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Abstract

Functional protein annotation is an important matter for in vivo and in silico biology. Several computational methods have
been proposed that make use of a wide range of features such as motifs, domains, homology, structure and
physicochemical properties. There is no single method that performs best in all functional classification problems because
information obtained using any of these features depends on the function to be assigned to the protein. In this study, we
portray a novel approach that combines different methods to better represent protein function. First, we formulated the
function annotation problem as a classification problem defined on 300 different Gene Ontology (GO) terms from molecular
function aspect. We presented a method to form positive and negative training examples while taking into account the
directed acyclic graph (DAG) structure and evidence codes of GO. We applied three different methods and their
combinations. Results show that combining different methods improves prediction accuracy in most cases. The proposed
method, GOPred, is available as an online computational annotation tool (http://kinaz.fen.bilkent.edu.tr/gopred).
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Introduction

Due to advances in genome sequencing techniques during the

last decade, the number of proteins being identified is exponen-

tially increasing. Functional annotation of proteins has become

one of the central problems in molecular biology. Manually

curating annotations turns out to be impossible because of the

large amount of data. Thus, computational methods are becoming

important to assist the biologist in this tedious work.

Attempts to automate function annotation follow two main tracks

in the literature. In the first track, the protein to be annotated is

searched against public databases of already annotated proteins.

Annotations of the highest-scoring hits, according to a similarity

calculation, are transfered onto the target protein. This track can be

called the transfer approach. Despite some known drawbacks such as

excessive transfering of annotations, low sensitivity, low specificity,

and propagation of database errors, this track is the most widely

used among biologists because as it is historically the first successful

method but developed when the number of protein sequences in the

databases was much lower than today’s [1–6], it is well understood

and widely used by the experimentalists.

In the second track, protein annotation is formulated as a

classification problem where annotations are classes and proteins

are samples to be classified. This so-called classification approach is

based on sophisticated and powerful classification algorithms such

as support vector machines (SVMs) and artificial neural networks

(ANNs) [7]. Methods following the classification approach

explicitly draw a boundary between proteins, negative and positive

training samples, defined in terms of functional annotation. Since

the classification approach considers both negative and positive

annotations, such methods have been shown to be more accurate

in many cases [8]. Yet, they are not as popular among biologists as

one would expect. One reason is because classification approaches

require well-defined annotation classes and positive and negative

training data for each class. The protein functional annotation task

is open to more than one interpretation, where the exact

annotation depends on the context in which the protein is used

[5]. Furthermore, similar functions can be referred to by

annotation terms with different levels of specificity. Thus, to train

classifiers, one would first need a controlled vocabulary for

functional terms. Then, positive and negative training data must

be collected for each of these terms or classes. Data preparation is

not straightforward because functional terms are related and

proteins may have more than one annotation. We believe that if

one can establish a classification framework with a rich number of

well-assigned functional annotation terms and high quality

training data, methods in classification approach will receive

more attention.

In the literature, there is a wide range of methods that follow the

classification approach for automated functional annotation in the

literature. These methods can be grouped into three categories,

depending on the employed features:

1. homology-based methods,

2. subsequence-based methods,

3. feature-based methods.
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Homology-based methods use the target protein’s overall

sequence similarity to positive and negative sequence data in

order to decide to which functional class it belongs. It is generally

accepted that a high level of sequence similarity is a strong

indicator of functional homology. The most well-established and

widely used methods for finding sequence similarity are local

alignment search tools such as BLAST and PSI-BLAST [9,10].

Subsequence-based methods focus on highly conserved subregions

such as motifs or domains that are critical for a protein to perform

a specific function. These methods are especially effective when

the annotation to be assigned requires a specific motif or domain.

The existence of these highly conserved regions in a protein

enables us to infer a specific annotation even in remote homology

situations [11–18]. In feature-based methods, biologically mean-

ingful properties of a protein such as frequency of residues,

molecular weight, secondary structure, extinction coefficients and

other physicochemical properties are extracted from the primary

sequence. These properties are then arranged as feature vectors

and used as input to classification techniques [7,19–24].

Each of the above approaches has different strength and

weaknesses in classifying different functional terms. For example,

the immunoglobulin’s three dimensional structure is a good

distinguishing feature, thus a homology-based approach that

considers overall sequence similarity would be effective in

identifying immunoglobulins. As secreted proteins carry a signal

peptide despite their dissimilar amino acid sequence, a subse-

quence-based approach would be more appealing for recognizing

these types proteins. The hydrophobic core is a hallmark of

transmembrane proteins hence a method that considers the

hydrophobicity of residues is a better classifier of these structures.

Because of such characteristics, combining methods from different

approaches would be more successful to classify of a wide range of

protein functions than using a single method.

Our study applies and investigates the effect of combining

different classifiers in order to improve the accuracy of classifying

proteins according to their functions. We compare the results of

three different annotation methods and four different combinations

of these methods. In this study, we developed a method to prepare

training data for the terms defined in Gene Ontology (GO)

framework. Then, we focused on annotating proteins with 300 GO

molecular function (MF) terms. We keep to the molecular function

aspect mainly because genes annotated by a MF term are more

likely to share a common sequence, subsequence or physicochem-

ical features related to that specific function. Gene Ontology terms

for biological process (BP) or cellular component(CC) aspects of GO

may include genes with diverse features in the same class and similar

features in different classes, thus this pose a problem for the

classifier. This problem may not be as severe for homology-based

approaches because the decision is made by considering only a few

high-scoring hits independent of the other class members. On the

other hand, the decision boundary for classes in a discriminative

approach is optimized by considering all positive and negative

samples. Although it is possible to design classifers that are more

appropriate for classifying BP and CC terms, that is outside of the

scope of this study.

