as the crossover width (specified for one temperature by the red horizontal
arrows). Standard errors of RH are typically of the size of the symbols.

BA

Fig. 2. Limiting values of the Hall and magnetoresistivity crossover. (A) Fit
parameters R0

H and R∞
H of the crossover in RH plotted for sample 1 and sample

2 as a function of temperature together with the measured initial-slope Hall
coefficient RH. The residual resistance ratios are 70 and 120 for sample 1 and
sample 2, respectively. (B) Corresponding quantities ρ0 and ρ∞ from the
analogous analysis of the magnetoresistivity crossover (see SI Text IV). Solid
lines correspond to fits of a quadratic temperature dependence below TN

(see SI Text V), as already observed previously for ρðTÞ (13). Dashed lines
are guides to the eye. Arrows indicate the Néel temperature. Standard
deviations are smaller than the symbol size.
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ρ0 − ρ∞ and ~R0
H − ~R∞

H remain finite in the zero-temperature limit
even though the individual quantities differ for the different sam-
ples. The crossover positions extracted from all the properties
are compiled in Fig. 4. They are largely compatible with each
other, falling within a range spanned by the FWHM; they define
a crossover energy scale (the T⋆ line) (14, 20). Finally, the
FWHM of the crossover in ~RHðB1Þ and ρðB2Þ closely follow that
of RHðB2Þ (see Fig. 3). We note that the onset of the quadratic
form of R0

HðTÞ at TN (Fig. 2) is not accompanied by a similar sig-
nature in the FWHM at TN (Fig. 3; see also SI Text IV). There-
fore, the FWHM extrapolates to zero for T → 0 implying a jump
of all three quantities (RHðB2Þ, ~RHðB1Þ and ρðB2Þ) at the QCP.

The sample independence of both the crossover position and
the crossover FWHM strongly indicates that all the magnetotran-
sport crossovers manifest the same underlying physics. Combined
with the jump of the Hall coefficient and magnetoresistivity in
the zero-temperature limit, they imply the interpretation in terms
of a sharp Fermi-surface reconstruction at the magnetic QCP
(14) over that based on the smooth physics of heavy quasiparticles
(15, 17).

Having isolated the critical component of the Hall crossover
from the background term, we are now in the position to discuss
the detailed nature of the QCP. For this purpose, we have not only
carried out crossed-field and single-field Hall and (single-field)
magnetoresistivity measurements over an extended field range
for each temperature, but have also done so for a large set of
temperatures in the low-T range. These efforts allow us to reach
the important conclusion that the crossover FWHM is propor-
tional to temperature (Fig. 3).

The Fermi surface is a property of the single-electron excita-
tion spectrum. In any Fermi liquid, it spans the momenta, kF, at
which the energy dependence of the single-electron Green’s func-
tion develops a pole at the Fermi energy. Hence, a reconstruction

of the Fermi surface across the QCP implies that the single-
electron Green’s function contains a singularity at the QCP.
Indeed, the conduction-electron Green’s function of a Kondo
lattice system can very generally be written as

Gðk;E;TÞ ¼ 1

E − ϵk − Σðk;E;TÞ : [1]

In the absence of static Kondo screening, the self-energy
Σðk;E;TÞ is nonsingular. Correspondingly, the Fermi surface is
smoothly connected to that of the conduction electrons alone;
it is small (21). In the presence of static Kondo screening,
Σðk;E;TÞ develops a pole; for E and T small compared to the
coherent Kondo scale, it takes the form

Σðk;E;TÞ ¼ ðv�Þ2
E − ϵ�f

þ ΔΣðk;E;TÞ: [2]

Here v� and ϵ�f specify the strength and energy of the Kondo
resonance (22), and ΔΣðk;E;TÞ is the nonsingular term of the
self-energy. The existence of this pole in Σðk;E;TÞ shifts the Fermi
momenta from their positions on the small Fermi surface, kF,
to those on a large Fermi surface, k�

