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Anisotropy of wave propagation in the heart can be
modeled by a Riemannian electrophysiological metric

Robert J. Young® and Alexander V. Panfilov®'

?|nstitut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France; and "Department of Theoretical Biology,

Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands

Communicated by M. Gromoy, Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France, June 23, 2010 (received for review September 7, 2009)

It is well established that wave propagation in the heart is
anisotropic and that the ratio of velocities in the three principal di-
rections may be as large as vyi:ivs:v,~4(fibers):2(sheets):
1(normal). We develop an alternative view of the heart based
on this fact by considering it as a non-Euclidean manifold with
an electrophysiological(e/-) metric based on wave velocity. This
metric is more natural than the Euclidean metric for some applica-
tions, because el-distances directly encode wave propagation. We
develop a model of wave propagation based on this metric; this
model ignores higher-order effects like the curvature of wave-
fronts and the effect of the boundary, but still gives good predic-
tions of local activation times and replicates many of the observed
features of isochrones. We characterize this model for the impor-
tant case of the rotational orthotropic anisotropy seen in cardiac
tissue and perform numerical simulations for a slab of cardiac
tissue with rotational orthotropic anisotropy and for a model of
the ventricles based on diffusion tensor MRI scans of the canine
heart. Even though the metric has many slow directions, we show
that the rotation of the fibers leads to fast global activation. In the
diffusion tensor MRI-based model, with principal velocities
0.25:05:1 m/s, we find examples of wavefronts that eventually
reach speeds up to 0.9 m/s and average velocities of 0.7 m/s.
We believe that development of this non-Euclidean approach to
cardiac anatomy and electrophysiology could become an important
tool for the characterization of the normal and abnormal electro-
physiological activity of the heart.

cardiac arrhythmias | cardiac electrophysiology | diffusion tensor MRI |
patient-specific cardiac models | Riemannian geometry

Nonlinear waves of excitation organize spatial processes in
many biological and physicochemical systems (1). Cardiac
contraction is one of the most important of these processes,
and is organized by the propagation of electrical waves in the
heart. Abnormal propagation of such waves may result in the on-
set of life-threatening conditions. For example, ventricular fibril-
lation, a result of abnormal turbulent excitation of the heart, is a
leading cause of death worldwide, accounting for about 6 million
deaths annually (2). Understanding and characterizing wave
propagation, especially at the whole organ level, is an important
problem in cardiac electrophysiology.

Wave propagation in the heart is the result of timed excitation
of cardiac cells called myocytes, which transmit excitation to their
neighbors. An extended description of the heart excitation pro-
cess is published in SI Text, Fig. S1, and Fig. S2. Because these
cells are arranged anisotropically, the speed of wave propagation
in the heart varies with direction. The fastest speed of propaga-
tion is along the myocardial fibers; propagation along fibers is 2—4
times faster than propagation across the fibers. Based on exten-
sive histological measurements of myocardial fiber organization,
LeGrice et al. (3) proposed the hypothesis that myocardial fibers
are organized into myocardial sheets (Fig. 1). According to this
hypothesis, which was recently confirmed experimentally (4),
there are three principal velocities of wave propagation: v, along
the fibers, v, across the fibers in a given sheet, and v, between
sheets, so the propagation of excitation depends on the arrange-
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Fig. 1. Fibers and sheets in the ventricles. Schematic representation of
cardiac microstructure. [Adapted with permission from ref. 3 (Copyright
1995, Am J Physiol).]

ment of these fibers and sheets at a tissue and whole organ level.
This is called orthotropically anisotropic wave propagation.

The main idea of this paper is to give a geometrical interpreta-
tion of this cardiac anisotropy. If we define the “electrophysiolo-
gical distance” or el-distance between two points in the heart as
the time for a wave to propagate from one point to the other, this
el-distance will directly reflect the process of wave propagation in
the heart. This el-distance differs substantially from the usual
Euclidean distance, because the el-distance between two points
depends on the structure of the tissue between them. Two points
joined by a fiber will be closer to each other in terms of el-distance
than two points separated by the same physical distance in a dif-
ferent direction. This e/-distance allows us to consider the heart as
a metric space, a concept widely used in theoretical physics and
mathematics. We claim that this non-Euclidean representation of
the heart is a natural representation of the heart related to its
electrical function.