We formulated the problem as a classification problem with 300

classes, where proteins can be assigned to more than one class. In

order to avoid a bias towards a larger negative class, we presented

a threshold relaxation method that not only shifts the threshold

towards the more appropriate classification boundary but also

maps the output of the classifier to a probability value. Finally, we

investigated the effect of different classifier combination methods;

results showed that combining methods improved performance for

about 93% of the classes.

Previously we developed SPMap, which predicts protein

function based on subsequence feature space mapping. The

difference of this work and the previous SPMap is that SPMap is

one of the three employed classifiers. In addition to SPMap, in this

work, we have devised and implemented BLAST k-nearest

neighbor (BLAST-kNN) and peptide statistics combined with

SVMs (PEPSTATS-SVM). To the best of our knowledge, this is

the first study to combine multiple classifiers for protein function

prediction and this is the most comprehensive discriminative

classification approach that covers so many GO terms.

Materials and Methods

We performed tests for 300 GO terms in a one-versus-all

setting. For each GO term, statistics were obtained by the average

results from 5-fold cross-validation. In order to calculate the

probability described in Section Threshold Relaxation and also the

ROC scores for weighted mean method, we used leave-one-out

cross validation in the test set. In other words, we used all available

test dataset but one as the helper set and one held-out sample as the

validation set. This was performed for all of the test datasets.

In order to compare the methods and combination strategies,

we made use of F1 statistics, which are more robust in the case of

uneven test sets [25]. When the sizes of positive and negative test

sets are unbalanced, several common statistics such as sensitivity,

specificity and accuracy may overstate or understate the

classification’s performance. The F1 measure is the harmonic

mean between precision and recall.

Precision~
TP

TPzFP
ð1Þ

Recall~
TP

TPzFN
ð2Þ

F1~
2|Precision|Recall

RecallzPrecision
ð3Þ

~
2|TP

2|TPzFPzFN
ð4Þ

TP, FP, TN, and FN denotes true positive, false positive, true

negative and false negative, respectively.

There are more than 8600 GO terms under the molecular function

aspect and most have very little associated gene products, if any, or

they are organism specific. To have enough data to reliably assess

performance we only chose GO terms with at least 100 associated

gene products. (Note that 100 gene products is not a lower limit for

training GO terms.) Also, we removed broad GO terms like binding

because they are not very informative. The remaining set

corresponds to 300 GO terms at the time of implementation.

The classifier for each GO term is independent of the rest of the

system; more can be added on demand, even for terms with very

few gene products.

Dataset Preparation
One of the most well-known and widely used attempts to

standardize protein function terms and to define their relations is

Gene Ontology, providing ontology in three aspects: molecular

function, biological process and cellular location. In this study, we focused

on molecular function aspect. GO organizes molecular functions as

GOPred
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nodes on a directed acyclic graph (DAG). As a node is a more

specific case of its parent node or nodes (a node may have more

than one parent), it is critical to select positive and negative

annotation data sets. Here, we present a way of establishing

positive and negative training data for each class based on

evidence codes provided by the GO annotation (GOA) project and

by considering the structure of the GO DAG. While preparing

training data, we used UniProt release 13.0 as the source for

protein sequences [26]. Annotations were obtained from October,

2007 version of GOA mapping file and the October 2007 version

of GO ontology is used as the bases of the functional terms and

their relations in our system. We give the lists of UniProt identifiers

of proteins used as positive and negative samples for 300 GO

terms in Supplementary Dataset S1.

Positive Training Set. Preparing the positive training dataset

was relatively simple compared to the negative dataset. First, we

extracted all proteins that have been annotated with the target term

or one of its descendants that are connected with a is_a relation.

There are also part_of and controlled_by relations in GO but for the

molecular function aspect, they were negligible. Figure 1 shows this

process graphically. In this figure, nodes with a check symbol

represent terms included in the positive dataset. In order to populate

a training dataset without any bias towards computational

prediction methods and to reduce the noise in the training data as

much as possible, we filtered out proteins that are annotated with

one of IC, IEA, ISS, NAS and ND evidence codes (see Table 1).

These codes refer to annotations either obtained by electronic

means or have ambiguity in their origin [27]. The remaining

evidence codes, IDA, IEP, IGI, IMP, IPI, RCA and TAS refer to

experimental evidences that we included in our study.

Negative Training Set. Theoretically, an annotation for a

protein only specifies the function it performs. This is generally not

an indication of what it does not perform. A protein without a

specific functional label might merely be due to lack of evidence

experiment. Although this may not be a severe problem in

practice, it helps us understand the difficulties in constructing a

negative training dataset for a target annotation term. As a result,

each protein that does not have an annotation of a target class or

one of its descendants is a probable negative training sample.

