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Abstract

Background: We have previously shown that multiple genetic loci identified by genome-wide association studies (GWAS)
increase the susceptibility to obesity in a cumulative manner. It is, however, not known whether and to what extent this
genetic susceptibility may be attenuated by a physically active lifestyle. We aimed to assess the influence of a physically
active lifestyle on the genetic predisposition to obesity in a large population-based study.

Methods and Findings: We genotyped 12 SNPs in obesity-susceptibility loci in a population-based sample of 20,430
individuals (aged 39–79 y) from the European Prospective Investigation of Cancer (EPIC)-Norfolk cohort with an average
follow-up period of 3.6 y. A genetic predisposition score was calculated for each individual by adding the body mass index
(BMI)-increasing alleles across the 12 SNPs. Physical activity was assessed using a self-administered questionnaire. Linear and
logistic regression models were used to examine main effects of the genetic predisposition score and its interaction with
physical activity on BMI/obesity risk and BMI change over time, assuming an additive effect for each additional BMI-
increasing allele carried. Each additional BMI-increasing allele was associated with 0.154 (standard error [SE] 0.012) kg/m2

(p = 6.73610237) increase in BMI (equivalent to 445 g in body weight for a person 1.70 m tall). This association was
significantly (pinteraction = 0.005) more pronounced in inactive people (0.205 [SE 0.024] kg/m2 [p = 3.62610218; 592 g in
weight]) than in active people (0.131 [SE 0.014] kg/m2 [p = 7.97610221; 379 g in weight]). Similarly, each additional BMI-
increasing allele increased the risk of obesity 1.116-fold (95% confidence interval [CI] 1.093–1.139, p = 3.37610226) in the
whole population, but significantly (pinteraction = 0.015) more in inactive individuals (odds ratio [OR] = 1.158 [95% CI 1.118–
1.199; p = 1.93610216]) than in active individuals (OR = 1.095 (95% CI 1.068–1.123; p = 1.15610212]). Consistent with the
cross-sectional observations, physical activity modified the association between the genetic predisposition score and
change in BMI during follow-up (pinteraction = 0.028).

Conclusions: Our study shows that living a physically active lifestyle is associated with a 40% reduction in the genetic
predisposition to common obesity, as estimated by the number of risk alleles carried for any of the 12 recently GWAS-
identified loci.

Please see later in the article for the Editors’ Summary.

Citation: Li S, Zhao JH, Luan J, Ekelund U, Luben RN, et al. (2010) Physical Activity Attenuates the Genetic Predisposition to Obesity in 20,000 Men and Women
from EPIC-Norfolk Prospective Population Study. PLoS Med 7(8): e1000332. doi:10.1371/journal.pmed.1000332

Academic Editor: John P. A. Ioannidis, University of Ioannina School of Medicine, Greece

Received February 19, 2010; Accepted July 21, 2010; Published August 31, 2010

Copyright: � 2010 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The European Prospective Investigation of Cancer (EPIC)-Norfolk Study is funded by Cancer Research UK, the Medical Research Council, the British
Heart Foundation, the Food Standards Agency, the Department of Health, and the Academy of Medical Sciences. SL is supported by a studentship from Unilever
Corporate Research, UK. The funders had no role in the study design, data collection, analysis, decision to publish or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: BMI, body mass index; CI, confidence interval; EPIC, European Prospective Investigation of Cancer; GWAS, genome-wide association studies; OR,
odds ratio; ROC, receiver operating characteristic; SE, standard error

* E-mail: ruth.loos@mrc-epid.cam.ac.uk

PLoS Medicine | www.plosmedicine.org 1 August 2010 | Volume 7 | Issue 8 | e1000332



Introduction

Changes in our lifestyle, including increased energy intake and

lack of physical activity, have been the driving force behind the

dramatic increase in obesity prevalence over the past few decades

[1–3], and increasing physical activity levels have been associated

with reduced body fatness and metabolic risk [4]. However,

genetic epidemiological studies have firmly established that genetic

factors also play a critical role in the development of obesity [5].