A Riemannian approximation of this metric was used to derive
the stationary shapes of vortex filaments. Wellner et al. (5)
showed that for a 3D reaction-diffusion system with anisotropy
the stable configuration of the filament is a geodesic of the Rie-
mannian space with metric tensor given by the inverse diffusivity
tensor of the medium. Ten Tusscher and Panfilov (6) showed that
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distance in this Riemannian space can be interpreted as the
arrival time of a wave between two points. The minimal principle
for vortex filaments was proven by Verschelde et al. (7) in the case
of small filament curvature.

In the above cases the Riemannian space was used to describe
filaments of vortices rather than excitation waves. Here we pro-
pose using a non-Euclidean metric to describe wave propagation
in the heart and to characterize its geometry. As this e/-geometry
of the heart is based on wave propagation we believe that it will
represent the function of the heart better than metrics based on
the physical shape of the heart. In this paper we introduce this
el-metric of the heart, show several of its basic properties and dis-
cuss further directions of research.

Model

We model the time z(x,y) needed for a wave initiated at a point x
to propagate to another point y. Writing  as a function of x and y
is somewhat inaccurate; the speed of a wave may also depend on
other factors, like the frequency of stimulation (8) or other
factors discussed at the end of the section. Nonetheless, = should
be approximated well by a geodesic metric; i.e., a metric in which
distances are defined by the lengths of paths between points. In
this section, we will define one such approximation to z, which we
call the el-metric (d,;) of the heart.

Our construction of the el-metric is based on the assumption
that the speed of a wave in the myocardium depends only on
the orientation of the wave relative to the laminar structure of the
ventricles. Recall that muscle cells are arranged in fibers, and
excitation propagates faster along fibers than transverse to them.
These fibers are also arranged in sheets, and as with the fibers, pro-
pagation is faster in the plane of the sheet than between sheets.

For each point x in the heart, let & (x), & (x), and &, (x) be ortho-
gonal unit vectors so that & (x) points in the direction of the fibers,
€r(x) and e,(x) span the sheet at a point, and &, (x) is normal to the
sheet. Let vy, v, and v, represent the speed of wave propagation
in the fiber, sheet, and normal directions respectively. Then we
can define the following norm, measured in units of time, on
vectors in the heart:

iy (x) + by () + &y ()l = \/ (%)2 + (Vﬁ)z + (vi)z

This norm is equivalent to the metric tensor g;, which is a dia-
gonal matrix with coefficients 1/v;,1/v,1/v; when considered
in the basis

{éf (x)7és (x) vén (x)}

Recall that the Euclidean length of a curve y is given by:

1 1
Conys(7) = /) dS phys = /0 \/i}'f?dt. [1]

We call this the phys-length of y and define dypy(xy) to be the
phys-length of the shortest curve in the heart connecting x and
y. Note that in general, this is not a straight line, because the
straight line between two points may leave the heart.

We can study wave propagation similarly. Let g; be the el-me-
tric tensor described above. The el-distance ds between two points
separated by dx; is given by ds?, = g;dx,dx;. If y (t) = x;(¢) is a curve,
the time for a wave restricted to y to travel from one end to the
other is given by

1 1
talt) = [ dsa= [ [Singsar 2]
ij
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where the y; are components of the derivative of y. We call this
the el-length of y. The time for a wave to travel from x toy is the
el-length of the el-shortest curve in the heart connecting x and y;
let d,;(x,y) be this length. Note, in particular, that if y is the el-
shortest curve from x to y, then y taken in reverse is the el-shortest
curve from y to x, so d(x,y) = d(yx).

The function &,(x) = d,(y.x) describes the wave initiated at y;
the wavefront at time ¢ is the set (&) ~!(r). This function is a weak
solution of the eikonal equation

V&)l =1 for all x, [3]
where || - ||, represents the norm dual to || - ||%; that is,

V|, = max (v,w) =g7lvv..
VIl = mnas, (vw) = g viv

In particular, one can write Eq. 3 as

gTI%%:l
U oy oy ’

so that this metric is equivalent to the metric introduced in (5, 6).

