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Abstract
Redox balance underlies cellular homeostasis. Cancer initiation and progression has been linked to
the disruption of redox balance and oxidative stress. Recent findings exemplify the distinctive roles
of intra- and extraceullar redox state in the etiology and maintenance of oxidative stress associated
with malignancy and metastasis. Within these compartments, redox sensitive cysteines play a critical
role in regulating cell signaling events that act to promote the malignant phenotype via the activation
of survival pathways, disruption of cell-death signaling, and increases in cell proliferation. New
approaches that aim to accurately evaluate subcellular and microenvironment redox potential may
be useful in developing cancer diagnostics and therapeutics.

Introduction
The balance between oxidation and reduction reactions plays an essential role in numerous cell
signaling cascades including those associated with proliferation, inflammatory responses,
apoptosis, and senescence. Reactive oxygen and nitrogen species (ROS; RNS) are invariable
components of aerobic metabolism and are key contributors to cellular redox state. However,
due to the fact that oxygen and nitrogen radicals readily interact with nucleic acids, proteins
and lipids, the disruption of cellular redox homeostasis has emerged as a critical component
in the etiology and prognosis of a variety of disease pathologies. Oxidative stress, defined as
the result of the imbalance between the production rate of pro-oxidants and that of their removal
by antioxidants, has been shown to play a major role in the origination, progression, and
malignancy of a number of cancers [1,2]. Similarly, nitrosative stress occurs when the
generation of RNS exceeds the ability to neutralize and eliminate them. Within these
definitions, it is critical to incorporate the recently coined “redox hypothesis”, which
emphasizes the importance of non-radicals and thiols in oxidative and nitrosative stresses [3].
Despite emphasis on free radicals, disruption of redox signaling producing stress is largely
non-radical based.

Elevated oxidative stress is observed in many solid tumors and carcinoma cell lines. Redox
imbalance in cancer cells may be tied to a number of pathways including mitochondrial
dysfunction, the activation of oncogenes, aberrant oxidative metabolism, and hypoxia/
reoxygenation cycles. Low levels of oxidative stress may be advantageous for cancer
progression, as they may lead to increased rates of genetic mutation that could contribute to
the acquisition of a malignant phenotype [4]. Higher levels of ROS are more likely to lead to
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cell senescence and/or death. Each may be influenced by subcellular localization. Recent
studies have identified certain ROS as second messengers in signaling pathways, thus allowing
the potential to regulate cell phenotype directly by acting as effector molecules [5].
Understanding the origin of various ROS/RNS, and their roles in cancer initiation and
progression, as well as in the cell signaling pathways involved in these, could facilitate the
development of therapies that might act to prevent and/or counteract malignancy.

Extracellular vs. Intracellular redox state
Intracellular sources of ROS/RNS

Endogenous ROS can regulate redox signaling and may have independent roles in malignancy
as compared to those produced, for example, at the apical membrane corresponding to
extracellular ROS. Intracellularly, ROS may be generated by a variety of sources, including
non-mitochondrial electron transport chains and redox systems in the cytosol, nuclear envelope
or ER, as well as phase I reactions through p450 metabolism, β-oxidation in peroxisomes and
inflammatory cytokines. While each can contribute meaningfully to cellular redox
homeostasis, mitochondria are traditionally considered the major endogenous source of ROS
in mammalian cells. During aerobic respiration, mitochondrial ROS are formed via the
univalent reduction of molecular oxygen mediated through the escape of electrons from
complexes I and III in the mitochondrial electron transport chain. Of the oxygen consumed by
mitochondria about 2% is reduced by these bifurcated electrons to form superoxide and
subsequently hydrogen peroxide [6,7]. As such, mitochondrial DNA is intrinsically vulnerable
to ROS-mediated injury, partially mitigated by the separate glutathione (GSH) pools
maintained by active transport of the tripeptide across the mitochondrial membrane. Mutations
in cancer cell mitochondrial DNA have not only been implicated in tumor pathogenesis and
metastasis but have been linked to enhanced mitochondrial generation of superoxide as
compared to their normal counterparts [8]. Novel methodologies permitting targeting of
mitochondrial ROS have identified them as key regulators in NF-kB-dependent anti-apoptotic
signaling [9]. Recent studies have focused on new methodologies to evaluate mitochondrial
bioenergetics in attempts to use ‘bioenergetic signatures’ as cancer biomarkers and to further
unravel the role of a family of inner mitochondrial membrane proteins, termed uncoupling
proteins, in cancer progression [10,11]. These studies further emphasize the heterogeneous
nature of the tumor microenvironment and support the underlying principles of individualized
approaches to anticancer treatment.

