
RESEARCH ARTICLE Open Access

Resveratrol-induced cytotoxicity in human
Burkitt’s lymphoma cells is coupled to the
unfolded protein response
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Abstract

Background: Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown
to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular
mechanisms are at present only partially understood.

Method: The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western
blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and
subsequent FACS.

Results: Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early
splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2a consistent with ER resident kinase (PERK)
activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream
molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt’s lymphoma Raji and Daudi cell lines. RES was
shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP.

Conclusions: Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector
CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt’s lymphoma cells.

Background
There is significant interest in naturally occurring bioac-
tive products that have clinical potential in the preven-
tion and treatment of cancer. Among them is resveratrol
(RES), which belongs to a class of defense molecules
called phytoalexins and is produced in a wide variety of
plants (including grapes, peanuts, and mulberries) in
response to stress, injury, UV irradiation, and fungal
infection [1]. RES is normally present in many dietary
products such as grapes, peanuts, berries and wine [2,3],
which is known to affect a broad range of intracellular
mediators involved in the initiation, promotion and pro-
gression of cancer [3-5]. As an anticancer agent, RES has
pleiotropic effects, altering many different signaling path-
ways, leading to suppression of tumor cell proliferation,
adhesion, invasion and metastasis, reduced signs of
inflammation and angiogenesis, and induction of

apoptosis and differentiation [4,6-13]. Nevertheless,
although numerous studies have described intracellular
changes leading to cell cycle arrest or apoptosis in
response to RES treatment, the effects are often cell type
specific [14,15], the precise mechanisms associated with
the anti-proliferative and chemopreventive effects of RES
have not been well elucidated.
Recently, RES was shown to up-regulate a set of genes

involved in endoplasmic reticulum (ER) stress response
to unfolded proteins[16]. In addition, induction of
CHOP/GADD153, one of the components of the ER
stress-mediated apoptosis pathway, was shown to be
implicated in RES-induced apoptosis in colon cancer
cells [17]. Accordingly, evidence was reported more
recently that RES could indeed trigger ER stress-induced
cell death in dopaminergic cells[18]. UPR could there-
fore be a potential mechanism of RES cytotoxicity.
Conditions that disrupt protein folding in the ER, such

as a chemical insult or nutrient deprivation, activate
stress signaling pathways collectively termed as the
unfolded protein response (UPR) [19,20]. The UPR is
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the major protective and compensatory mechanism
enabling stressed cells to survive during ER stress. UPR
induction results in both an initial decrease in general
protein synthesis, to reduce the influx of nascent pro-
teins into the ER, and increased transcription of ER resi-
dent chaperones, folding enzymes, and components of
the protein degradative machinery to prevent the aggre-
gation of the accumulating misfolded proteins. The key
players in the UPR are well characterized and it is
mediated through three ER transmembrane receptors:
pancreatic ER kinase (PERK), activating transcription
factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1)
[21-23]. In resting cells, all of these ER stress receptors
are maintained in an inactive state through their asso-
ciation with the ER chaperone, GRP78 (also called BiP).
This interaction is destabilized in the presence of mis-
folded/unfolded proteins, resulting in the dissociation of
GRP78/BiP from PERK, ATF6 and IRE1, thereby initiat-
ing the UPR. Initially, the UPR is a pro-survival response
enabling the cell to survive reversible environmental
stresses. However, if the stress is too severe or lasts for
too long, UPR activation eventually leads to cell-cycle
arrest and the induction of apoptosis[24-29].
CHOP/GADD153 is a member of CCAAT/enhancer-

binding protein family that is induced by ER stress and
participates in ER stress-mediated apoptosis [30]. In this
study we demonstrate that RES treatment indeed caused
the activation of UPR in Raji and Daudi Burkitt’s lym-
phoma cells. Our results demonstrate that a proportion
of the ability of RES to kill Burkitt’s lymphoma Raji and
Daudi cells has been attributed to upregulation of
CHOP/GADD153.

Methods
Cell culture
Human Raji and Daudi Burkitt’s lymphoma cells, human
HMy2.CIR B lymphoblast cells were grown as suspen-
sion culture in RPMI1640 medium supplemented with
10% FBS. Resveratrol (Sigma-Aldrich, Inc., St. Luis, MO)
was dissolved as a 100 mM stock solution in DMSO.