Although in theory, genetically predisposed individuals may be

more susceptible to obesity in an obesogenic environment, there

has been no previous convincing evidence of genotype–lifestyle

interactions.

Recent genome-wide association studies (GWAS) have identi-

fied 12 loci robustly associated with increased body mass index

(BMI) [6–10]. We have shown that these loci have a cumulative

effect on BMI and on the risk of obesity and that, collectively,

these loci can be used to estimate an individual’s genetic

predisposition to obesity [11]. Although the associations between

this set of loci and BMI and risk of obesity were convincing, the

variance in BMI explained by these variants is still very small (less

than 1%) [11], despite previous observations that BMI has an

estimated heritability of 40%–70% [5]. Gene–lifestyle interactions

may partly account for the unexplained heritability of BMI [12].

In the current study, we examined whether the genetic

predisposition to increased BMI and obesity risk as assessed by a

genetic predisposition score, based on the 12 susceptibility loci that

were recently identified through GWAS, was modified by self-

reported daily physical activity in a large population-based sample

from the European Prospective Investigation of Cancer (EPIC)-

Norfolk study.

Methods

Study Sample
The EPIC-Norfolk study is a population-based cohort study of

25,631 people living in the city of Norwich, UK and its nearby

areas. Participants were 39 to 79 y old during the health check

between 1993 and 1997. From January 1998, participants were

invited for a second health examination, which was attended by

15,786 individuals by October 2000. Full details of the study

cohort have been described previously [13,14]. In brief, trained

nurses measured height in centimetres and weight in kilograms

and BMI was calculated as weight in kilogram divided by height in

meter squared.

DNA of 21,631 individuals, all of white European descent, was

available for genotyping. Individuals with prevalent type 2

diabetes (n = 522), those with missing values for any of the

phenotypes under study (n = 617), and those with an absolute

annual change of BMI greater than 2 kg/m2 or of waist

circumference greater than 7 cm (n = 62) during a follow-up

period of 3–4 y were excluded. In total, 20,430 individuals had

baseline data available, of which 11,936 had BMI data at the

second health check (Table 1). Those who participated in the

second health check-up were leaner (p = 1.06610233) and more

physically active (p = 3.85610236). Proportionally more women

than men participated in the second health compared to baseline

participation (p = 0.0004) (Table S1).

The Norfolk, UK, Local Research Ethics Committee approved

the study and all participants gave their informed written consent.

Physical Activity Assessment
Both occupational (sedentary, standing, physical work, heavy

manual work) and leisure-time (cycling, exercise) activities were

assessed with a validated self-administered questionnaire [15].

Leisure-time physical activity (hours/week) for both summer

and winter was recorded. On the basis of this information,

average daily physical activity was calculated as total hours of

physical activity per week divided by 7, and this was used to

categorise physical activity levels into four groups: inactive

(sedentary job, no recreational activity), moderately inactive

(sedentary job, ,0.5 h/d recreational activity or standing job,

no recreational activity), moderately active (sedentary job, 0.5–

1.0 h/d recreational activity or standing job, ,0.5 h/d

recreational activity or physical job, no recreational activity),

and active (sedentary job, .1 h/d recreational activity or

standing job, .1 h/d recreational activity or physical job with

some recreational activity or heavy manual job). This

categorization of physical activity levels was predefined and

validated against objective measurements of physical activity by

means of repeated individually calibrated minute-by-minute

heart rate monitoring as described previously [15].

Genotyping
We genotyped rs3101336, rs10913469, rs6548238, rs7647305,

rs10938397, rs925946, rs10838738, rs7132908, rs7498665,

rs1121980, rs17782313, and rs368794, representing the obesity

susceptibility loci near or in NEGR1, SEC16B, TMEM18, ETV5,

GNPDA2, BDNF, MTCH2, FAIM2, SH2B1, FTO, MC4R, and

KCTD15 genes, respectively. These loci have been identified

through recent GWAS for BMI [6–10]. Genotype information

and genotyping methods for the 12 variants have been reported

previously in detail (Table S2) [11]. All variants met the quality

control criteria (call rate .95%, blind duplicate concordance

.97%, and Hardy-Weinberg equilibrium p.0.05).