Extracellular sources of ROS/RNS
Extracellular redox states are influenced by factors distinct from intracellular and are frequently
a consequence of modifications of plasma membrane proteins and the proximal milieu around
the cell. This includes ROS directly resulting from exposure to external environmental agents
including irradiation, chlorinated compounds, metal ions, barbiturates, phorbol esters and
peroxisome proliferating agents [12] or from membrane associated redox modulating proteins
such as the NADPH oxidase family, in particular Nox1 [13]. Based on immunostaining, recent
studies of the Nox family have not only identified a role for various Nox members as
intracellular and/or extracellular signaling oxidases, but have also determined that based on
sub-cellular location of oxidase components different ROS species can be produced [14].
Membrane associated γ-glutamyltransferase (GGT) also plays a critical role in controlling
redox conditions by degrading extracellular GSH, thus providing cysteine to cells; or
alternatively, by acting as a pro-oxidant. Beyond the plasma membrane, antioxidants such as
extracellular superoxide dismutase (EC-SOD), glutathione peroxidase 3 (GPX3), and
thioredoxin reductase-1 (TR1) as well as the extracellular supply of plasma thiol/disulfide
couples, such as glutathione/glutathione disulfide (GSH/GSSG), play a major part in balancing
redox homoestasis (reviewed in [15]). This balance is further impacted by glutathione-S-
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transferases that are involved in maintaining glutathione homeostasis, as well as protein S-
glutathionylation and kinase regulation [16,17].

The balance between extracellular and intracellular redox states in cancer metastasis has
recently been discussed. Chaiswing et al. determined that extracellular redox-related proteins,
GSH/GSSG levels, and the ROS/RNS levels of the extracellular space are altered in prostate
cancer cells [18]. Furthermore, alterations in extracellular thiol/disulfide couples and GSH/
GSSG also affect proliferation of colorectal carcinoma and lung fibroblast cells [19,20]. It may
prove viable to adapt the expression of certain extracellular redox parameters to use as potential
biomarkers. For example, cancer patients with high levels of generalized oxidative stress
markers in their sera also exhibit markers of constitutive oxidative stress within tumors.
Therefore, assessing serum redox state may be useful in the prediction or prognosis of the
response/progression of various human cancers (see Table 1).

Oxidative Stress in Cancer Initiation and Progression
Chronic oxidative stress in cancer cells

Low levels of superoxide or hydrogen peroxide can enhance cellular survival and stimulate
proliferation. However, when this is concomitant with chronic ROS production, redox
homeostasis can become imbalanced and normal cells may become transformed [5]. Current
evidence supports the hypothesis that cancer cells are characterized by enhanced ROS
generation, increased ROS accumulation, and the deregulation of antioxidant enzymes; thus
existing in a state of perpetually elevated stress. Constitutively produced NOS have also been
found in several human tumor cell lines, an observation further complicated by the fact that
RNS can be chemically heterogeneous in different tumor cell types [21].

Methods currently used to evaluate redox status include measurements of pro-oxidants,
quantification of antioxidants, detection of oxidized nucleic acids, or evaluation of redox
potential based on thiol/disulfide couples via the Nernst equation. Markers of oxidative stress,
such as DNA adducts e.g. 8-oxo-7,8 dihydro-2′-deoxyguanosine, as well as generalized
biological anti-oxidant capacity of plasma might be developed as tools in disease prognosis.
However, general quantification of redox remains a complicated analysis of a plethora of
integrated pathways and cross talk imbued by the oxidation/reduction system. Moreover, the
pathways are fluid and often unstable.