Viability assay
The in vitro toxicology assay (methyl-thiazol-tetrazo-
lium, MTT based) was performed according to manu-
facturer’s instruction (KeyGEN, Nanjing, China). Cells
(1.5 × 104 cells/100 μl) were incubated in a 96-well
plate with different effectors for the times indicated in
the figure legends.

Cell death analysis
For cell death assays, according to the manufacturer’s
instructions, cells were stained with Annexin V-FITC
and propidium iodide (KeyGEN, Nanjing, China) and
analyzed by fluorescence-activated cell scanner

(FACScan) flow cytometer (Becton Dickinson, Franklin
Lakes, NJ).

RT-PCR detection of unspliced and spliced XBP-1
To determine relative expression levels of XBP-1/XBP-1 s
within a sample, the XBP-1 cDNA fragment was
amplified with the following pair of primers:
5′-GTTGAGAACCAGGAGTTAAGACAG-3′ (forward)
and 5′-CAGAGGGTATCTCAAGACTAGG-3′ (reverse).
A 456-bp PCR product was expected if the XBP-1
cDNA fragment was derived form the unspliced form
(that contains the 26-bp intron) and a 430-bp PCR
product was expected if the XBP-1 cDNA fragment is
derived form the spliced form. The GAPDH fragment
was amplified with the following pair of primers:
5′-CTCAGACACCATGGGGAAGGTGA-3′ (forward)
and 5′-ATGATCTT GAGGCTGTTGTCATA-3′
(reverse) to produce a 450-bp fragment of GAPDH.
The temperature profile was at 94°C for 2 minutes,
followed by 30 cycles of 94°C for 15 seconds, 60°C for
1 minute, and 72°C for 30 seconds. The numbers of
PCR amplification cycle of XBP-1 and GAPDH were
35 and 25 respectively. PCR products were run on 2%
agarose gels containing ethidium bromide followed by
visualization under UV.

RNA isolation and real-time RT-PCR
Total RNA was isolated from cells using TRIzol reagent
(Invitrogen, Carlsbad, CA). Real time PCR analysis was
performed in triplication on the ABI 7500 sequence
detection system (Applied Biosystems, Foster City, CA)
using the SYBR Green PCR Master mix (Applied Biosys-
tems, Warrington, UK). For CHOP, the forward primer
was 5′-ATGAGGACCTGCAAGAGGTCC-3′ and the
reverse was 5′-TCCTCCTCAGTCAGCCAAGC-3′. For
GRP78, the forward primer was 5′-GTTCTTGCCG
TTCAAGGTGG-3′ and reverse was 5′-TGGTACAG-
TAACAACTGCATG-3′. For GRP94, the forward primer
was 5′-TACCCACATCTGCTCCACGTG-3′ and reverse
was 5′-ACCAAGCTTGATGTTGGTAC-3′. For ATF4,
the forward primer was 5′-AAGCCTAGGTCTCTTA-
GATG-3′ and reverse was 5′-TTCCAGGTCATCTA-
TACCCA-3′. For GADD34, the forward primer was
5′-AAGCTCACAGAACCTCTAC-3′ and reverse was
5′-GATGTCCACAGAAGAACTTC-3′. For b-actin, the
forward primer was 5′-GAGACCTTCAACACCC-
CAGCC-3′ and the reverse was 5′-GGATCTTCAT-
GAGGTAGTCAG-3′. All the reactions were performed
in triplicate and normalized using b-actin as control
gene.

Western blot analysis
Cells were lysed in lysis buffer (20 mM Tris-HCl,
150 mM NaCl, 2 mM EDTA, 1% Triton-X100)

