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Abstract
Mixed linear model (MLM) methods have proven useful in controlling for population structure and
relatedness within genome-wide association studies. However, MLM-based methods can be
computationally challenging for large datasets. We report a compression approach, called
‘compressed MLM’, that decreases the effective sample size of such datasets by clustering
individuals into groups. We also present a complementary approach, ‘population parameters
previously determined’ (P3D), that eliminates the need to re-compute variance components. We
applied these two methods both independently and combined in selected genetic association datasets
from human, dog and maize. The joint implementation of these two methods markedly reduced
computing time and either maintained or improved statistical power. We used simulations to
demonstrate the usefulness in controlling for substructure in genetic association datasets for a range
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of species and genetic architectures. We have made these methods available within an
implementation of the software program TASSEL.

Although genome-wide association studies (GWAS) have the potential to pinpoint genetic
polymorphisms underlying human diseases and agriculturally important traits, false
discoveries are a major concern1 and can be partially attributed to spurious associations caused
by population structure and unequal relatedness among individuals in a given cohort.
Population stratification was initially addressed using general linear model (GLM)-based
methods such as structured association2, genomic control3 and family-based tests of
association4. The introduction of MLM approaches has more recently been demonstrated as
an improved method to simultaneously account for population structure and unequal
relatedness among individuals5.

In the MLM-based methods, population structure2,6 is fit as a fixed effect, whereas kinship
among individuals is incorporated as the variance-covariance structure of the random effect
for the individuals. Regardless of the applied statistical method, GWAS require large sample
sizes to achieve sufficient statistical power7, especially in order to detect the small effect
polymorphisms that underlie most complex traits8. For the MLM approach, datasets with these
large sample sizes create a heavy computational burden because the computing time for solving
a MLM increases with the cube of the number of individuals fit as a random effect. The earliest
effort to reduce the size of the random effect in an MLM can be traced back to the sire model
approach used in animal breeding9–12, which replaces an individual’s genetic effect with that
of its sire. Consequently, the sire-model approach requires pedigrees, which are not always
available, and which in particular are often not available in plant studies. Even with available
pedigrees, the use of a marker-based kinship is preferred because of its higher accuracy13,
14. The computing time is further increased because iteration is needed to estimate population
parameters, such as variance components15, for each tested marker. Even though a number of
studies have sought to improve the speed of the iteration process, including development of
the recent efficient mixed-model association (EMMA) algorithm16, solving an MLM for a
large number of individuals and markers remains computationally intensive. To address this
issue, a residual approach was proposed based on a two-step strategy17. The first step
optimized a reduced MLM with the genetic marker effect excluded. In the second step, the
residual from the reduced MLM was fit as the dependent variable to test each marker in a GLM.
Because the random genetic effect was not fit in the second step, iteration was not required
when testing markers. This residual approach can be performed much faster than the one-step
MLM with full optimization for all unknown parameters, but it has a statistical power
equivalent to that of the full optimization approach only for traits with low heritability. We
propose here methods to reduce the size of the random genetic effect in the absence of pedigree
information and eliminate iterations to re-estimate the population parameters for each marker
without compromising statistical power. We show that the joint use of these two methods
greatly reduces computing time and maintains or even increases statistical power.

The total computing time for a GWAS with a standard MLM is mpn3, where m is the total
number of markers, p is the number of iterations to solve the MLM and n is the total number
of individuals assessed. Conducting a GWAS with a large sample size becomes
computationally intensive because each iteration takes an amount of time that is proportional
to the cube of the number of individuals in the random effect15,18. An approach for reducing
this computational burden is to reduce the size of the random effect. We achieve this by
substituting n individuals with a smaller number of groups, s (s ≤ n), clustered based on the
kinship among individuals. Consequently, the kinship between pairs of groups replaces the
kinship between pairs of individuals for the random effect of an MLM. If c = n/s is the average
number of individuals per group, referred to hereafter as the compression level, this approach
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will reduce computing time by a factor of c3. We named this approach compression, referring
to how the random effect in a MLM is compressed from individuals to groups. An MLM that
uses compression is called a compressed MLM.

Because in this method individuals are clustered into groups based on kinship estimates, we
consider the compressed MLM to be an extension of the pedigree-based sire model9–12 with
notable advancements. The groups used in the compressed MLM can be clustered from kinship
calculated from either markers or pedigrees. In addition, the number of groups in the
compressed MLM can vary from n to 1, whereas the number of sires is fixed in the traditional
method for a particular pedigree. This flexibility in the number of groups allows the accuracy
of the group mean and number of groups to be optimized, which is a method similar to choosing
the numbers of sires and progeny per sire to maximize genetic improvement in a breeding
program19–21. The ability to optimize the number of groups could lead to increased statistical
power in GWAS.