Chronic oxidative stress in cancer is influenced by numerous factors. Oncogene expression,
including that of Ras2, Bcr-Abl, and c-Myc contribute to persistent ROS production in addition
to the disruption of p53 function [22,23]. Recent studies have linked ROS produced as a result
of chronic inflammation to the neoplastic process [24]. Furthermore, because oxidative stress
plays a major role in the induced adaptive expression of antioxidants, malignant cells are often
characterized by differential expression in the levels of a number of these enzymes, including
superoxide dismutases (SOD), catalase, glutathione-S-transferases, GGT, and EC-SOD [25,
26]. Dysregulation in expression of such enzymes can influence cancer therapy and may
contribute to metastasis and drug resistance. These characteristics further perpetuate a state of
oxidative stress and result in the need to either adapt, or apoptose. Because oxidative stress
may induce apoptosis, cell cycle arrest or cellular senescence, eventual cellular fate may be a
delicate balance contingent upon factors such as cell type, tissue microenvironment and levels
of free radical production/accumulation.

Results of chronic oxidative stress
Increases in ATP requirements in metabolically active cancer cells result from the need to
support activities such as rapid proliferation. Such demands in association with ROS induced
mitochondrial damage may result in amplified electron ‘leakage’ and ROS generation. In
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addition to mitochondrial damage, high levels of ROS can produce DNA damage and genetic
instability. Paradoxically, this damage further encourages the development of a malignant
phenotype when normal repair mechanisms are overwhelmed and result in the accumulation
of mutations. Disruption of redox homeostasis impacts cell signaling pathways that regulate
cell proliferation, apoptosis, metastasis and angiogenesis and ultimately result in cancer
progression and poor clinical outcome (Figure 1).

Redox and thiol dependent cell signaling
Post-translational modification of proteins via redox sensitive cysteine residues can occur as
a consequence of alterations in their oxidation state. There are over 200,000 unique cysteines
in the human proteome and it is estimated that approximately 10% of these may be oxidizable
[3]. Numerous factors determine which properties of these cysteines make them available for
this reaction. The range of cellular processes under redox regulation is extensive and includes
both the proliferative and apoptotic pathways. However, in cancer cells, excess superoxides
and hydrogen peroxide can promote cell growth and proliferation and disrupt thiol redox
circuits, thus contributing to oxidative stress.

More than 127 genes and signal transducing proteins have been reported to be directly affected
by redox state [27]. Transcription factors, tumor suppressors as well as members of the mitogen
activated protein kinase (MAPK) family and anti-apoptotic pathways such as PI 3-K and NF-
κB are regulated by ROS and have roles in stimulating cell proliferation, sensitizing cancer
cells to electrophilic agents and contributing to treatment resistance [28,29]. These signaling
events may be further controlled by protein:protein interactions, such as through GSTP
interactions with the MAPK c-jun NH2 terminal kinase (JNK). Oxidative stress can result in
the reversal of GSTP regulated intrinsic JNK inhibitory activity via dissociation of the
GSTP:JNK complex [30]. Under this system, GSTP serves as a sensor of intracellular changes
in redox potential and has the potential to directly regulate kinase pathways, perhaps explaining
the drug–resistance phenotypes of many GSTP over-expresssing cancers. Gene expression is
modulated by ROS and thiol redox circuits through the interplay of extra-, intra- and even
intercellular signaling pathways. In fact, ROS, in association with the mandatory presence of
GSH, have been shown to reversibly inhibit gap junction inter-cellular communication (GJIC),
which along with the induction of early-response genes is a hallmark of tumor promotion
[31]. Furthermore, extracellular thiol/disulfide, GSH/GSSG, and overall redox potential has
been linked to cell proliferation pathways mediated by epidermal growth factor (EGF) and
MAPK signaling [19], two plausible targets in cancer therapy.