Yan et al. BMC Cancer 2010, 10:445
http://www.biomedcentral.com/1471-2407/10/445

Page 2 of 10



containing a protease inhibitor cocktail (Sigma-Aldrich,
Saint Louis, MO). Cell extract protein amounts were
quantified using the BCA protein assay kit. Equivalent
amounts of protein (20 μg) were separated using 12%
SDS-PAGE and transferred to PVDF membrane (Milli-
pore Corporation, Billerica, MA). Western immunoblot-
ting was performed using primary antibodies against
CHOP (Santa Cruz Biotechnology, Santa Cruz, CA),
GRP78 (BD Bioscience, San Diego, CA), GRP94
(Abcam, Cambridge, MA), ATF6 (Abcam, Cambridge,
MA), eIF2a (Cell Signaling, Danvers, MA), phospho-
eIF2a (Ser51) (Cell Signaling, Danvers, MA), phospo-
PERK (Thr980) (Cell Signaling, Danvers, MA), Histone
H2B (Cell Signaling Technology, Danvers, MA), or
GAPDH (Chemicon, Bedford, MA), horseradish peroxi-
dase (HRP)-conjugated anti-rabbit or anti-mouse sec-
ondary antibodies (Amersham Biosciences, UK) and
ECL solutions (Amersham Biosciences, UK).

Small interfering RNA (siRNA)
The siRNA sequences used here were as follows: siRNA
against CHOP (siCHOP), AAGAACCAGCAGAGGU-
CACAA and scramble (CCGUAUCGUAAGCAGUACU)
that has no homology to any known genes was used as
control. In addition, position-mismatched (sequence
underlined) siCHOP (simutCHOP; AAGAACCAGCA-
GACCUCACAA) was also used to confirm the specifi-
city of siCHOP. Transfection of siRNA oligonucleotide
was performed with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA) according to the manufacturer’s recom-
mendations. The cells were transfected on three conse-
cutive days, and subsequent treatment was performed
72 h after the first transfection.

Detection of Ca2+ concentrations
The cytoplasmic level of Ca2+ was determined by flow
cytometry (Becton Dickinson FACS Calibur), using Indo
1/AM (Calbiochem, La Jolla, CA). Cells were pretreated
with vehicle or BAPTA, a Ca2+ chelator (10 μM) for 3 h
before adding 100 μM RES for incubation for 24 h to
detect the changes in Ca2+ concentration. The cells
were harvested and washed twice, then resuspended in
Indo 1/AM (3 μg/ml) and incubated at 37°C for 30 min
before being analyzed by flow cytometry.

Statistics
The statistical significance of the difference was analyzed
by ANOVA and post hoc Dunnett’s test. Statistical sig-
nificance was defined as p < 0.05. All experiments were
repeated three times, and data were expressed as the
mean ± SD (standard deviation) from a representative
experiment.

Results
Rapid phosphorylation of PERK and eIF2a in Raji and
Daudi Burkitt’s lymphoma cells treated with RES
PERK plays a particularly important role in mediating
the global cellular response to ER stress. ER stress
induces a PERK-dependent phosphorylation of the a
subunit of eukaryotic initiation factor 2a (eIF2a), which
leads to a generalized inhibition of translation to reduce
the client protein load in the ER[31]. To determine
whether this branch of UPR was activated in Burkitt’s
lymphoma cells treated with RES, we examined the
levels of phosphorylated PERK and eIF2a in cells treated
with RES. Tunicamycin, a classical ER stress-inducing
agent, was simultaneously used to treat Raji and Daudi
cells as a positive control. Treatment of Raji and Daudi
cells with RES for 8 h caused a marked increase in the
phosphorylation of PERK and its direct intracellular sub-
strate, eIF2a (Figure 1A). The phosphorylation of PERK
and eIF2a was not associated with an increase in the
abundance of these two proteins, suggesting that RES
only causes an increase in the fraction of each of these
two proteins to become phosphorylated. The time
course of the phosphorylation of PERK and eIF2a was
then investigated in Raji leukemia cells. PERK phosphor-
ylation was detected at 1 h and steady state of phos-
phorylation was reached at 4 h after RES exposure
(Figure 1B). A similar time course for phosphorylation
of eIF2a was observed (Figure 1B). Because IF2a phos-
phorylation subsequently induces ATF4 and GADD34
[32], we next examined the induction of GADD34 and
ATF4 mRNA after RES treatment by real-time PCR.
RES, as well as tunicamycin, induced GADD34 (Figure
1C) and ATF4 (Figure 1D) mRNA in Raji and Daudi
cells. These results indicate that RES induces a pathway
initiated by phosphorylation of eIF2a and followed by
the upregulation of GADD34 and ATF4.