Compressed MLM crosses the boundary between GLM and MLM because GLM and MLM
can both be considered extreme cases of compressed MLM (Fig. 1). MLM is equivalent to
compressed MLM when each individual is treated as a single group (that is, s = n), whereas
GLM is equivalent to compressed MLM when all individuals are in one group (s = 1). The
latter causes the random effect to have a single level, thereby preventing the separate estimation
of the random effect and residual variance components. In addition, the random effect and the
overall mean are linearly dependent and thus cannot be estimated separately.

To further reduce computing time, we developed the P3D algorithm, a two-step approach that
does not require iteration to estimate population parameters such as genetic variance and
residual variance for each marker. The first step in the algorithm is to optimize the reduced
MLM with the marker effect excluded. If compression is incorporated in the model, the
population parameters also include the clustering algorithm and compression level. Taken from
a similar approach that was applied to marker-assisted breeding22, the second step of the
algorithm continues to fit the random genetic effect in the MLM with the previously determined
population parameters fixed as empirical Bayesian priors23. Subsequently, the non-population
parameters, including the marker effect and the random genetic effect, are estimated for each
marker.

P3D is similar to the two-step residual approach17, but it also has notable differences. The
residual approach fits the residuals from the reduced MLM as the dependent variable in the
second step, whereas the original phenotype is fit as the dependent variable in the second step
of P3D. In addition, the residual approach does not fit the random genetic effect and uses a
GLM when testing markers, whereas P3D fits the random genetic effect with previously
determined population parameters fixed in an MLM framework.

To evaluate compression and P3D relative to the standard MLM with full optimization of all
unknown parameters for each marker, we conducted a series of association studies between
observed or simulated phenotypes and observed markers in human, dog and maize. For the
observed phenotypes, we evaluated the fit of compressed MLMs at different compression
levels and with different clustering algorithms. Under the assumption that there is no
association between the observed phenotypes and the observed genetic markers, we
investigated the distribution of false positives by using the compressed MLM. The simulated
phenotypes were used to evaluate statistical power by considering the potential true
associations between the observed phenotypes and the observed markers. The simulated
phenotypes were generated from the observed SNPs by adding the genetic effects. The SNPs
with assigned genetic effects are called quantitative trait nucleotides (QTNs). Total number of
QTNs, heritability and dominance and epistatic effects were varied to validate the robustness
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of P3D for phenotypes with different genetic architectures. We used the distribution of the F
statistics from the association tests between the simulated phenotypes and the non-QTN
markers to determine an empirical threshold5 at a significance level of 5% (P < 0.05). We then
calculated the statistical power as the proportion of QTNs with F values greater than the
thresholds.

RESULTS
Compression

We examined the fit of the compressed MLM on human height with eight hierarchical
clustering algorithms24,25: unweighted pair group method with arithmetic average (UPGMA);
unweighted pair-group centroid; complete linkage; Lance-Williams flexible-beta method;
McQuitty’s similarity analysis (weighted pair-group method using arithmetic averages);
weighted pair-group centroid median; single linkage (nearest neighbor); and Ward’s method.
The fit of each model varied considerably with the use of different combinations of clustering
algorithms and compression levels. For each clustering algorithm, at least one compression
level had a better fit with the data than the standard MLM, with the exception of the unweighted
and weighted pair-group centroid median algorithms in the human dataset (Supplementary Fig.
1). The variation in model fit among clustering algorithms suggests that additional research is
needed to better understand the relationship between clustering algorithms and compression
levels; however, this is beyond the scope of our study. Because UPGMA produced models that
were generally equivalent to or better than other clustering algorithms, we chose to use that in
the rest of the work presented here, including the examination of model fit for different
phenotypes within the same population (Supplementary Fig. 2).

Under the assumption that there is no association between the observed phenotypes and the
tested markers, the P values from the association tests should follow a uniform [0,1]
distribution. This distribution is shown in the quantile-quantile plot in Figure 1. Notably,
compressed MLM controlled the false positive rate better than the standard MLM when the
compression levels were within the range of 1.5 to 10 (Fig. 2). At these same compression
levels, the compressed MLM had a better model fit than the standard MLM when marker effects
were excluded (the top panel in Fig. 3).

To deal with the risk that reducing the number of false positives might affect the ability to
detect true positives (that is, statistical power), especially in the case of assuming that no
association is violated, we examined the performance of the compressed MLM by simulation
studies. After QTN effects were added to the observed phenotypes, tests of association between
these simulated phenotypes and markers showed that the statistical power (that is, the ability
to detect the simulated QTN) and model fit followed the same trend. The compression level
that best fit a model without markers also provided the highest power to detect QTN (middle,
Fig. 3). Compared to the standard MLM, equivalent power was achieved using compressed
MLM with as much as 5- to 10-fold compression. The compression level with the best-fitting
model increased statistical power by 34%, 42% and 20% for human, dog and maize for a QTN
that explained 0.12, 0.30 and 0.30 units of the phenotypic standard deviation, respectively.