The el-geometry underlies many aspects of wave propagation.
As mentioned above, this metric appears in several studies of
scroll wave filaments, where it is shown that under many condi-
tions, filaments move to minimize their el-length. This geometry
also appears in models of wave propagation. For example, in
refs. 9 and 10, the eikonal equation for wave propagation is es-
sentially [3], with corrections due to curvature of the wavefront
and other factors. These terms are often small, especially at
larger times.

There are many ways to generalize this construction. We as-
sumed that v¢, v;, and v, are constant throughout the ventricles
and that the metric is determined by the fiber and sheet structure.
In practice, velocities may depend on other factors, including
position in the heart and activation history. Similarly, we defined
d,; in terms of a metric tensor, which places certain constraints on
the way that velocities can vary with direction. It is possible that
this does not hold and that velocities are better described by a
Finsler metric (see ref. 11 for a brief mathematical survey of
Finsler metrics).

On the other hand, other corrections cannot be incorporated
into the el-metric. It is known that r deviates from being a
geodesic metric in several ways. In particular, 7 is unlikely to
be symmetric; i.e., propagation speed in one direction may differ
from the speed in the reverse direction. For example, it is well-
established that there is a delay of about 5-10 ms in conduction
from the Purkinje network to the ventricles but no delay in the
reverse direction (12). Asymmetry can also arise from other
sources, such as abrupt tissue expansion [see the review (13)].
It is also unlikely that z is geodesic; as mentioned above, wave
speed involves not only direction, but corrections due to curva-
ture, and these corrections imply that 7 is not determined solely
by the el-lengths of paths between points.

One advantage of modeling propagation in terms of a
Riemannian metric is that we can apply the tools of differential
geometry. Many of the concepts of differential geometry are
unfamiliar in the context of cardiac modeling, but because the
metric of our space is closely related to wave propagation in the
heart, many geometrical notions have interpretations in terms of
wave propagation. One key geometrical notion is the geodesic,
the shortest path between two points. In Euclidean space, geo-
desics are just straight lines. In non-Euclidean spaces, the shortest
path generally takes a more complex trajectory. Geodesics are al-
ways perpendicular (with respect to the el-metric) to wavefronts,
so the convergence or divergence of geodesics corresponds to the
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convexity or concavity of wavefronts. One way of measuring the
convergence or divergence of geodesics is through curvature.
Curvature is a way of measuring how close a metric space is to
Euclidean space; in negatively curved spaces, geodesics diverge
faster than geodesics in Euclidean space, whereas in positively
curved spaces, geodesics diverge more slowly. One consequence
is that small metric balls grow faster in negatively curved spaces
than in positively curved spaces. In our case, a metric ball B,
around a point represents the region of activated tissue resulting
from a stimulus at that point. If K is the scalar curvature of the
el-metric at the point (in units of time=?) and ¢ is small, the
volume of tissue activated at time ¢ is approximated by (14):

4 K
Vol,ysB; = v, Vv, Vol,B, = vnvasgt%(l -——2+ O(t4)). 4]

phys 30
Note that v, v,vy §t37r is the volume of activated tissue at time ¢ in a
slab with no fiber rotation; the curvature comes from the rotation
of the fibers. We will see in the next section that fiber rotation
tends to lead to negative scalar curvature, so rotation causes
faster activation times on small scales.

It is important to note that curvature is a local invariant and
that at larger scales, the geometry is affected by other factors. We
will see that whereas the effects of curvature and other local in-
variants dominate at small scales, the large-scale structure of the
el-metric is closer to the Euclidean phys-metric.