However, including all such proteins in the negative training

dataset is neither useful nor necessary. First of all, positive and

negative training sets’ sizes may become very unbalanced in such a

case. For some functional classes, the size of the positive training

dataset is in the order of tens of proteins, whereas it is about tens of

thousands for the negative dataset. Second, computational cost

increases with the size of the training dataset. Since we trained our

classifiers in a one-versus-all setting for 300 GO molecular

function terms, our strategy was to select random representative

sequences (at most 10) from each GO term other than the target

term. In Figure 1, nodes with an X symbol represent GO terms

that can be included in the negative dataset. We imposed two

conditions on the selected random representative sequences:

1. A sequence should not be annotated with the target term or

one of its descendant terms.

2. If a sequence is annotated with one of the ancestors of the

target term, it should also be annotated with a sibling of the

target term.

The first condition is straight-forward because we don’t want to

include protein sequences that are already in the positive training

data. The second constraint is imposed in order to avoid including

prospective positive training data into the negative dataset. Ideally,

each protein should be annotated with a GO term on a leaf node,

in other words, with the most specific annotation. If a protein is

annotated only up to an internal node, this means either that there

is lack of evidence for a more specific annotation or an appropriate

GO term for that protein has not yet been added to the ontology.

Thus, we excluded proteins that are annotated by an ancestor GO

term but not with a sibling.

We aim to differentiate the proteins annotated with sibling

terms; therefore proteins annotated with a sibling term should be

in the negative dataset. However, the proteins with shared

ancestral GO terms which are not annotated with a sibling GO

term are susceptible to be annotated with the current GO term.

Hence, we include them neither to the positive dataset nor to the

negative dataset.

Classification Methods
After preparing positive and negative training data for each of

300 GO molecular function terms, we applied three classification

methods representing three annotation approaches:

N BLAST k-nearest neighbor (BLAST-kNN) for homology-based

method,

Figure 1. Sample GO DAG showing how we prepared positive
and negative training data. The double-circled node indicates the
target term. Nodes with green check symbol represent terms included
in the positive dataset while those labeled by red X symbol represent
terms included in the negative dataset.
doi:10.1371/journal.pone.0012382.g001

Table 1. Evidence codes used by the GOA Project.

Code Explanation

IDA Inferred from Direct Assay

IEP Inferred from Expression Pattern

IGI Inferred from Genetic Expression

IMP Inferred from Mutant Phenotype

IPI Inferred from Physical Interaction

RCA Inferred from Reviewed Computational Analysis

TAS Traceable Author Statement

IC Inferred by Curator

IEA Inferred by Electronic Annotation

ISS Inferred from Sequence or Structural Similarity

NAS Non-Traceable Author Statement

ND No biological Data available

doi:10.1371/journal.pone.0012382.t001

GOPred
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N Subsequence Profile Map (SPMap) for the subsequence-based

method,

N Peptide statistics combined with SVMs (PEPSTATS-SVM) for

the feature-based method.

BLAST-kNN. In order to classify the target protein, we used

the k-nearest neighbor algorithm [28]. Similarities between the

target protein and proteins in the training data were calculated

using the NCBI-BLAST tool. We extracted k-nearest neighbors

with the highest k BLAST score. The output of BLAST-kNN, OB

for a target protein, is calculated as follows:

OB~
Sp{Sn

SpzSn

, ð5Þ

where Sp is the sum of BLAST scores of proteins in the k-nearest

neighbors in the positive training data. Similarly, Sn is the sum of

scores of the k-nearest neighbor proteins in the negative training

data. Note that the value of OB is between 21 and +1. The output is

1 if all k nearest proteins are elements of the positive training dataset

and 21 if all k proteins are from the negative training dataset. In

order to determine the label, instead of directly using OB with a

fixed threshold, we employed the threshold relaxation algorithm

given in the section entitled Threshold Relaxation, below.

SPMap. SPMap maps protein sequences to a fixed-dimensional

feature vector, where each dimension represents a group of similar

fixed-length subsequences [18]. Supplementary Figure S1 gives an

overview of SPMap. In order to obtain groups of similar

subsequences, SPMap first extracts all possible subsequences from

the positive training data and clusters similar subsequences. A

probabilistic profile or a position-specific scoring matrix is then

generated for a cluster. The number of clusters determines the

dimension of the feature space. The generation of these profiles

constructs the feature space map. Once this map is constructed, it is

used to represent protein sequences as fixed dimensional vectors.

Each dimension of the feature vector is the probability, calculated by

the best matching subsequence of the protein sequence to the

corresponding probabilistic profile. If the sequence to be mapped

contains a subsequence similar to a specific group, the value of the

corresponding dimension will be high. Note that this representation

reflects the information of subsequences that are highly conserved

among the positive training data. After feature vectors have been

constructed, SVMs are used to train classifiers. Further information

on SPMap is found in [18].

Pepstats-SVM. The Pepstats tool which is a part of the

European Molecular Biology Open Software Suite (EMBOSS)

and used to extract the peptide statistics of the proteins [29]. Each

protein is represented by a 37-dimensional vector. Peptide features

and their dimensions are given in Table 2. These features are

scaled using the ranges of the positive training data for both the

training and test datasets and then fed to an SVM classifier.

Threshold Relaxation
A support vector machine finds a separating decision surface

(hyperplane) between two classes that maximizes the margin, which

is the distance of that hyperplane to the nearest samples. For a new

sample, the output of the SVM is the distance of the hyperplane to

the new sample. The sign of the output determines on which side of

the hyperplane the new sample resides. Hence, the natural

threshold for SVM is zero. The optimization algorithm of SVM

that finds the hyperplane maximizing the margin is data-driven and

may be biased towards the classes with more training samples.