P3D
We compared P values obtained from using P3D to P values from using full optimization for
testing the association between observed phenotypes and markers in human, dog and maize.
The coefficient of determination (r2; Pearson’s correlation coefficient squared) between
corresponding P values obtained from the two approaches were all greater than 0.96. Therefore,
we concluded that the association tests obtained from the P3D and full optimization methods
were approximately the same.
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To evaluate the performance of P3D using phenotypes with different genetic architectures, we
performed association tests on simulated phenotypes. Different numbers of QTNs with various
levels of heritability, dominance and epistatic effects were simulated. Similarly, strong
correlations (r2 > 0.97) between the corresponding P values from the P3D and full optimization
approaches were observed for both QTN and non-QTN SNPs (top two panels in Fig. 4 and
Supplementary Figs. 3 and 4).

For a simulated phenotype with a heritability of 50% and that is controlled by 20 QTNs
randomly sampled from the SNPs in the human dataset, we used four compression levels. At
each compression level, association tests were performed using both the P3D and full
optimization approach. Strong correlations between the corresponding P values from P3D and
the full optimization were also observed (r2 > 0.99) for both QTN and non-QTN SNPs across
the different compression levels (top two panels in Supplementary Fig. 5).

We used the distribution of the F statistics for the non-QTN SNPs to derive the empirical
threshold for evaluating F values at each compression level. We calculated the empirical
statistical power as the proportion of QTNs with F values greater than the threshold
corresponding to a significance level of 5% (P < 0.05). The empirical statistical power of the
P3D and full optimization approaches were approximately the same in all tested scenarios
(bottom panels in Fig. 4 and Supplementary Figs. 3–5).

DISCUSSION
Compression decreases computing time in proportion to the inverse of the cube of the
compression level. For instance, a compression level of 2 will reduce the computing time by
about 87%. The standard MLM with each individual as a single group has a compression level
of 1 and requires the most computing time. The GLM, equivalent to the highest compression
level with all individuals assigned to a single group, requires the least computing time. In our
analyses, both model fit and statistical power improved as the compression level increased
from one. After reaching the optimum compression level, further compression reduced model
fit and statistical power, which eventually became the same as the power with the GLM at the
maximum compression.

The fit of the reduced model (that is, the model without markers) under different compression
levels followed the same trend as the statistical power of the full model for testing markers.
Because the reduced model did not include marker effects, the computing time required to find
the compression level with the best-fitting model was independent of the number of markers.
For these reasons, the P3D model used an efficient strategy that determined the optimal
clustering algorithm and compression level only once.

Similar to the residual approach, P3D eliminates the need to estimate population parameters
separately for every marker. The advantage of P3D is that it does not lower statistical power
regardless of the genetic architecture of the phenotypes. The P3D method works well for
different numbers of QTNs and with various levels of heritability, dominance or epistatic
effects.

Compressed MLM and P3D can be applied either separately or jointly and can also be used in
combination with other approaches, such as the EMMA algorithm, to speed up the iteration
process in the first step of P3D. The compressed MLM improves both computing speed and
statistical power, whereas P3D improves computing speed without sacrificing statistical power.
In addition, compressed MLMs can be applied at various compression levels. For an analysis
in which statistical power is the top priority, the compression level with the best model-fit
should be chosen; otherwise, a higher compression level may be chosen to reduce computing
time. It should be noted that no trend has been identified to determine the compression level
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with the best model-fit across different datasets. The compression level that generated the best
model-fit varied among phenotypes in the same population when the same kinship was used
(Supplementary Fig. 2). Thus, for each new study, the compression level needed to be
optimized using the reduced MLM.

The theoretical computing time reduction is faster by a factor of pc3 for the joint use of
compressed MLM and P3D, where p is the number of iterations and c is the compression level.
When using proc mixed and proc cluster in SAS26 on the three datasets, we showed that the
computing time for the human dataset (largest sample size) decreased 19-fold with compressed
MLM alone and 877-fold with compression with P3D at the compression level with the greatest
statistical power (Fig. 3, bottom). Choosing a compression level that had power equivalent to
that of the standard MLM reduced the computing time even more: computing time was 103-
fold faster with compression alone and 7,582-fold faster with compression with P3D,
respectively. For the human dataset with 1,315 individuals, the standard MLM (no
compression, no P3D) took 821 s to screen one marker. (Fig. 3) At this speed, it would take
9,502 d (26 years) to analyze a GWAS with 1 million markers. The current methods
(compression with P3D) took 0.34 s to screen a marker at the compression level of 3.8, which
showed the highest statistical power, and at this speed, it would take only 2.7 d to screen one
million markers. The increased speed is even more important for larger datasets (for example,
one containing 5,000 individuals). This suggests that current GWAS datasets on several
thousand of individuals at 500,000–1,000,000 markers could be analyzed by our methods
within several days. We have made these methods available within an implementation of the
software program TASSEL27.

METHODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/naturegenetics/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The forms of MLM classified by the random effect size and types of kinship. The GLM and
standard MLM are the two extremes of the compressed MLM with the number of groups
determined as 1 and n (number of individuals), respectively. The sire model is a special case
of the compressed MLM, with the groups determined as the sires derived from pedigrees.
Kinship used in Henderson’s MLM15 was calculated from the pedigrees. It was extended to
marker-based kinship in the unified MLM5. The GLM approach appears in many formats in
various GWAS, including structure association (SA)2, genomic control (GC)3 and the
quantitative transmission disequilibrium test (QTDT)4. The compressed MLM can be flexibly
applied to the entire area by varying the number of groups (s), including the area investigated
previously (shaded area) and the area proposed in this study (open area).
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Figure 2.
Quantile-quantile plots of type I error (false positive) rates of association tests using the
compressed MLM under different compression levels. The observed phenotypes are height in
humans, hip dysplasia (Norberg angle) in dogs and flowering time (days to pollination) in
maize. The distributions of P values are shown by plotting the observed P values against the
cumulative P values in the negative log10 scale. Under the assumption that this set of genetic
markers are unlinked to the polymorphism controlling the phenotypes, the P values of the
association tests have a uniform distribution, indicated by the expected diagonal line (Exp)5.
A statistical approach that has a distribution closer to the diagonal line indicates a better control
for type I errors. The GLM that is equivalent to the compressed MLM at the maximum
compression level had the most type I errors. For all the species, at least one compression level
was found at which the compressed MLM performed better than the standard MLM, which is
equivalent to the compressed MLM with compression level of 1.
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Figure 3.
The performance of the compressed MLM under different compression levels (horizontal axis).
The two extremes of the compression level at 1 and n (the number of individuals) correspond
to the standard MLM and the GLM, respectively. Performances were examined based on model
fit, statistical power and computing time (s). The observed phenotypes are height in humans,
hip dysplasia (Norberg angle) in dogs and flowering time (days to pollination) in maize.
Individuals in each of the datasets were clustered into groups according to kinship by using
the UPGMA algorithm implemented by proc cluster in SAS26. Model fit was evaluated using
negative log likelihood (–2LL), adjusted Akaike information criterion (AICC) and Bayesian
information content (BIC). Smaller values of –2LL, AICC and BIC indicate better fit. The
statistical power was evaluated for QTNs with different size effect. The size of QTN effect is
expressed in the unit of phenotypic standard deviation (s.d.). The average computing time was
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calculated from the observed CPU time for association tests on 647 markers in human datasets;
1,000 markers in dog datasets; and 553 markers in maize datasets. The computations were
performed by proc mixed in SAS26 on a computer from Dell (Optiplex 755) with two physical
CPUs (E6850 @ 3.00 GHz) and 3.25 GB RAM operated under Windows XP.
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Figure 4.
The P values and statistical power of association tests obtained by using the one-step MLM
with the full optimization (full OPT) for all unknown parameters compared to P3D on a maize
phenotype simulated with different epistatic effects (E). The phenotype was controlled by 20
QTNs, which were randomly assigned to the SNPs from the maize dataset5. Heritability was
defined as the proportion of additive genetic variance over the total variance (the sum of
additive genetic variance, epistatic variance and residual variance) and was set at 0.5. Because
all maize used here belonged to inbred lines, no dominance effect was included. The experiment
was repeated 1,000 times. For each replicate, the number of non-causal SNPs that were
randomly sampled was the same as the number of causal QTNs. The top two panels display
the P values using the full OPT (x axis) and P3D (y axis). Each dot represents a test on a non-
causal SNP (top) and a causal QTN (middle). The P values from P3D are highly correlated
with the ones from the full OPT for the non-causal SNPs and causal QTNs (r2 > 99%). The
empirical statistical power for detecting the causal QTNs is displayed (bottom) as a function
of the proportion of the total variation explained (x axis). The P3D approach and the full OPT
had approximately the same statistical power for detecting the causal QTNs.

Zhang et al. Page 12

Nat Genet. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