Stimulation of XBP-1 splicing by RES in Raji and Daudi
cells
ER stress also induces activation of the IRE1a endonu-
clease, which causes the unconventional splicing of
XBP-1 mRNA (encoding a transcription factor) in the
cytoplasm. The spliced form of XBP-1 mRNA acts as a
transcription factor which induced the expression of
ER-resident molecular chaperons during ER stress [31].
To evaluate the possible role in induction of IRE1a/
XBP-1 pathway by RES, total RNA was extracted from
Raji and Daudi cells treated with RES for various time
intervals and the XBP-1 was examined by RT-PCR with
the primers described in materials and methods. Two
binds of 456 bp and 430 bp with 26 bp difference are
expected to be amplified, representing the spliced and
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unspliced mRNA of XBP-1, respectively. Only one XBP-
1 cDNA fragment corresponding to the unspliced XBP-
1 mRNA was detected in Raji cells after 4 h of RES
treatment (Figure 2A). However, an additional XBP-1
cDNA fragment, corresponding to the spliced XBP-1
mRNA was formed as incubation was continued further
(8 h and beyond) (Figure 2A). Although the early effects
(within 12 h) on XBP-1 splicing after exposure to RES

were similar to that seen with tunicamycin, prolonged
incubation (up to 24 h) failed to induce further splicing
(Figure 2A). A similar time course of generation of the
spliced XBP-1 mRNA could be observed when Daudi
cells were treated with RES (Figure 2B). The transcrip-
tion factor protein XBP-1, which is translated from
spliced XBP-1 mRNAs, contains a nuclear localization
signal and a transcriptional activation domain and
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Figure 1 Activation of PERK and eIF2a signal pathway by RES in Raji and Daudi cells. A, Raji and Daudi cells were incubated with
resveratrol (RES; 100 μM) or tunicamycin (Tm; 10 μg/ml) used as a positive control for 8 h and cell lysates were subjected to Western blotting
analysis. B, Raji cells were treated with 100 μM of RES for the indicated time, and Western blotting analysis was performed. C, Raji and Daudi
cells were incubated with 100 μM of RES or 10 μg/ml of Tm for 8 h and GADD34 mRNA levels were investigated using real-time PCR. D, Cells
were treated as C and ATF4 mRNA levels were analyzed. *, P < 0.01.
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activates the transcription of target genes in the nucleus.
We then analyzed XBP-1 expression in the nuclear
using Western blot analysis. Similar like tunicamycin,
RES increased XBP-1 expression both in Raji and in
Daudi cells (Figure 2C).

Activation of ATF6 signaling pathway by RES in Raji and
Daudi Burkitt’s lymphoma cells
In addition of eIF2a phosphorylation and XBP-1 spli-
cing, ER stress activates the ATF6-dependent pathway
that subsequently induces the expression of many genes
containing the ERSE in the promoter regions, including
GRP78/BiP, calnexin, calreticulin, and XBP-1 [33,34].
ATF6 is an integral membrane protein that is found at
the ER, upon ER stress, ATF6 is converted from a 90-
kDa protein (p90ATF6) to a 50-kDa protein (p50ATF6)

transcription factor, resulting in nuclear translocation
[35]. Thus, we investigated whether RES induces
p50ATF6 by Western blot. In the Raji cells, treatment
with RES led to an increase in the protein levels of both
the 90-kDa and the 50-kDa ATF6 after 2 h of stimula-
tion (Figure 3A). Similarly, in the Daudi cells, the pro-
tein level of the 90-kDa and 50-kDa ATF6 substantially
increased with a peak at 4-8 h after addition of RES
(Figure 3B).

Induction of downstream effectors of UPR, GRP78/BiP and
CHOP/GADD153 by RES in Raji and Daudi cells
GRP78/BiP is the key chaperone for folding and matura-
tion of protein in ER and its upregulation is the usual
marker of ER stress. The real-time PCR analyses indi-
cated that GRP78/BiP in Raji and Daudi cells increased
by approximately 12 and 20 fold after 100 μM of RES
exposure, respectively (Figure 4A). Western blot analysis
confirmed that GRP78/BiP protein levels were also sig-
nificantly increased in response to treatment with RES
(Figure 4B). Compared with GRP78/Bip, lower induction
of GRP94 were observed in response to RES, with only
3- to 5-fold changes of mRNA transcript being detected
with 100 μM of RES treatment (Figure 4A), GRP94
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protein levels demonstrated unaltered or marginal
increase throughout this dose range (Figure 4B).
Another usual marker of ER stress, CHOP/GADD153,
which is an apoptotic effector protein situating function-
ally downstream of the UPR signaling pathways, was
also investigated. The basal level of CHOP/GADD153
was extremely low, on exposure to RES Raji and Daudi