Therefore, using the natural threshold usually results in poor

sensitivity if the sizes of the positive and negative training datasets

are unbalanced. This is exactly the case in our problem. There are

studies in the literature about threshold relaxation in favor of the

smaller class [30–32]. In our study, we present a method that

implicitly adjusts the threshold value and at the same time defines a

probability P(x) of a sample x to be in the positive class.

First, we split the test data into two sets, a helper set, to calculate

the probability P(x), and a held-out validation set to evaluate the

performance of the method. Since, the number of positive test

samples is outnumbered by the negative test samples, our method

should handle this unbalanced situation. We calculated a

confidence value for the new sample to be positive and negative

separately and we then combined these confidences into a single

probability. The confidence for the new sample for being positive

Cp(x), is calculated as the ratio of the number of positive samples

in helper set having a classifier output lower than that of the new

sample to the number of all positive samples in the helper set. The

confidence for being negative, Cn(x), is calculated similarly

(Equation 6 and Equation 7). These two ratios are combined to

calculate the probability of the new sample being in the positive

class (Equation 8). A new sample is predicted to be positive if

P(x)w0:5, and to be negative, otherwise.

Cp(x)~

P
y[Yp

I(w(x)w~w(y))

DYpD
ð6Þ

Cn(x)~

P
y[Yn

I(w(x)v~w(y))

DYnD
ð7Þ

P(x)~
Cp(x)

Cp(x)zCn(x)
ð8Þ

Table 2. Features used in Pepstats-SVM and their dimensions.

Feature Dimension

Molecular Weight 1

Number of residues 1

Average residues weight 1

Isoelectric point 1

Charge 1

A280 Molar Extinction Coefficient 1

A280 Extinction Coefficient 1mg/ml 1

Improbability of expression in inclusion bodies 1

Dayhoff Statistics for each amino acid 20

Percent of tiny residues 1

Percent of small residues 1

Percent of aliphatic residues 1

Percent of aromatic residues 1

Percent of non-polar residues 1

Percent of polar residues 1

Percent of charged residues 1

Percent of basic residues 1

Percent of acidic residues 1

Total 37

doi:10.1371/journal.pone.0012382.t002

GOPred
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Yp and Yn are the positive and negative test samples in the

helper set, respectively. w(x) denotes the output of the classifier

for sample x. I operator returns 1 if the condition holds, 0
otherwise. P(x) for the classifier output x approaches 1 if the

fraction of the positive helper test set with classifier output values

smaller than x increases or the fraction of the negative helper test

set with classifier output values larger than x decreases. Note that

this method implicitly adjusts the threshold because natural

threshold 0 does not necessarily corresponds to a 0:5 value for

P(x). This is clearly observed when we draw the distribution of

the elements of positive and negative test data sets with respect to

the confidence values as shown in Supplementary Material S1.

Furthermore, confidence value provides the user a measure for

assessing how probable it is that the sample is a member of the

given class.

It is important to note that this confidence value is not assessing

the quality of the prediction. It just indicates how far the prediction

value of the instance, from the decision boundary learned by the

classifier. It doesn’t say anything about the quality of the decision

boundary, hence the accuracy of the overall classification. The

confidence value of the classification is calculated for a single

sample using the helper set. On the other hand, the overall

accuracy is calculated using all of the samples in the validation

test set.

Classifier Combination
Observations of many classification problems with different

classification methods have shown that although there is usually a

best method for a specific problem, samples that are correctly

classified or misclassified by different methods may not necessarily

overlap [33]. This observation led to the idea of combining

classifiers in order to achieve a greater accuracy [33,34]. In this

study, we investigated four classifier combination techniques,

1. voting,

2. mean,

3. weighted mean and

4. addition

for three different classification methods.

Voting, also known as majority voting, simply decides the class of

the new sample by counting positive and negative votes from each

classifier. Note that each vote has equal weight and the output

values of the classifiers are not taken into account.

For the Mean combination method, the mean of the probability

values calculated by Equation 8 is used to decide the class of the

new sample. If this mean value is greater than 0:5, the sample is

labeled as positive.

The combination method Mean treats each method equally. But

the performances of the methods vary for different functional

classes. Thus in the weighted mean method, we assigned weights to

each method depending on their performance in the functional

class for which the classifier combination is used. To assess the

performance of the methods we made use of the area under the

Receiver Operating Characteristic (ROC) curve, which is called

the ROC score and widely used measure to evaluate the

performance of classification methods. The ROC score estimates

the discriminative power of the method independent of the

threshold value. To calculate the ROC score of each method, we

used the helper test sets. Recall that helper test sets are held out

subsets from the test set. To avoid bias, we did not use them in

training or performance evaluation. They are only used to

calculate ROC scores to calculate weights and for threshold

relaxation. We assigned a weight to each method calculated by

Equation 9.

W (m)~
R4

m

R4
BLAST{kNNzR4

SPMapzR4
Pepstats{svm

ð9Þ

W (m) denotes the weight of method m, where

m [ fBLASTkNN,SPMap,PepstatsSVMg. Rm is the ROC

score for method m. Note that we used the 4th power of ROC

scores to assign a higher weight to the method with a better

ROC score.