Statistical Analyses
Individual SNPs were recoded as 0, 1, and 2 according to the

number of BMI-increasing alleles for that particular SNP. The

BMI-increasing alleles were defined on the basis of the robust

associations of the SNPs with BMI observed in the recent GWAS

[6–10].

Table 1. Characteristics of the study samples at baseline and
follow-up by sex.

Timing of
Measurements Trait Men Women

Baseline n 10,004 10,426

Age (y) 59.069.3 58.569.3

BMI (kg/m2) 26.463.2 26.164.2

Genetic predisposition
score

11.362.2 11.262.2

Physical activity
level

n (%) n (%)

Inactive 2,989 (29.9%) 3,177 (30.5%)

Moderately inactive 2,478 (24.8%) 3,349 (32.1%)

Moderately active 2,333 (23.3%) 2,323 (22.3%)

Active 2,204 (22.0%) 1,577 (15.1%)

Follow-up n 5,969 5,967

Age (y) 62.969.1 62.169.1

BMI (kg/m2) 26.863.3 26.364.2

Values represent mean 6 standard deviation, unless otherwise indicated.
doi:10.1371/journal.pmed.1000332.t001

Physical Activity and Genetic Obesity Risk

PLoS Medicine | www.plosmedicine.org 2 August 2010 | Volume 7 | Issue 8 | e1000332



A genetic predisposition score was calculated for each individual

by adding up the BMI-increasing alleles of all 12 variants. For

individuals with missing genotype data for three or fewer SNPs

(97.3% of the total sample), missing genotypes were substituted by

the average count of risk alleles for the respective SNP for the

purpose of calculating the genetic predisposition score. This

resulted in a total number of 19,878 individuals at baseline with a

genetic predisposition score of whom 12,201 had full genotyped

data for all SNPs and 7,677 individuals had substituted genotypes

for 3 or fewer SNPs. Of the 19,878 individuals, 11,651 had data

from the second health check. The genetic predisposition score

was not different between individuals who did participate in the

follow-up and those who did not participate in the follow-up

(p = 0.606). Sensitivity analyses showed that the results of data with

and without substitution of missing genotypes were similar. Here,

we only present the results based on the predisposition score with

substitution. The genetic predisposition score was normally

distributed.

First, we analysed the baseline data cross-sectionally. General

linear models (GLMs) were used to test the association of

individual SNPs and of the genetic predisposition score with

BMI. Logistic regression models were used to examine associations

with risk of obesity (18.5# BMI ,25 kg/m2 versus BMI $30 kg/

m2) or overweight (18.5# BMI ,25 kg/m2 versus BMI $25 kg/

m2). Data were adjusted for age, age2, sex, and physical activity,

and we assumed an additive effect of the BMI-increasing alleles.

Interactions between individual SNPs or the genetic predisposition

score and physical activity on BMI or risk of obesity or of

overweight were examined by including a SNP (or score)-physical

activity interaction term in the respective model with the main

effects included in the model as well. Analyses were also stratified

by physical activity level. We examined the explained variance (R-

square) of BMI by the genetic predisposition score using GLMs.

Furthermore, we examined the predictive value of the genetic

predisposition score on obesity risk, stratified by physical activity

level by using the area under the receiver operating characteristic

(ROC) curve produced by a logistic regression model. We also

divided the sample into a ‘‘genetically susceptible’’ group, i.e.,

those with a genetic predisposition score .11 (median of the

genetic predisposition score) and a ‘‘genetically nonsusceptible’’

group, i.e., those with a genetic predisposition score of 11 or less to

show interactions between the genetic predisposition and physical

activity levels on BMI and obesity risk.

Next, we analysed the data longitudinally with the annual BMI

change between the first and second health check as the outcome.

GLMs were used to examine the interaction between the genetic

predisposition score and physical activity on the annual BMI

change, adjusting for age, age2, sex, and baseline BMI. All analyses

were performed using SAS version 9.1 (SAS Institute Inc.).