cells depicted a marked increase in the concentrations
of CHOP mRNA (Figure 4A) and protein (Figure 4B) in
a dose-dependent manner. In addition, RES treatment
also caused dose-dependent cleavage of caspase-4
(Figure 4B), which has been shown to be predominantly
located to the outer membrane of the ER, and to play
important roles in ER stress-induced apoptosis[31,36,37].
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Involvement of ER stress in RES-induced cell death
We therefore examined if RES might actually cause the
activation of UPR which in turn caused cell death. MTT
analysis showed that treatment of Daudi and Raji cells
with RES greatly reduced cell proliferation and viability in
a dose-dependent manner (Figure 5A). This inhibitory
effect became apparent at a concentration of 20 μM RES
(Figure 5A). To determine whether the decrease in cell
viability was attributable to apoptosis, cells were stained
with FITC conjugated Annexin V plus PI and evaluated by
FACS. Both Daudi and Raji cells underwent dose-depen-
dent apoptotic cell death in response to RES (Figure 5B).
Since the role of cytosolic Ca2+ as proapoptotic mes-

senger involved in ER stress-mediated apoptosis has
been ascertained[38], we investigated whether RES treat-
ment affects cytosolic Ca2+. Addition of RES was found
to significantly increase cytosolic Ca2+ (Figure 5C).
Treatment of cells with the intracellular Ca2+ chelator
BAPTA (10 μM for 3 h) prior to RES treatment (24 h),
caused an effective chelation of cytosolic Ca2+ (Figure
5C). Importantly, pretreatment with BAPTA also miti-
gated apoptosis induced by RES (Figure 5D).
CHOP/GADD153 is one of the components of the ER

stress-mediated apoptosis pathway. To further investigate
the potential involvement in ER stress-mediated apopto-
sis by RES, we examined whether induction of CHOP/
GADD153 is critical to induce RES-mediated Burkitt’s
lymphoma cell death by siRNA duplex against CHOP
mRNA. Daudi and Raji cells were transfected with the
indicated siRNA were treated with vehicle or RES. Wes-
tern blot analysis demonstrated that siRNA against
CHOP effectively prohibited its upregulation mediated by
RES (Figure 5E). Importantly, under these conditions,
apoptosis induced by RES was significantly attenuated in
Daudi and Raji cells transfected with CHOP siRNA when
compared with scramble siRNA or siRNA against mutant
CHOP-transfected cells (Figure 5F).
Next we investigated whether RES caused normal lym-

phocyte death via induction of ER stress. Real-time PCR
indicated that in normal B lymphoblast HMy2.CIR cells,
RES increased the GRP78/Bip transcript with about 2
folds upon exposure to 100 μM of RES (Figure 5G). It
should be noted that same concentration of RES resulted
in 12 and 20 folds of GRP78/Bip induction in Raji and
Daudi cells, respectively (4A). Importantly, no obvious
induction of CHOP was observed in RES treated HMy2.
CIR cells (5G). Consistent with real-time PCR, Western
blot demonstrated that GRP78/Bip protein levels were
increased upon RES exposure, whereas, CHOP proteins
were undetectable in HMy2.CIR cells with or without
RES treatment (Figure 5H). Flow cytometry demon-
strated that 100 μM of RES had no obvious effects on
apoptosis of HMy2.CIR cells (Figure 5I).