In the Addition method, the output values of the classification

methods are added directly. The probability defined in Equation 8

is then calculated using these added values.

Results and Discussion

The Weighted mean method performed best in 279 of 300

classifiers, with an average F1 score of 0:77. Thus, Weighted mean

method is chosen as the basis combination method for our online

tool GOPred. Addition was the best for eight classes. Voting and mean

were the best methods for one and 3 of the classes, respectively.

Overall, combining improved the performance of 291 of 300
classes. One should note that for the rest of the cases, at least one

combination method performed very similar to the best-perform-

ing single method. Average sensitivity, specificity and F1 scores

over 300 classes are given in Table 3. With respect to F1 scores, as

BLAST-kNN and weighted mean methods are the best-perform-

ing single and combination methods, respectively, we compared

these two methods in order to justify the significance of the

improvement obtained by combined classifiers. The histogram of

F1 scores of BLAST-kNN and weighted mean methods for 300

GO terms are shown in Figure 2. It can be seen that the

distributions are not normal. Hence, instead of the Student’s t-test,

we used the Wilcoxon signed-rank test, which has no normality

assumptions [35]. The null hypothesis which states that the means

are the same, is rejected with 1% significance level. This justifies

that weighted mean performs significantly better than BLAST-

kNN.

With respect to F1 scores, BLAST-kNN turned out to be the

best single method for a majority of the functional terms, while

outperformed by SPMap only in a small fraction of functional

terms. Pepstats-SVM gave the least satisfactory results in all

functional classes. Our results indicated that simple peptide

statistics were not sufficient to accurately classify GO functional

terms. Nevertheless, samples correctly classified by each of the

three methods did not overlap; this explains the success of the

combination methods. We clearly demonstrate that combining

Table 3. Average F1 scores, sensitivity and specificity values
over 300 GO functional term classifiers.

Method F1 Sensitivity Specificity Precision

SPMap 0.62 89.12 88.92 0.51

BLAST-kNN 0.70 92.07 92.53 0.59

Pepstats-SVM 0.39 75.47 75.48 0.29

Voting 0.71 90.50 92.85 0.61

Mean 0.74 91.11 93.74 0.65

Weighted Mean 0.77 91.82 94.79 0.68

Addition 0.70 92.72 92.49 0.60

doi:10.1371/journal.pone.0012382.t003

GOPred
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three methods gives the best accuracy for functionally annotating

protein sequences.

In order to investigate the effect of the threshold relaxation method,

we repeated the whole experiment by using natural threshold 0 for

all methods. Figure 3 shows the comparison of average sensitivity

and specificity values with and without threshold relaxation over

300 GO terms; Table 4 shows the change in sensitivity, specificity

and also the total change. Results using Pepstats-SVM are

significantly improved after threshold relaxation. The accuracy

of the BLAST-kNN method was not notably affected; this is not

surprising since k-nearest neighbors method does not generate a

single decision boundary. After threshold relaxation, there was a

small decrease in specificity, but a much larger increase in

sensitivity. This confirmed our expectation that there would be a

bias towards the class with more training samples. In the majority

of the 300 GO terms, the positive training dataset was highly

outnumbered by the negative training dataset. Thus, samples

tended to be classified as negative. This explains the very high

specificity and low sensitivity values when threshold relaxation was

not used. Automated function prediction tools are generally used

to determine a rough idea about a protein’s possible functions

before conducting further in vitro experiments. We believe that

failing to detect an important annotation would have far more

severe consequences than assigning a wrong annotation. Thus,

increasing sensitivity without a detrimental effect to specificity is a

very important achievement. Detailed statistics (dataset sizes, true

positive (TP), false positive (FP), true negative (TN), false negative

(FN), sensitivity, specificity, positive predictive value (PPV),

receiver operating characteristic (ROC) score, F1 score) for all of

the methods on each GO functional term can be found in the

Supplementary Material S2.

The actual challenge for an automated annotation tool is to

annotate newly identified sequences or genomes in addition to the

validation of the tool on the well established annotations of highly

studied proteins. Thus, we applied our method to predict functions

of nine recently reported H. sapiens proteins in the last year and

highly studied human glucokinase, p53 tumor suppressor, and ras

oncogene from NCBI database (Table 5, first 3 columns). For all of

the analyzed protein sequences, GOPred was able to predict the

literature reported functions of these proteins. This test was a

decent indication of the effectiveness of the combination method.

Another challenge is the comparison between the performances of

the new and the previously reported annotation tools. Currently to

the best of our knowledge, there are not any other discriminative

classifier approach that performs predictions on GO terms,

therefore, we compared GOPred annotations with ConFunc

[36], PFP [37], and GOtcha [38] annotations on the above-

mentioned twelve protein sequences.

Both GOtcha and PFP improves the simple homology-based

approach. PFP takes into account the DAG structure of GO and

ranks probable GO terms according to both their frequency of

association to similar sequences and the degree of similarity those

sequences share with the query. GOtcha calculates term-specific

probability (P-score) measures of confidence instead of directly

transferring annotations from highest scoring hits. ConFunc

generates position specific scoring matrices (PSSMs) for each

GO term using the conserved residues among the sequences

annotated by the GO term.