Results

We studied this model theoretically and through numerical simu-
lation in “twisted slabs” and in an anatomical model of canine ven-
tricles whose geometry and fiber structure was derived from
diffusion tensor MRI (DTMRI) data. To model wave propagation
we solved Eq. 3 numerically by discretizing the domain using a
three-dimensional grid and applying a variant of the fast marching
method (15, 16). Because the fast marching method does not pro-
vide an adequate description of the effect of wavefront curvature
on speed and of boundary effects, we estimated the accuracy of
our implementation of the fast marching method by comparing
it with another accepted method for computing wave propagation
in cardiac tissue. For this test, we simulated wave propagation a
twisted slab of size 30 x 30 X 4.5 mm using both our model and a
monodomain LR1 ionic model for cardiac tissue that has been
widely used to simulate three-dimensional wave propagation in
cardiac tissue (17, 18). We found that the root mean squared error
between the two methods was 0.6 ms, or 2% of the average activa-
tion time of 30 ms. We also found that the fast marching method
was much less affected by grid effects and allowed us to produce
simulations with a larger space step. A detailed description of
these simulations is published in S7 7ext, Fig. S3 and Fig. S4.

We first consider the twisted slab model. One of the most com-
monly accepted patterns of anisotropy in the ventricles of the
heart is so-called rotational anisotropy, in which fibers occur in
parallel layers, rotating from endocardium to epicardium. It has
been documented for over a century (19) that in a block of car-
diac tissue from the wall of the left or right ventricle, fibers run
roughly parallel to the surface of the heart, and their orientation
in the slab rotates with depth, varying up to 150-180 ° between the
epicardial and endocardial surfaces (see Fig. 1). We studied this
model theoretically and through numerical simulation.

Let us define an idealized model (the twisted slab) of a slab of
cardiac tissue of thickness a and fiber rotation angle p. This is the
set of points (x,y,z) with z-coordinate between 0 and «, with fiber,
sheet, and normal directions given by

. . pz pz .
e(xyz) = (- smz,cos;,o) &(xyz) =(0,0,1)

N pz . pz
e, (x, = (cos—, sin—,0).
n(0y2) = (cos—.sin~.0)

Young and Panfilov

The el-metric for this model is very different from the phys-
metric on a small scale. Realistic values for vy, vy, and v, are
on the order of 1,0.5, and 0.25 m/s, so a small ball in the e/-metric
is very elongated in the phys-metric. The rotation of the fibers
gives rise to higher-order effects as well; the scalar curvature
of the el-metric is given by

6207 — )2

ZVJ%V%

K=

)

where 6 = £ is the rotation speed in rad/m. With 6 ~ 3 rad/cm,
this formula gives a scalar curvature on the order of —.15 ms™2
and similar formulas give sectional curvatures ranging from
~—.25ms2 to ~.1 ms2; see ref. 20 for the formulas used to
calculate these curvatures. Note that the el-metric has units of
time, so its curvature has a dimension of time=2. Because waves
in the heart propagate with speed of order ~1 m/s, this is com-
parable to the curvature of a sphere of radius 2.5 mm, which has
sectional curvature .16 mm~2. Such high negative curvature
might contribute to the onset of wavebreaks and the formation
of abnormal excitation patterns.

Curvature is a local phenomenon, and at larger scales, it be-
comes less important. At larger scales, the metric is mostly deter-
mined by the directions of the fibers in the slab. Because the
fibers rotate with depth, waves moving parallel to a fiber can pro-
pagate along fibers, so waves in all fiber directions can travel at
the fastest possible speed. If p; = (x1.y;,z;) and p, = (x5.55,2,), We
define the slab direction between p, and p, to be the vector
(xy —x1y, =y1,0); ie., the vector connecting the two points
projected to the plane of the slab. If the slab direction between
two points is parallel to a fiber, then the average velocity of the
wave between the two points, i.e. the ratio of the el- and phys-
distances between the points, approaches vy as the distance
between the points increases. The following statement formalizes
this argument.

Theorem. Consider a twisted slab with thickness a and velocities
V¢ > v, > vy If the slab direction between p, = (x1.y,.z,) and p, =

(X2,92,22) is parallel to a fiber, then:
< dphys(pl ’p2)

dypys(P1.12) a
phys 1:P2 <d &
vy = el(pl’p2) = v + Vs.

Proof: For the upper bound, it suffices to show that there is a path
between p; and p, of the specified el-length. Because there is a
fiber in the slab direction between p; and p,, there is a z, between
0 and o such that the line between (x;,y,,z9) and (x,.y,,2) is a
fiber. The path obtained by connecting p;, (x;.5,.29), (*¥2)2.20),
and p, by straight lines has the desired length.