Results

At baseline, each additional BMI-increasing allele in the genetic

predisposition score was associated with a 0.154 (standard error

[SE] 0.012) kg/m2 (p = 6.73610237) increase in BMI, which

corresponds to a 445 g increase in body weight for a person

1.70 m tall, but was not associated with physical activity levels

(p = 0.49). Each increase in physical activity level was associated

with a reduction of 0.313 kg/m2 (SE 0.025; p = 1.2610236) in

baseline BMI, which corresponds to a 904 g decrease in body

weight for a person 1.70 m tall.

Physical activity significantly (pinteraction = 0.016) modified the

effect of the genetic predisposition score on BMI (Table 2). Each

additional BMI-increasing allele was associated with an increase of

0.205 (SE 0.024) kg/m2 in BMI (p = 3.62610218, equivalent to

592 g in weight) in the inactive group, but the effect was much less

in the active individuals (0.126 [SE 0.025] kg/m2, p = 6.0461027;

364 g in weight). The effect in moderately active and moderately

inactive individuals was intermediate, but more similar to that in

the active group. In the combined active group (i.e., the three

‘‘active groups’’ considered together), each additional risk allele

increased the BMI with 0.131 (SE 0.014) kg/m2 (p = 7.97610221,

379 g in weight), which was significantly less pronounced

(pinteraction = 0.005) than the effect observed in the inactive group

(Figure 1). The interaction term remained significant after inverse

normal transformation of BMI, suggesting that interaction effects

between the genetic predisposition score and physical activity on

BMI were not due to unequal variance in different physical activity

groups. Similar trends for interaction were observed after further

exclusion of individuals with cardiovascular disease (n = 1,128) and

cancer (n = 4,534) (pinteraction = 0.09 and pinteraction = 0.05, for using

four and two groups of physical activity, respectively).

A similar interaction pattern between the genetic predisposition

score and physical activity on obesity risk was observed. Each

additional BMI-increasing allele was associated with an odds ratio

(OR) of 1.116 (95% confidence interval [CI] 1.093–1.139;

p = 3.37610226) in the total sample. In the inactive group, each

additional BMI-increasing allele was associated with an OR of

1.158 (95% CI 1.118–1.199; p = 1.93610216), which was

significantly (pinteraction = 0.038) greater than the ORs observed

for the other physical activity groups (Table 2). In the combined

active group, each additional BMI-increasing allele was associated

Table 2. Associations of the genetic predisposition score with BMI and risk of obesity in the total population and stratified by
physical activity level.

Physical Activity Level n ba (SE) p-Value bweight
b

n(normal weight)/
n(obese) ORc (95% CI) p-Value

Overall 19,878 0.154 (0.012) 6.73610237 445 7,777/2,798 1.116 (1.093–1.139) 3.37610226

Inactive 6,004 0.205 (0.024) 3.62610218 592 2,002/1,100 1.158 (1.118–1.199) 1.93610216

Moderately inactive 5,667 0.136 (0.022) 1.3661029 393 2,245/722 1.099 (1.057–1.143) 1.9561026

Moderately active 4,534 0.130 (0.025) 1.9961027 376 1,955/558 1.095 (1.047–1.145) 7.1061025

Active 3,673 0.126 (0.025) 6.0461027 364 1,575/418 1.092 (1.041–1.147) 3.5661024

The interaction between the genetic predisposition score and physical activity level was statistically significant for BMI (p = 0.016) and risk of obesity (p = 0.038).
aIncrease in BMI (kg/m2) for each additional BMI-increasing allele.
bb, converted to body weight (g) for a person 1.70 tall for each additional BMI-increasing allele.
cIncrease in the odds of being obese (BMI$30 kg/m2) versus being normal weight (18.5# BMI ,25 kg/m2) for each additional BMI-increasing allele.
doi:10.1371/journal.pmed.1000332.t002
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with an OR of 1.095 (95% CI 1.068–1.123; p = 1.15610212)

(pinteraction = 0.015, compared to the inactive group). We observed

similar trends for risk of being overweight (pinteraction = 0.064 for

four levels of physical activity; pinteraction = 0.043 for the active

versus the inactive group).