DDX11L1 is a novel gene product whose function has not been

established yet and it is from human subtelomeric chromosomal

region [39]. All of the prediction tools assigned enzyme activity to

this protein in relation to nucleic acid chain hydrolysis such as

hydrolase activity, acting on ester bonds, nucleic acid binding,

acting on acid anhydrides, purine nucleotide binding, and helicase

activity. Recently found Killin protein was reported as nuclear

inhibitor of DNA synthesis with high DNA binding affinity [40].

 

 

Figure 2. Histogram of F1 scores of BLAST-kNN and Weighted Mean methods for 300 GO terms.
doi:10.1371/journal.pone.0012382.g002
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For Killin protein, only GOPred and PFP tools generated

annotations. GOPred assigned exonuclease activity while PFP

gave DNA and nucleotide binding annotations to Killin.

Exonucleases are the enzymes that cleave phosphodiester bonds

by binding to the DNA; by this way, they may contribute to the

nuclear inhibition of DNA synthesis. Another novel protein,

GLRX was reported to be glutaredoxin-like, oxidoreductase [41].

All of the tools except GOtcha predicted in general oxidoreductase

enzyme activity for GLRX. FINP2 was reported to be interacting

partner of AMPK and FLCN proteins [42]. Only GOPred and

PFP tools gave predictions in correlation with the function

reported in the literature, which were enzyme activator activity,

enzyme binding, and purine nucleotide binding. Microtubule

associated motor protein KIF18B [43] was predicted as microtu-

bule binding by GOPred and motor activity by both GOPred and

ConFunc tools. PFP and GOtcha tools assigned relatively general

GO annotations such as hydrolase activity, purine nucleotide

binding, and binding. HES-HEY-like transcription factor HELT

protein that we also present as an example in Figure 4, has

transcription regulator activity [44]. GOPred, ConFunc, and

GOtcha prediction tools attributed annotations related to

transcription regulation and DNA binding annotations. Recently

reported RGL4 protein is a guanine nucleotide dissociation factor

[45]. Only GOPred was able to give annotations for RGL4 such as

guanyl-nucleotide exchange factor, small GTPase binding that

were similar to those reported in the literature. Other annotation

tools assigned very general GO terms to RGL4. PGAP1 was

reported as GPI inositol-deacylase [46]. GOPred and ConFunc

assigned annotations related to the literature reports such as

hydrolase activity acting on ester bonds. COBRA1 was the last

protein that we included in our analysis as a recently identified

protein which was reported as the member of negative elongation

factor complex during transcription and inhibitor of AP1 [47].

None of the predictors assigned significant GO terms to

COBRA1; some very broad terms such as ribonucleotide binding,

nucleic acid binding were predicted.

In addition to the above discussed nine newly identified protein

sequences, we analyzed three well characterized proteins.

Glucokinase (GCK) is an enzyme that phosphorylates glucose

during glycolysis [48]. All of the tools assigned highly significant

GO terms related to the function of this protein. p53 tumor

suppressor protein (TP53) which is a transcription factor binds to

Table 4. Changes in sensitivity and specificity, total change
and change in F1 score when threshold relaxation is applied.

Methods DSensitivity DSpecificity DTotal DF1

SPMap 20.80 29.94 10.86 0.14

BLAST-kNN 4.13 23.44 0.69 20.10

Pepstats-SVM 62.66 221.17 41.49 0.26

Voting 21.68 25.86 15.82 20.14

Mean 24.02 24.95 19.07 20.13

Weighted Mean 15.56 23.96 11.60 20.14

Addition 25.63 26.19 19.44 20.05

A positive value indicates an increase whereas a negative value indicates a
decrease.
doi:10.1371/journal.pone.0012382.t004

Figure 3. Comparison of sensitivity and specificity values with and without threshold relaxation. The first and second columns are the
sensitivity without and with threshold relaxation, third and forth columns are the specificity without and with threshold relaxation.
doi:10.1371/journal.pone.0012382.g003
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Table 5. GOPred, ConFunc, PFP and GOtcha annotations for 12 human gene entries from the NCBI gene database.

Gene
Symbol Literature Report

GOPred
annotations:Probability ConFunc (GO c-value) [36] PFP: Probabality [37]

GOtcha: Est. likelyhood%
[38]

DDX11L1 a protein from novel
transcript family from
human subtelomeric
regions with
unestablished
function [39]

hydrolase activity, acting
on ester bonds: 0.87
protein complex binding:
0.84

RNA binding (c:4.5569e-05),
nucleic acid binding
(c:0.00020006), binding
(c:0.00020006)

hydrolase activity,
acting on acid
anhydrides:100%, purine
nucleotide binding:100%,
binding:98%

catalytic activity:52%, DNA
helicase activity:52%, hydrolase
activity:52%, helicase
activity:52%, nucleoside-
triphosphatase activity:52%

KILLIN Nuclear inhibitor of
DNA synthesis with
high affinity DNA
binding [40]

Exonuclease activity: 0.95 No results generated because
insufficient Annotated sequences
were identified