F. Approaching the point of
critically destroyed Kondo effect, the quasiparticle weight
vanishes (6, 7) in accordance with the divergence of the quasipar-
ticlemass seen in specific heat and resistivity (13, 21). In particular,
at the QCP, both the strength, v�, and the energy, ϵ�f , of the Kondo
resonance (see Eq. 2) go to zero in the E → 0 and T → 0 limits.
Moreover, the interacting nature of the fixed point implies an
E∕T scaling of the single-electronGreen’s function: The reasoning
is analogous to that for the dynamical spin susceptibility (6, 9),
and the property can be illustrated by explicit calculations in
simplified model settings for critical Kondo destruction (23).
Similar forms of dynamical scaling of the single-electron spectra
are likely a generic feature of other types of Kondo-destroying
QCPs (7, 8, 24); they appear in related contexts as well (25–27).

Fig. 3. FWHM of the Hall crossover. The width was determined from the
derivatives of the fits to RHðB2Þ in the crossed-field setup, to the simulta-
neously measured magnetoresistivity ρðB2Þ, and to ~RHðB1Þ of the single-field
experiment, respectively. See Fig. 1 Inset for the definition of the FWHM. The
values for ~RHðB1Þ were scaled by 1∕11 ¼ B2c∕B1c (ref. 13) to account for the c
axis vs. ab plane magnetic anisotropy of YbRh2Si2. The solid line represents a
linear fit to all datasets with the magnetoresistivity data being well described
up to 1 K; see SI Text IV. Within the experimental accuracy this fit intersects
the ordinate at the origin. Where there is overlap, our magnetoresistivity
results are in good agreement with the FWHM directly extracted from the
derivative of ρðB2Þ presented in ref. 20. The crossed-field data obtained ear-
lier in a very limited temperature range (14) are in good agreement with
both our results and the linear fit. The different temperature dependence
found earlier was dominated by the former single-field results differing from
ours. This difference is likely a result of an improved orientation procedure
that became possible only in a substantially improved setup (see SI Text I).
Arrow indicates the Néel temperature. Error bars are standard deviations.

Fig. 4. Position of the Hall crossover in the temperature-field phase diagram
of YbRh2Si2. The crossover fields, B0, are extracted from fits to RHðB2Þ of the
crossed-field experiment, to ~RHðB1Þ of the single-field experiment, and to
ρðB2Þ (cf. Materials and Methods). The values of the single-field Hall-effect
experiment were scaled by 1∕11 to account for the magnetic anisotropy
of YbRh2Si2. The red horizontal bars reflect the FWHM at selected tempera-
tures determined by the fit in Fig. 3, showing that the crossover fields of the
various experiments and samples all lie within the range spanned by the
FWHM. The dotted (dashed) line represents the boundary of the antiferro-
magnetic phase (Fermi-liquid regime) taken from ref. 13. Error bars are
omitted in order to avoid confusion with the width of the crossover; with
the exception of the data at 0.3 K and the single-field result of sample 2
at 0.19 K, the standard deviations are smaller than the symbol size.
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It is worth noting that the linear-in-temperature electrical resistiv-
ity cannot be used as evidence for E∕T scaling of the single-
electron excitations. Indeed, the temperature dependence of
the electrical resistivity does not in general measure the tempera-
ture dependence of the single-electron relaxation rate and this
is so even for spin-density-wave QCPs (28).

The scaling form for the single-electron Green’s function in
the quantum-critical regime can be expressed as follows:

GðkF;E;TÞ ∼
1

Tα g
�
kF;

E
T

�
: [3]

The associated relaxation rate, defined in the quantum relaxa-
tional regime (E ≪ kBT) according to

ΓðkF;TÞ≡ ½−i∂ lnGðkF;E;TÞ∕∂E�−1E¼0; [4]

is linear in temperature: ΓðkF;TÞ ¼ cT, where c is a universal
constant.