In the inactive group, the difference in BMI between individuals

with a high genetic predisposition score (.11 BMI-increasing

alleles) and those with a low genetic predisposition score (#11 BMI-

increasing alleles) amounted to 0.739 (SE 0.103) kg/m2 (or 2,136 g

in weight) (p,8.07610213), whereas this difference was only 0.407

(SE 0.061) kg/m2 (or 1,176 g higher weight) (p,2.23610211) in the

active group (pinteraction = 0.004, Figure 2). Similarly, in the inactive

group, the odds of obesity were 1.722-fold (95% CI 1.486–1.996;

p = 2.22610216) higher in those with a high genetic susceptibility as

compared to those with a low genetic susceptibility, while this

difference was much smaller (OR 1.287 [95% CI 1.156–1.433;

p = 1.15610212]) in the active group (pinteraction = 0.007).

The genetic predisposition score explained 1.2% of the variation

in BMI in the inactive group and 0.6% in the active group.

Furthermore, the ROC curves for the prediction of obesity based

on the genetic predisposition score together with age, age2, sex,

showed that the prediction was significantly (p,1.00610230)

better in the inactive group (area under the ROC curve, 0.614

[95% CI 0.594–0.635]) than that in the combined active group

(0.576 [95% CI 0.561–0.591]).

Of the individual SNP analyses, only rs6548238 near TMEM18,

rs10838738 in MTCH2, and rs7498665 near SH2B1 showed

nominally significant interactions with physical activity level on BMI

or obesity risk (Tables S3 and S4), but none survived adjustment for

multiple comparisons.

Figure 1. BMI with different genetic predisposition scores in inactive versus active individuals.
doi:10.1371/journal.pmed.1000332.g001
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Consistent with the cross-sectional observations, physical

activity modified the association between the genetic predisposition

score and annual change in BMI during follow-up (pinteraction =

0.028, Figure 3). While overall the genetic predisposition score was

not associated with the annual BMI change during follow-up

(p = 0.95), the genetic predisposition score tended to be associated

with an increase in annual BMI in physically inactive individuals,

whereas the trend was opposite in physically active individuals

(pinteraction = 0.028; Figure 3).

Discussion

In this analysis of a large-scale population-based study, we show

that a physically active lifestyle can modify the genetic predispo-

sition to obesity. On average, each additional obesity-susceptibility

allele is associated with an increase in body weight of 445 g.

However, in individuals who have a physically active lifestyle, this

difference is only 379 g/allele or 36% lower than in physically

inactive individuals in whom the difference is 592 g/allele.

Consistently, in the total sample each additional obesity-suscep-

tibility allele increases the odds of obesity by 1.116-fold. However,

the increased odds per allele for obesity risk are 40% lower in

physically active individuals (OR = 1.095) compared to physically

inactive individuals (OR = 1.158). We observed the attenuation of

the genetic predisposition to obesity already at the lowest levels of

physical activity, equivalent to a standing job or a sedentary job

with ,0.5 h of recreational activity. Importantly, our longitudinal

analysis corroborate these cross-sectional observations showing

that physical activity significantly (pinteraction = 0.028) modifies the

effect of the genetic predisposition score on the annual BMI

Figure 2. Difference in least square means of BMI between the high (.11 BMI-increasing alleles) and the low (#11 BMI-increasing
alleles) genetic susceptibility groups in the combined active group and the inactive group. Error bars show 95% CIs.
doi:10.1371/journal.pmed.1000332.g002
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change during follow-up. Our findings further emphasise the

importance of physical activity in the prevention of obesity.