DNA binding:34%,
nucleotide binding:26%,
ATP binding:26%

Molecular function child node
absent

GLRX glutaredoxin-like,
oxidoreductase [41]

oxidoreductase activity: 0.97 glutathione disulfide
oxidoreductase activity
(c:1.0138e-08), peptide disulfide
oxidoreductase activity
(c:1.0138e-08), disulfide
oxidoreductase activity
(c:7.3644e-08), oxidoreductase
activity (c:1.0175e-07), catalytic
activity (c:1.0175e-07)

purine nucleotide
binding:97%, porter
activity:96%, binding:89%,
steroid sulfotransferase
activity:87%

Molecular function child node
absent

FINP2 AMPK and FLCN
interaction ([42])

enzyme activator activity:
0.61, enzyme binding:
0.71

No results generated because
insufficient Annotated
sequences were identified

binding:88%, transition
metal ion binding:80%,
cation binding:71%

Molecular function child node
absent

KIF18B microtubule
associated motor
protein that
use ATP [43]

microtubule binding: 0.88,
motor activity: 0.83

motor activity (c:1.3769e-17) purine nucleotide
binding:97%, porter
activity:96%, binding:89%,
steroid sulfotransferase
activity:87%

binding:33%, ribonucleotide
binding:33%, nucleotide
binding:33%, purine nucleotide
binding:33%, purine
ribonucleotide binding:33%

HELT transcription
regulator
activity [44]

protein homodimerization
activity: 0.98, transcription
corepressor activity: 0.95

DNA binding (c:1.2677e-09),
nucleic acid binding
(c:1.2677e-09), binding
(c:1.2677e-09)

hydrolase activity,
acting on acid
anhydrides:100%, purine
nucleotide binding:100%,
binding:98%

transcription regulator
activity:23%, binding:23%, DNA
binding:23%, nucleic acid
binding:23%, transcription
factor activity:23%

RGL4 guanin nucleotide
dissociation [45]

guanyl-nucleotide exchange
factor: 0.79, small GTPase
binding: 0.73

receptor binding (c:1.3056e-10),
protein binding (c:2.4304e-09),
binding (c:2.4283e-09), Molecular
Function (c:4.5798e-10)

binding:78%, cation
binding:71%,
trimethylamine-N-oxide
reductase (cytochrome c)
activity:65%, nucleic acid
binding:63%

Molecular function child node
absent

PGAP1 GPI inositol-deacylase
[46]

lipase activity: 0.89,
hydrolase activity acting
on ester bonds: 0.89,
acyltransferase
activity: 0.79

phosphoric ester hydrolase
activity (c:0), nuclease activity
(c:0), hydrolase activity, acting on
ester bonds (c:3.0683e-17),
hydrolase activity (c:1.5396e-17),
catalytic activity (c:1.5396e-17)

cation binding:62%,
binding:59%, ion
binding:58%, metal ion
binding:52%

Molecular function child node
absent

COBRA1 member of negative
elongation factor
complex during
transcription,
inhibitor of AP1 [47]

ribonucleotide
binding: 0.91, enzyme
regulator activity: 0.81

binding (c:3.361e-18) binding:88%, transition
metal ion binding:80%,
cation binding:71%,
nucleic acid binding:68%

Molecular function child node
absent

GCK phosphorylation of
glucose during
glycolysis [48]

carbohydrate kinase
activity: 0.98,
ribonucleotide
binding: 0.94, purine
nucleotide binding:0.93

glucose binding (c:2.7105e-19),
monosaccharide binding
(c:2.7105e-19), sugar binding
(c:2.7105e-19), carbohydrate
binding (c:2.7105e-19), binding
(c:2.7555e-14)

hexokinase activity:100%,
binding:97%, transferase
activity, transferring
phosphorus-containing
groups:89%, catalytic
activity:80%, nucleotide
binding:77%, glucokinase
activity:76%

binding:38%, nucleotide
binding:38%, adenyl
ribonucleotide binding:38%,
ribonucleotide binding:38%,
purine nucleotide
binding:38%, ATP
binding:38%

TP53 p53 tumor supressor,
transcription
regulation [49]

chromatin binding: 0.97,
protein heterodimerization
activity: 0.97,transition
metal ion binding: 0.95,
double-stranded DNA
binding: 0.95, protein
dimerization activity: 0.95,
transcription factor activity:
0.95, zinc ion binding: 0.95

transcription factor activity
(c:3.0644e-12), DNA binding
(c:1.0205e-11), nucleic acid
binding (c:1.0205e-11) binding
(c:1.0205e-11), transcription
regulator activity (c:1.1331e-11)

purine nucleotide
binding:100%, DNA
strand annealing
activity:100%,
binding:99%, nucleic acid
binding:98%, transcription
factor activity:94%,
single-stranded DNA
binding:90%

binding:33%, ion binding:33%,
metal ion binding:33%, cation
binding:33%, zinc ion
binding:33%, transition metal
ion binding:33%
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DNA upon tetramerization [49]. GO terms associated to TP53

protein were chromatin binding, protein heterodimerization

activity, transcription factor activity, zinc ion binding, DNA

binding that were predicted by all of the tools. The oncogene

protein v-Ha-ras Harvey rat sarcoma viral oncogene homolog

(HRAS) [50] has GTPase activity, which was correctly annotated

by all of the tools as well.