We can use these properties of the single-electron Green’s
function to understand the crossover of the Hall coefficient. In
the Fermi-liquid regimes on either side of the QCP, the Hall
coefficient reflects the respective Fermi surface; it is, in particular,
independent of the quasiparticle residue (29) (see SI Text VI). The
distinct (large and small) Fermi surfaces in the two Fermi-liquid
regimes yield different end values of theHall coefficient. The cen-
tral question is how the two Fermi surfaces are connected across
the QCP. Because the single-electron Green’s function charac-
terizes each of the two Fermi liquids, this is related to the critical
relaxation rate, ΓðkF;TÞ, of the single-electron states. At zero
temperature, ΓðkF;T ¼ 0Þ vanishes; the change from one Fermi
surface to the other is sharp, occurring precisely at the QCP.
The Hall coefficient must undergo a sharp jump in accordance
with the experimental findings. At any nonzero temperature, a
continuous crossover from one Fermi surface to the other is
controlled by the single-electron relaxation rate ΓðkF;TÞ. Given
the above-described behavior of the Hall coefficient in the adja-
cent Fermi-liquid regimes with well-defined but different Fermi
surfaces, its crossover has to be related to the finite-temperature
broadening of the critical single-electron states on the Fermi
surface. Our observation of a linear-in-temperature width of
the critical Hall crossover is therefore consistent with a linear-
in-temperature relaxation rate. By contrast, our experimental
finding is incompatible with the spin-density-wave picture of
order parameter fluctuations and the concomitant Gaussian fixed
point, which would be accompanied by a superlinear temperature
dependence of the Hall-crossover width (see SI Text VI).

Discussion
The single-electron Green’s function serves as the proper means
to specify whether a metal obeys the standard theory of solids—
Landau’s Fermi-liquid theory. The fact that Eq. 2, with a nonzero
v�, i.e., a large Fermi surface across the QCP, fails to describe our
data is consistent with a breakup of the heavy-Fermi-liquid qua-
siparticles at the QCP. More generally Eq. 3, reminiscent of

Green’s function of gapless interacting electrons in one dimen-
sion (30), invalidates any Fermi-liquid description. By using a
single set of measurements on the same compound to probe both
the collective fluctuations of the QCP and a critical destruction of
the single-electron excitations, our work provides the most direct
association between quantum criticality and non-Fermi-liquid
behavior.

In summary, we have carried out in-depth magnetotransport
measurements in a prototypical quantum-critical heavy-fermion
metal, and we are able to distinguish a robust critical crossover
from a sample-dependent background feature. By zooming into
the vicinity of the QCP, we have shown that the width of the
critical crossover is not only independent of sample quality but also
proportional to temperature. This proportionality is consistent
with the E∕T form in the dynamical critical scaling. Coupled with
the fact that the vanishing width in the zero-temperature limit
implies a jump in the Fermi surface, our findings point to the
microscopic many-body excitations of a collapsing Fermi surface
as underlying the dynamical E∕T scaling of the macroscopic
critical fluctuations. Our results further establish the T⋆ line as
a means to probe the Kondo breakdown. This should hold even
when the Kondo breakdown is separated from the paramag-
netic-to-antiferromagnetic QCP (31). In addition, they might help
to understand why the two coincide in stoichiometric YbRh2Si2
and its close vicinity. More generally, the linkage between
microscopics and macroscopics is expected to be broadly relevant
to the physics of strong correlations, considering that the
finite-temperature properties are invariably abnormal in a wide
array of quantum materials, and given that the Fermi surface
and its evolution as a function of control parameters—e.g., from
the underdoped high-temperature cuprate superconductors to
the overdoped ones (32, 33)—are playing an increasingly central
role in understanding these systems.

Materials and Methods
The Hall crossovers in both the crossed-field [RHðB2Þ] and single-field [ ~RHðB1Þ]
experiments (see SI Text I) were fitted with the empirical crossover function

RHðBÞ ¼ R∞
H þmB −

R∞
H − R0

H

1þ ðB∕B0Þp
[5]

that contains not only a critical component (14) but also a linear term mB to
account for the background behavior. R0

H and R∞
H are the zero-field and

infinite-field values, respectively. The differential Hall coefficient and the
magnetoresistivity curves were analyzed analogously leading to the
corresponding parameters ~R0

H, ~R∞
H and ρ0, ρ∞, respectively. By fitting Eq. 5

to isotherms taken at different temperatures, the temperature dependences
of the parameters were extracted. The FWHM was extracted from the
derivative of the fitted function as illustrated in the inset of Fig. 1.
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