The lower bound holds regardless of the fiber structure of the
slab. Let y be the el-shortest path between p, and p,, so that
dy(p1p2) = €u(y). Because the maximum velocity in the slab
isv

1>

do(p1.p2) = Culy) 2 fphys(y)/vf 2 dphys(plsPZ)/st

as desired.

In particular, if p > 180° then the slab direction between any
two points is parallel to a fiber, so the maximum speed of pro-
pagation in any direction is v;. This is seen in Fig. 2, where
the isochrones of activation on the bottom surface of the slab
are nearly circular, though the isochrones seen in the top and
middle layers are more irregular, due to the thickness of the slab
and the slow propagation in the z-direction. In a slab of infinite
extent, the theorem states that the shape of the wavefronts would
become more cylindrical as time increases; the deviation from a
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cylinder is bounded, and as time increases, the relative error of
approximating by a circle approaches zero. In Fig. 2, the devia-
tions from circularity are relatively large in the top and middle
layers, but it is still clear that the fiber rotation leads to faster
activation times than if the fibers all ran in the same direction.

A similar result holds for slabs with fewer fiber directions
(p < 180°). In such slabs, the shape of metric balls approaches
the shape of the convex hull of the union of unit balls in each
fiber plane. An example showing this shape is given in Fig. S5,
and even this smaller amount of fiber rotation leads to a clear
increase in the speed of activation.

Fibers in the slabs that we studied rotate at a constant rate, but
the analysis still holds in slabs with different fiber angle distribu-
tions. Because fibers in the heart are arranged similarly to those
in a twisted slab, we expect to see waves moving at speed vy in
most directions.

We used numerical simulations of slabs and of the ventricles to
verify this prediction. Fig. 2 illustrates the wavefront resulting
from an activation on the top surface of the slab. In this simula-
tion, the velocities along the fiber, across the fiber and across the
sheets are (v;.v;.v,) = (1 m/s,.5 m/s,.25 m/s). We see that im-
mediately after activation, the wavefronts are shaped like
ellipsoids with radii in the ratio 4:2:1. As time progresses, the
wavefronts grow less elongated and more circular; indeed, the
intersections of the wavefronts with the bottom surface of the slab
are nearly circular.

Fig. 3 A-D illustrates the same wavefronts in slices transverse
to the heart. As the wave propagates, the wavefront in each
direction converges to the shape of a sine wave that is peaked
at a depth corresponding to the fiber direction; this phenomenon
was also described in ref. 21. This front moves at speed vy, so the
outward speed of the wave in each direction (computed from the
activation times along the colored lines in Fig. 2) converges to vy.
This convergence can be seen in Fig. 3B.

Similar simulations were done for different values of the para-
meters. Decreasing v, had little effect on the shapes of iso-
chrones. This is suggested by the form of the curves used in the
proof of the theorem, which run solely along the fibers and sheets.
Increasing v, makes isochrones more cylindrical (see Fig. S6).
Changing p has a more substantial effect; as long as p > 180°,
large isochrones approach a circular shape, but changing the fiber
structure so that p < 180° produces a change to the limit shape, as
seen in Fig. S5, where isochrones approach a slightly elongated
“pill” shape.

We also performed simulations using an anatomical model
based on DTMRI scans of an entire canine heart. We used algo-
rithms based on those in (22) to segment the points in the scan
into heart and exterior, assigning points whose diffusion tensor
had large first eigenvalue to the heart and points with small first
eigenvalue to the exterior. We used the DTMRI data to deter-
mine fiber directions for each point assigned to the heart segment

Bottom

\
%

Fig. 2. Isochrones for a wavefront starting from the top surface of a 10 cm x
10 cm x 1.5 cm slab with 180° fiber rotation (a=1.5cm, p = 180° v; =
1 m/s, v = 0.5 m/s, v, = 0.25 m/s). Fibers on the top and bottom surfaces
are parallel to the red line, and rotate clockwise from top to bottom.
Isochrones are spaced 10 ms apart, and the thick line represents the
t = 55 ms isochrone. The intersection of the colored lines marks the stimula-
tion point.
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and cropped the scan to only include the ventricles. We assumed
that vy, vy, and v, are constant throughout the heart and ignored
the effect of the Purkinje system.