S-glutathionylation, which occurs when a protein cysteine forms a disulfide bond with GS•,
serves as a reversible mechanism of post-translational protein regulation that has the potential
to selectively regulate the function of enzymes, receptors, structural proteins, transcription
factors, transport proteins, and protein-protein interactions (reviewed in [32]). As the most
abundant non-protein thiol in cells, GSH plays a key role in oxidative stress. The presence of
ROS/RNS directly mediates GSH/GSSG balance as well as interaction with available reactive
cysteine residues. During cancer inititation, glutathionylation of the tumor suppressor p53
prevents DNA binding [33]. Furthermore, glutathionylation also has an anti-apoptotic role by
preventing caspase cleavage [34]. Alternatively, glutathionylation of NF-κB influences
apoptosis of hypoxic tumor cells [35]. Modulation of GSH and/or GST isozymes is an ongoing
therapeutic strategy in cancer chemotherapy [30].

Both non-radical based oxidative and nitrosative species are important in regulating signaling
pathways in normal and cancer cells (reviewed in [3]. However, where signaling is regulated
through thiol:disulfide reactions, it should be noted that their turnover rates and consequent
flux rates are quite small when compared to general cellular redox buffering. Ongoing research
in redox systems biology will need to focus on the quantification of redox buffering.
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Stoichiometry of competing reactions and their sub-cellular localization will control how tumor
and normal cells may differ in their regulatory pathways. In particular, the mitochondrial
compartment seems to be the most reduced in terms of steady state redox potential, while the
endoplasmic reticulum has the most oxidized environment, a condition determinant of the
function of this organelle in protein folding [36]. Specifically, ER oxidative stress is linked to
increases in protein S- glutathionylation as well as to the accumulation of misfolded proteins
and a cascade of transcriptional and translational events that attempt to manage this
accumulation [32,37]. This phenomenon, termed the unfolded protein response (UPR), is a
potential therapeutic target in some cancers [38].

The oncogene, Rac has been shown to induce ROS production and cause loss of cell-cell
adhesion and ROS-mediated actin cytoskeleton reorganization eventually impacting metastasis
[39]. Furthermore, ROS can induce ICAM-1 and activate matrix metalloproteinases that can
act as tumor promoters [40]. Recently, ROS produced via the transcriptional activation of Nox
family members have also been linked to the formation of invadapodia and to tumor cell
motility/migration [41]. Cancer cells under oxidative stress exhibit decreased attachment to
basal lamina as modulation of integrin function, suggesting a propensity to enter blood vessels.
Additionally, constitutive ROS production in metastatic cancer cells has been linked to
resistance to anoikis, or detachment-induced apoptosis, through persistent EGFR or Src kinase
activation [42]. It has been proposed that metastasis is an oxidative stress triggered “escape
program” that enables cells to avoid the oxidative stress levels associated with the primary
tumor. Additionally, extracellular redox potential has been shown to influence matrix
expression, mediated through TGF-β1 fibronectin expression [19]. Specific signaling pathways
that are influenced by ROS have been reviewed recently [5,28].

Malignancy and cell environment:hypoxia
The ability of tumors to survive in a hypoxic state is supported by the capacity to up-regulate
proteins that favor anaerobic metabolism and improve pH buffered-oxygen sensing. These
include HIF-1α, as well as glucose transporters and glycolytic enzymes for anaerobic energy
production, erythropoietin and iron metabolism proteins for red blood cell production, and a
number of factors that promote angiogenesis. The resulting angiogenesis-induced oxidative
stress then acts in a positive feedback loop resulting in increased metastasis and aggressive
tumor progression. In a recent study, Cannito et al. showed that during low oxygen tension
mitochondrial produced ROS have a direct role in hypoxia-dependent epithelial-mesenchymal
transition [43].