Preliminary evidence for gene-lifestyle interaction has come

from studies on the FTO locus, the firstly GWA-identified obesity-

susceptibility locus with the largest influence on BMI and obesity

risk to date [6,7,16]. Several studies have reported that the effect of

common FTO variants is attenuated in active individuals in

different populations [17–21]. In some studies, the effect size of

FTO variants is up to 80% lower in physically active individuals

compared to inactive individuals [17,18,20]. However, not all

studies have been able to demonstrate an FTO–physical activity

interaction [21–25]. This failure to detect an interaction in some

studies may reflect the influence of population-specific character-

istics such as high overall physical activity levels in the study

population [22], small sample size [23,25], or the effects of age

[21]. In our study, the genetic predisposition was estimated by the

multiple well-established obesity variants rather than a single

locus. While this approach is less informative at a biological level,

the greater genetic variation explained by the allele risk score

explains why this approach may be preferable in terms of

demonstrating an interaction between genetic susceptibility and

physical activity.

Our study also showed that variance explained by the genetic

predisposition score in the inactive group was 1.2% or twice that

observed in the active group (0.6%). This finding is consistent with

the increased effect size of the genetic predisposition score on BMI

and risk of obesity in the inactive group, and consistent with most

of the previous twin studies showing that the genetic contribution

to the variation of obesity-related traits, is reduced by increased

physical activity levels [26–29]. Our finding suggests that gene–

environment interactions contribute to the unexplained variance

in obesity traits. It also indicates that future GWAS of obesity-

related traits may benefit from studying physically inactive

individuals because the effect sizes of genetic variants may be

more pronounced and therefore easier to identify.

Our data show that increased physical activity levels are

associated with lower BMI in the population overall, but that in

particular individuals who are genetically predisposed to obesity

would benefit more from increased physical activity levels than

individuals who are genetically protected. Interventions that target

the genetically predisposed may be more effective, a hypothesis to

be confirmed in future studies.

The predictive value of the genetic predisposition score for

obesity is higher in inactive people, compared to that in the active

people. However, even in physically inactive individuals, the extra

predictive value provided by the genetic predisposition score

beyond information from age and sex is still limited, suggesting

that more genetic variants including other forms of variation such

as copy number variants and rarer variants remain to be

identified. Interactions between these variants and lifestyle factors

other than physical activity also need to be examined in future

studies.

The strengths of our study include a large sample size, a

population-based, prospective study design, and a comprehensive

estimation of the genetic predisposition to increased obesity traits

based on multiple obesity-susceptibility variants. Previously, we

Figure 3. Effect of the genetic predisposition score on the annual change in BMI during follow-up by physical activity level at
baseline. Error bars show standard error, and p-value at each physical activity level represents the significance of the association between the
genetic predisposition score and annual change in BMI.
doi:10.1371/journal.pmed.1000332.g003
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have shown that the identification of convincing gene–environ-

ment interactions requires large sample sizes and accurate

measurement of genes and environment [30–32]. In our study,

we combined the strength of a large sample size with a more

accurate estimation of the genetic predisposition to obesity. Our

results are further strengthened by the longitudinal analysis of BMI

change over time. A limitation of our study is that physical activity

was measured by a self-administered physical activity question-

naire, which is less accurate than other objective instruments.

However, the questionnaire used has been validated and shown to

perform well in categorising physical activity levels in this

population [15]. Furthermore, we have shown that physical

activity assessed by this questionnaire is associated with mortality

[33,34]. Nondifferential measurement error might have attenuated

the true strength of the gene–physical activity interaction. We

recognise that our longitudinal analysis was limited to a group of

individuals who had a lower BMI and were more physically active

than the rest of the participants at baseline. However, as the

genetic predisposition score was not associated with either physical

activity or follow-up status, the selection bias may be limited.