The results of our simulations in the anatomical model are
illustrated in Fig. 4.Fig. 4 shows a representative example of
the isochrones on the heart surface and in two slices through
the myocardial wall. We see that as in Fig. 3, the shape of wave
fronts approaches a stationary shape, and we estimate the velocity
of the front by measuring the distance between the tips of waves.
As in the slab, the velocity of wave propagation approaches the
fastest propagation velocity in many directions; in the illustrated
figures, this velocity is within 10% of v, = 1 m/s.

We also compared el- and phys-distances in the heart and in the
slab by comparing the distance between randomly selected pairs
of points. Our analysis suggests that at short distances, the two
metrics should differ substantially, and that at large distances,
the el-distance and phys-distance should be close to each other.

Fig. 4F illustrates the average propagation velocity between
randomly selected points in a slab of cardiac tissue. Points that
are close together compared to the thickness of the ventricles
cannot take advantage of the fiber rotation, and thus velocities
between such points should be relatively slow; this is seen in
the first column of the plot, which represents pairs of points that
are separated by phys-distance at most .75 cm. The average
velocity between such points varies between 0.25-1 m/s. On
the other hand, the last column represents points separated by
phys-distance 8.25-9 cm. These points are on opposite sides of
the heart and can take full advantage of the fiber rotation; aver-
age velocity between such points is 0.7-0.9 m/s. This agrees with
Fig. 3E, where we saw that wave speeds can approach 1 m/s after
a suitable ramp-up period. This ramp-up period is roughly the
amount of time necessary for a wave to reach the layer of fibers
going in an appropriate direction, and is on the order of the time
necessary to travel through the thickness of the myocardium. The
speeds seen in Fig. 4F are a combination of the low speeds in the
ramp-up period and the high speeds during periods in which the
wave travels along fibers.

We expect slower average velocities in the heart than in the
slab for several reasons. One is that the fiber rotation angles
in the heart are less than 180 ° in most regions, so waves in many
directions will travel at speed somewhat less than v;. Another is
the curvature of the heart, which causes fiber paths to take longer
routes; the shortest path between two points in the phys-metric
can hug the endocardium, but the shortest path in the el-metric
may follow a longer path along a fiber in the epicardium. Never-
theless, the average velocity between a pair of well-separated
points in the heart seems to be roughly 0.75 m/s.

Discussion

One of the primary factors determining the speed of wavefronts
in the heart is their orientation relative to the microstructure of
the heart. We used DTMRI data to construct a geometry of the
heart, which we call the el-geometry, and simulated pacing using
this geometry. The ideas behind the model are very general; the
geometry can easily be modified to incorporate, for instance, pro-
pagation velocities that depend on position, non-Riemannian
metrics, or conduction systems like the Purkinje network. Fur-
thermore, the model is easily analyzed and simulated.

Our analysis describes how the arrangement of fibers in the
heart increases the speed of wave propagation; a short time after
a slab is stimulated, stable wavefronts propagate outward from
the stimulation site at speeds nearing vy. In directions running
parallel to fibers, the peaks of these waves travel along these fi-
bers at speed vy. If p > 180°, fibers run in all directions. If p <
180°, there are directions parallel to the slab without any fibers.
In these directions, the peaks lie at the top or bottom of the slab
and travel with slightly slower speed. These waves, also studied
analytically in ref. 21, account for the acceleration across fibers

Young and Panfilov
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Fig. 3. Alternate views of the same slab. The top four figures show isochrones in slices perpendicular to the slab in Fig. 2. The slices contain the colored lines in
Fig. 2. (A)—(D) are slices that are respectively 0° (red line), 45° (blue), 90° (green), and 135° (purple) clockwise from the fiber direction on the top surface. The
activation point is the top left corner of each plot, and the contour lines are the same as those in Fig. 2. Note that within a few centimeters, the wavefronts in
each direction approach a stationary shape similar to a sine curve. These fronts move at speed v¢, as we will see from the bottom figures. The bottom panels (E)
graph outward speed along the lines in Fig. 2 with respect to phys-distance from the stimulation point. The red line (A) corresponds to propagation along a
fiber, and should be a constant 1 m/s. The initial deviation from 1 m/s is due to numerical inaccuracy and occurs because shortly after stimulation, the ends of
the wavefront are highly curved. In all directions, speed starts to increase within 1-2 cm and nears its maximum value of 1 m/s within roughly 4 cm; these

distances are comparable to the thickness of the slab.

seen in ref. 23 and cause the average velocity between two widely
separated points to near vy.