Not only does hypoxia result in glucose deprivation followed by the depletion of intracellular
pyruvate and the inability to dispose of existing ROS but re-oxygenation of hypoxic tissues,
such as during tumor angiogenesis, increases the concentrations of free radicals. This ROS
production can further increase the production of the angiogenic factors IL-8 and VEGF as
well as factors that promote vessel growth, such as MMP-1, and angiogenesis, such as iNOS.
Members of the ROS producing Nox family can also contribute to pathways that lead to tumor
angiogenesis and neovascularization [13]. Of recent interest is the role of tumor stem cells and
the hypoxic microenvironment in activating quiescent stem cells via HIF/VEGF pathways as
well as effectors such as Notch, Wnt and Oct4 and the promotion of tumorigenesis [44].

Conclusion
The role of oxidative stress in metastasis and tumor progression is complex and involves a
number of factors including cell type, cellular microenvironment, and free radical type and
compartmentalization. Tumor survival depends on a number of processes involving
proliferation, motility, apoptosis and senescence, all of which are influenced by changes in
redox metabolism. Complexity lies in the fact that individual cancers may be characterized by
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different redox-based signaling mechanisms. However, as new approaches emerge, e.g. the
discrete roles of extracellular vs. intracellular redox state; the importance of non-radicals in
redox metabolism; the recognition of the impact of tumor microenvironment on metastasis,
the utility of targeted redox-modulating therapeutics may flourish.
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Figure 1.
Accumulation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS),
derived either endogenously or exogenously, results in oxidative stress. Disruption of thiol and
non-radical circuits may also result in oxidative stress. The extent of this stress will either result
in lethal damage and apoptosis or in cell adaptation. In cancer cells chronic oxidative stress
activates redox sensitive transcription factors and signaling pathways that act to increase the
expression of antioxidants, increase expression of survival factors as well inhibit the expression
of pro-apoptotic pathways. ROS/RNS induced DNA injury promotes genomic instability and
further provides opportunity to adapt to oxidative stress. Cancer progression occurs via the
regulation of redox dependent expression of genes that play roles in proliferation, senescence
evasion, metastasis, and angiogenesis. These features in association with the disruption in
antioxidant profile may contribute to altered drug sensitivity and chemotherapy resistance.
Definition of abbreviations: NOX, NADPH oxidase; nuclear factor-κB; NF-κB; Cys, cysteine;
Cyss; cystine; GSH, glutathione; GSSH, glutathione disulfide, GSTP, glutathione-S-
transferase P
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Table 1

Carcinoma and Evaluated Redox State Marker of Oxidative Stress Detection Method Reference

Extracellular

Prostate ↑ H2O2; ↑ GSH/↓ GSSG; ↑ EC-SOD Dihydroxyphenoxazine
fluorescence; 5.5′-dithiobis - (2-

nitrobenzoic acid)-GSSG
recycling; Western blot

[18]

Hepatocellular ↑ Thioredoxin ELISA [45]

Pancreatic ↑ Thioredoxin ELISA [46]

Liver Metastasis ↑ Hydroxyl Radicals, ↑ H2O2, ↑
Superoxide anions

Electron spin resonance
spectrometry

[47]

Colon Thiol/disulfide balance HPLC detection of N,N bis-dansyl
or S- carboxymethyl-N-dansyl
derivatives with fluorescence

detection

[20]

Lymphoma ↑ Glutathione S-transeferase P ELISA [48]

Breast, Gastric. Colorectal ↓ Glutathione peroxidase 3 activity Absorbance assay based on
reduction of GSH to GSSG

[49]

Intracellular

Pancreatic ↑ Thioredoxin, ↑ Glutaredoxin Immunohistochemistry [46]

Squamous ↑ γ-glutamyltransferase Immunohistochemistry [50]

Ovarian, Lung, Breast, Colon,
Pancreas, Lymphoma

↑ Glutathione S-transeferase P RT-PCR; Immunohistochemistry
Western blot

[51]

Breast ↑ Thioredoxin, ↑ Peroxiredoxins RT-PCR; Western blot [52]

Ovarian, Prostate Melanoma,
Colon, Pancreatic, Neuroblastoma,

Breast, Ovarian

↑ H2O2 CM2-DCFHDA staining [53]

↑ H2O2 Horseradish peroxidase-assay
using hydrogen donors

[54]
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