In conclusion, the genetic predisposition to increased BMI and

obesity is attenuated by a physically active lifestyle. This

attenuation of the genetic predisposition was already observed at

low levels of physical activity. Our finding that living a physically

active lifestyle is associated with a 40% reduction in the genetic

predisposition to common obesity is an important observation for

public health. Promoting physical activity, particularly in those

who are genetically predisposed, may be an important approach to

controlling the current increasing obesity epidemic.
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Editors’ Summary

Background. In the past few decades, the global incidence
of obesity—defined as a body mass index (BMI, a simple
index of weight-for-height that uses the weight in kilograms
divided by the square of the height in meters) of 30 and
over, has increased so much that this growing public health
concern is now commonly referred to as the ‘‘obesity
epidemic.’’ Once considered prevalent only in high-income
countries, obesity is an increasing health problem in low-
and middle-income countries, particularly in urban settings.
In 2005, at least 400 million adults world-wide were obese,
and the projected figure for 2015 is a substantial increase of
300 million to around 700 million. Childhood obesity is also a
growing concern. Contributing factors to the obesity
epidemic are a shift in diet to an increased intake of
energy-dense foods that are high in fat and sugars and a
trend towards decreased physical activity due to increasingly
sedentary lifestyles.
However, genetics are also thought to play a critical role as
genetically predisposed individuals may be more prone to
obesity if they live in an environment that has abundant
access to energy-dense food and labor-saving devices.

Why Was This Study Done? Although recent genetic
studies (genome-wide association studies) have identified 12
alleles (a DNA variant that is located at a specific position on
a specific chromosome) associated with increased BMI, there
has been no convincing evidence of the interaction between
genetics and lifestyle. In this study the researchers examined
the possibility of such an interaction by assessing whether
individuals with a genetic predisposition to increased obesity
risk could modify this risk by increasing their daily physical
activity.

What Did the Researchers Do and Find? The researchers
used a population-based cohort study of 25,631 people living in
Norwich, UK (The EPIC-Norfolk study) and identified individuals
who were 39 to 79 years old during a health check between
1993 and 1997. The researchers invited these people to a
second health examination. In total, 20,430 individuals had
baseline data available, of which 11,936 had BMI data at the
second health check. The researchers used genotyping methods
and then calculated a genetic predisposition score for each
individual and their occupational and leisure-time physical
activities were assessed by using a validated self-administered
questionnaire. Then, the researchers used modeling techniques
to examine the main effects of the genetic predisposition score
and its interaction with physical activity on BMI/obesity risk and
BMI change over time. The researchers found that each
additional BMI-increasing allele was associated with an

increase in BMI equivalent to 445 g in body weight for a
person 1.70 m tall and that the size of this effect was greater in
inactive people than in active people. In individuals who have a
physically active lifestyle, this increase was only 379 g/allele, or
36% lower than in physically inactive individuals in whom the
increase was 592 g/allele. Furthermore, in the total sample each
additional obesity-susceptibility allele increased the odds of
obesity by 1.116-fold. However, the increased odds per allele for
obesity risk were 40% lower in physically active individuals
(1.095 odds/allele) compared to physically inactive individuals
(1.158 odds/allele).

What Do These Findings Mean? The findings of this
study indicate that the genetic predisposition to obesity can
be reduced by approximately 40% by having a physically
active lifestyle. The findings of this study suggest that, while
the whole population benefits from increased physical
activity levels, individuals who are genetically predisposed
to obesity would benefit more than genetically protected
individuals. Furthermore, these findings challenge the
deterministic view of the genetic predisposition to obesity
that is often held by the public, as they show that even the
most genetically predisposed individuals will benefit from
adopting a healthy lifestyle. The results are limited by
participants self-reporting their physical activity levels, which
is less accurate than objective measures of physical activity.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000332.

N This study relies on the results of previous genome-wide
association studies; The National Human Genome Research
Institute provides an easy-to-follow guide to understand-
ing such studies

N The International Association for the Study of Obesity aims
to improve global health by promoting the understanding
of obesity and weight-related diseases through scientific
research and dialogue

N The International Obesity Taskforce is the research-led
think tank and advocacy arm of the International
Association for the Study of Obesity

N The Global Alliance for the Prevention of Obesity and
Related Chronic Disease is a global action program that
addresses the issues surrounding the prevention of obesity

N The National Institutes of Health has its own obesity task
force, which includes 26 institutes

Physical Activity and Genetic Obesity Risk

PLoS Medicine | www.plosmedicine.org 9 August 2010 | Volume 7 | Issue 8 | e1000332