Discussion
The use of nontoxic chemical substances is considered a
promising alternative strategy for the treatment of human
cancer. In recent years, many natural or dietary substances
have been shown to inhibit experimental carcinogenesis
[39]. In this regard, RES, a phytoalexin found in grapes
and peanuts hat has shown promise as a novel chemother-
apeutic agent, which exerts a wide array of biological
effects, including anti-inflammatory, anti-proliferative and
potential chemopreventive activity against human cancer
[40]. Moreover, RES has been shown to suppress the
growth of transformed cells also through induction of
apoptosis[9,41,42]. Over the past decade, RES has emerged
as one of the most promising naturally occurring com-
pound with immense therapeutic potential. However,
unlike other commonly occurring natural or synthetic
drugs, the precise effect and mode of action of RES has
remained enigmatic. In this study we tried to establish the
pro-apoptotic role of RES in Burkitt’s lymphoma cells and
to decipher the mechanisms underlying this action. We
showed that treatment of Daudi and Raji Burkitt’s lym-
phoma cells with RES was able to induce ER stress and
activated all 3 branches of the UPR. It was interesting to
note that both the full-length and cleaved ATF6 increased
upon RES exposure. Full-length, as well as cleaved ATF6
was also reported to be increased in cells treated with
4HPR[43]. Since lack of information on the metabolism of
these two proteins at the present, the underlying mechan-
isms remain to be clarified in the future.
The mechanism of ER stress and the unfolded protein

response is primarily a cell protective mechanism [44,45],
resulting in transient induction of cell cycle arrest and
accumulation of molecular chaperons such as GRP78/BiP
to bind and recover unfolded proteins. However, it has
repeatedly been described that prolonged exposure of
cells to either ER stress can induce a switch from cell sur-
vival to apoptosis, and the cell protective function of
these mechanisms appears to be only a timely restricted
protection[44,46]. The induction of GADD153/CHOP,
synthesized as a downstream component upon the acti-
vation of PERK/eIF2a pathway, may be related to the cell
death-mediating effect of ER stress. GADD153/CHOP is
a proapoptotic protein that is able to downregulate the
expression of Bcl-2, and to upregulate the expression of
some proapoptotic members of the Bcl-2 family[47,48].
Overexpression of GADD153/CHOP has been reported
to lead to cell cycle arrest and apoptosis, which are
believed to be important targets for cancer drug develop-
ment[30]. In the current study, we found that RES expo-
sure induced apoptotic executor GADD153/CHOP
expression in Raji and Daudi cells. Furthermore, we
demonstrated that prohibition of GADD153/CHOP
induction attenuated RES-induced cytotoxicity in Raji
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and Daudi cells, suggesting that induction of apoptotic
branches of UPR might be implicated in RES-mediated
cell cytotoxicity. The activation of UPR by RES was
reported in dopaminergic cells recently [18] and data
described in this study was provided further insights as
to how UPR might be involved in the cytotoxic action of
RES in Burkitt’s lymphoma cells.
ER is a principal site for protein synthesis and modifi-

cation prior to directing protein delivery to other orga-
nelles and its proper functioning is essential for cell
survival. Any external or internal factors, such as cal-
cium store depletion, inhibition of glycosylation, reduc-
tion of disulfide bonds, et al., that impinge on ER
structure and function will ultimately result in accumu-
lation of unfoled or misfolded proteins, leading to ER
stress[20,22]. RES might activate ER stress responses via
different mechanisms. For instance, although preferen-
tially functioning as an antioxidant, RES paradoxically
has a propensity to stimulate formation of reactive oxy-
gen species (ROS) in some cells [49,50], which can
cause oxidation of nascent proteins, thus leading to mis-
folded proteins and ER stress. It has also been reported
that RES inhibits 20 S proteasomal activity[18], which
can cause accumulation of misfolded or unfolded pro-
teins and ER stress. In addition, resveratrol mimics the
situation of calorie restriction and ATP deficiency[51],
which can hinder proper folding of nascent proteins.
Furthermore, red wine polyphenol compounds is
reported to increase intracellular calcium[50], suggesting
that RES possibly cause ER stress through regulation of
calcium store in ER. In the current study, pretreatment
with BAPTA for 3 hours dramatically reduced RES-
induced apoptosis. Apparently, Ca2+ plays an important
role in RES-induced apoptosis in Burkitt’s lymphoma
cells. Further deciphering the mechanisms by which RES
leads to ER stress in details, might potentiate the combi-
national treatment using RES and other inducers of ER
stress to combat with malignancies.

Conclusions
RES activates all three branches of UPR in Burkitt’s lym-
phoma cells. In addition, activation of the apoptotic arm
of the UPR and its downstream effector CHOP/
GADD153 is involved, at least in part, in RES-induced
apoptosis in Burkitt’s lymphoma cells.
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