The prediction results were very similar for the well-annotated

proteins presented in the last three rows of Table 5. GOPred and

PFP tools could predict annotations that correlated with the

literature reports. However ConFunc did not produce annotations

for the protein sequences KILLIN and FINP2. GOthca tool could

only assign annotations to the three out of nine newly identified

human proteins (Table 5 last column). The comparison here, of

course, does not rank the tools’ prediction rates, but it gives an

idea about their capabilities. The difference observed in

comparative function prediction analysis might be due to the

underlying methods for these four tools. GOPred and PFP tools

apply integration of different data sources related to the sequence

to be annotated, rather than searching strict pattern matching to

identify functional motifs in the sequences of proteins.

Figure 4 shows the output of our online classification tool for the

helt protein. Furthermore, as an exemplary genome annotation,

GOPred was applied to the annotation of 73 recently reported

genes from the Ovis Aries (sheep) genome. Results are available as

Supplementary Material S3 and on the GOPred web site (http://

kinaz.fen.bilkent.edu.tr/gopred/ovisaries.html).

Automating protein functional annotation is an important and

difficult problem in computational biology. Most of the function

prediction tools run stand alone and other than those using the

transfer approach, define the annotation problem as a classification

problem. Combining classifiers was shown to improve the accuracy

as well as the coverage in protein structure prediction studies [51].

[52] describes the hierarchical composition of two classifiers: a simple

classifier with high coverage and another classifier with less coverage

but higher accuracy. In contrast, our combination scheme takes into

account the results of all classifiers at the same time; it can be thought

of as combining evidence from different sources. In addition, we

apply it to the totally different context of protein function prediction.

Function prediction tools require positive and negative training data

and the success of the resulting classifier relies on the representative

power of this dataset. In this study, we presented and applied a

method to construct well-aimed positive and negative training data

using the DAG structure of GO and annotations using evidence

codes provided by the GOA project. When using functional

classifiers as an annotation system, one must implement a classifier

for each functional class in a one-versus-rest setting because as the

number of functions increases it becomes intractable to train one-

versus-one classifiers. However, a one-versus-rest setting in a

classifier renders positive and negative samples highly unbalanced.

Therefore, we applied a threshold relaxation method that not only

avoids the bias towards the class with more training data but also

assigns a probability to the prediction, thus providing a way to assess

the strength of the annotation.

Figure 4. GOPred output for helt (HES/HEY-like transcription factor) protein.
doi:10.1371/journal.pone.0012382.g004

Gene
Symbol Literature Report

GOPred
annotations:Probability ConFunc (GO c-value) [36] PFP: Probabality [37]

GOtcha: Est. likelyhood%
[38]

HRAS v-Ha-ras Harvey rat
sarcoma viral
oncogene
homolog [50]

protein C-terminus
binding: 0.97, GTPase activity:
0.96, ribonucleotide
binding: 0.95, purine
ribonucleotide binding: 0.95,
pyrophosphatase activity: 0.93,
guanyl nucleotide binding: 0.90

GTP-dependent protein
binding (c:2.1523e-09), protein
binding (c:7.4218e-09), binding
(c:1.003e-06)

hydrolase activity,
acting on acid
anhydrides:100%, purine
nucleotide binding:100%,
guanyl nucleotide
binding:100%, GTP
binding:99%, binding:99%

binding:34%, nucleotide
binding:34%, purine nucleotide
binding:34%, ribonucleotide
binding:34%, purine
ribonucleotide binding:34%,
guanyl ribonucleotide
binding:31%, GTP binding:31%

doi:10.1371/journal.pone.0012382.t005

Table 5. Cont.
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There is a rich literature on automated function prediction

methods, each of which has different strengths and weaknesses.

We investigated the effects of combining different classifiers to

better annotate protein sequences with functional terms defined in

the molecular function aspect of GO. The resulting combined

classifier clearly outperformed constituent classifiers. Our results

also showed that the best combination strategy is the weighted mean

method, which assigns different weights to classifiers depending on

their discriminative strengths for a specific functional term.

It is also important to note that we do not merely give

annotations but also provide a measure for each functional class

that states how probable it is that the query protein is a member of

that class. This means we also provide less-probable functional

annotations for the analyzed sequence. This information may help

the biologist build a road map before conducting expensive in vitro

experiments.

A valuable addition to GOPred would be to identify important

subsequences or physicochemical properties that explains the

decisions of GOPred. Unfortunately, a direct interpretation of

important features is not possible since the decision boundry for

the classification is determined by the non-linear classifier by using

the existence and non-existence of features from both positive and

negative examples. Furthermore, GOpred is an ensemble of

different classifiers. A future work would be to study each classifier

separately by feature selection methods and giving probable

explanations for each decision.

Finally, the proposed classifier combination approach was made

publicly available as an online annotation system, called GOPred,

covering 300 GO terms. As the classifier for each GO term was

trained in a one-versus-rest manner independent of other terms,

GOPred can be easily extended to cover annotations for more GO

terms.

Supporting Information

Figure S1 Overview of SPMap.

Found at: doi:10.1371/journal.pone.0012382.s001 (0.04 MB

PDF)

Dataset S1 Dataset: Lists of UniProt IDs of proteins used as

positive and negative samples for 300 GO terms.

Found at: doi:10.1371/journal.pone.0012382.s002 (14.59 MB

TAR)

Material S1 Detailed statistics of test results for 5-fold cross

validation on 300 GO terms is available in tab-delimited text

format.

Found at: doi:10.1371/journal.pone.0012382.s003 (0.16 MB

TXT)
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