This conclusion is based in the geometry of the heart, and
should remain true in more sophisticated models. Some possible
corrections to the el-metric appear in work of Colli-Franzone
(23), who used a similar model, also based on an eikonal equa-
tion, to describe wave propagation. This model includes a few
corrections that are not included in the el-metric: e.g., a term in-
volving the curvature of the wavefront. These corrections would
not change the geometry leading to our conclusions. The influ-
ence of curvature changes the shape of the wavefronts spreading
from a point, slowing the tips seen in Fig. 3, but because this
reduces the curvature, the effect is self-limiting. Similarly,
Colli-Franzone’s analysis suggests that waves moving toward a
boundary tend to move faster, but fibers in the heart run roughly

parallel to the surface of the heart. These boundary effects should
change the shape of a wavefront but not its speed, and thus
should have a limited effect on propagation times.

Experimental verification of the main results of this study
would require high density recordings of global electrical activity
of a heart and structural information on its anatomy and aniso-
tropy. Although this is a challenging problem, it might be achi-
eved by a combination of multielectrode recording techniques
(24) and MRI imaging (25).

There are several possible future directions for research based
on this geometric viewpoint. One possible application is patient-
specific modeling. A better understanding of the effect of fiber
geometry and anisotropy on wave propagation could aid in the
construction of patient-specific models. Whereas data on the
microstructure of the heart is difficult to obtain in a clinical
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Isochrones for a wavefront on the surface of the heart (4) and in three sections through the wall (B)-(D) [marked by lines in (A)]. Isochrones in (A) are

spaced 3.75 ms apart; isochrones in (B)-(D) are spaced 2 ms apart. (Isochrones in other slices are given in Fig. S7.) (E) gives a comparison of phys- and el-distance
in the model of canine ventricles. The plot is a 2D histogram where data points represent randomly selected pairs of points in the ventricles. The x-coordinate is
phys-distance and the y-coordinate is the ratio between the phys-distance and the el-distance. The area of each square is proportional to the number of data
points in the corresponding region. To illustrate the change in ratio with increasing distance, the area of the squares in each column is normalized to be the
same. The red line represents the mean ratio in each column. Each column represents between n = 59 and n = 4813 pairs of points, for a total of n = 28440
pairs. Selection of pairs is not completely independent; 2844 points were selected at random and for each point, 10 more points were selected at random as its
counterparts.
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setting, data on its anatomy is readily available from MRI scans.
Our results suggest that the effect of the microstructure is rela-
tively small on large scales, so a model constructed by using MRI
to determine the shape of the ventricles and by using a template
heart to assign fiber and sheet directions to the tissue may be a
good first approximation for modeling wave propagation.
Furthermore, the model is fast and has just a few parameters,
so one might be able to run multiple simulations with variations
(local or global) in the velocities to further customize the model
by fitting additional measurements. This may be helpful for
several practically important questions, including patient-specific
selection of the optimal pacing sites during resynchronization
therapy (26).

Another possible direction of research is to extrapolate infor-
mation on propagation in the myocardium from measurements
on the epicardium. Most measurements of voltages in the myo-
cardium are invasive, and it is often necessary to rely on surface
measurements to understand the whole heart. Extrapolating
propagation in the interior from measurements on the surface
is basically a question of inverting a lossy function. We can con-
ceive of a “phase space” of the heart, describing the full state of
every cell at a given instant. Measuring voltages on the surface
gives a map from this phase space to a space of measurements,
and to reconstruct the interior of the heart from surface measure-
ments is to find the most likely path in the phase space, which
results in a given series of measurements. One key to making this
tractable is reducing the dimension of the phase space, that is,
finding low-dimensional regions of the phase space that cover
the most likely states of the heart.
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