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We describe two sets of courses designed to enhance the mathematical, statistical, and
computational training of life science undergraduates at Emory College. The first course is an
introductory sequence in differential and integral calculus, modeling with differential equa-
tions, probability, and inferential statistics. The second is an upper-division course in
computational neuroscience. We provide a description of each course, detailed syllabi,
examples of content, and a brief discussion of the main issues encountered in developing and
offering the courses.

INTRODUCTION

We describe two efforts to improve the mathematical, sta-
tistical, and computational training of undergraduates in life
science majors at Emory College.

Description of Objectives
The Mathematics and Computer Science and the Biology
Departments both offer courses that provide mathematical,
statistical, and computational instruction for life science ma-
jors at Emory College. An introductory sequence is intended
for freshmen with good high school mathematics back-
ground and has been taught by mathematics and computer
science faculty for almost 15 yr, in various forms. It provides
the quantitative training needed by all life science students
and is required by the Department of Biology for its Bach-
elor of Science program. For quantitatively intense subdis-
ciplines, the Department of Biology has upper-division
courses in modeling and computation. We describe one
course, in computational neuroscience, that has been offered
for the past 3 yr.

Curricular and pedagogical issues in preparing life sci-
ence students for an increasingly quantitative set of disci-
plines have several consistent themes. Our introductory
mathematics sequence for life science majors, Mathematics
115/116-Life Science Calculus 1/2, addresses two of these
themes.

First, mathematical, computational, and statistical meth-
ods are of ever-growing importance in the life sciences. We
introduce the basic quantitative tools required in modern
life science research, adhering to the recommendations of
the National Research Council report BIO2010 (National
Research Council, 2003) and the Mathematical Association
of America’s Math & Bio 2010 (Steen, 2005). Consequently,
introductory quantitative course work should include
modeling change in biological systems via discrete dy-
namics, continuous differential equations (DEs), and sto-
chastic processes; and organization and analyses of data
in information-intensive fields such as molecular evolu-
tion and genetics.

Second, researchers in the biological sciences and also
health science professionals must be discerning readers of
the research literature. In particular, critical evaluation of,
and conclusions drawn from, mathematical models and
statistical studies is indispensable. These require experi-
ence constructing and criticizing models of biological phe-
nomena and an understanding of probability theory, as
the underpinning of inferential statistics, and exposure to
statistical methods used to establish confidence and test
hypotheses.

Preparation of majors for graduate programs in highly
quantitative subdisciplines is also of growing importance.
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For students involved in computational neurobiology or
population biology, for example, appropriate course work
must be designed. Mathematical Concepts in the Neuro-
sciences (MCN) at Emory College provides an example of
such a course. Neuroscience is rapidly becoming one of the
most quantitative biological fields. An increasing number of
research papers in neuroscience combine results of experi-
ments and computer simulations of mathematical models.
MCN focuses on several seminal mathematical models used
in neuronal coding, neuronal and network dynamics, and
learning in neuronal networks. The main objective of the
course is to develop in students the ability to interpret,
analyze, and develop these models. A secondary objective is
to stimulate a deeper understanding and active use of the
mathematical concepts used in the formulating and analyses
of models. A brief syllabus of MCN is provided in Mathe-
matical Concepts in Neuroscience.

Main Challenges
Concerning the introductory sequence, it is now the main
mathematics requirement for the biology major. Unfortu-
nately, student math background and aptitude vary widely.
We attempt to balance continuity with high school math
training, as varied as it is, with emphases on modeling and
problem solving, which are usually new to our students. To
manage quite demanding syllabi, there is a mandatory ad-
ditional contact hour that allows review of material, ques-
tion-and-answer, and more frequent testing; so, students
have 3 lecture hours and 1 lab hour each week. And Emory
College offers a supplemental instruction program based on
peer tutoring, an important resource. Substantial integration
of life science topics is key both to the educational purpose
and to student interest. This has been underscored with
presentations by biology faculty on topics such as popula-
tion biology and modeling physiological systems such as the
neuron. In teaching inferential statistics, it is important to
emphasize experimental design and to use real experimental
data.

Coordination of several text and Web sources is required.
Unlike the situation in physics-oriented calculus education,
there are not many texts that address the range of topics
required. The choice of proper content and textbooks for
MCN is also a challenge. There are several excellent text-
books on the application of mathematical methods in the
neurosiences, including Foundations of Cellular Neurophysiol-
ogy (Johnston and Wu, 1995), Computational Cell Biology (Fall
et al., 2002), and Mathematical Physiology (Keener and Sneyd,
1998). From our perspective, the most balanced representa-
tion of mathematical concepts used in the modern neuro-
sciences is presented in Theoretical Neuroscience: Computa-
tional and Mathematical Modeling of Neural Systems (Dayan
and Abbott, 2001). For example, Dayan and Abbott consider
not only excitability of individual neurons and dynamics of
activity in neuronal networks but also information-theoretic
approaches to neuronal code and learning in neuronal net-
works—important themes that are often underrepresented
in textbooks. Dayan and Abbott clearly demonstrate how a
mathematical approach helps to solve many fundamental
problems in neuroscience. Unfortunately, mathematics is
just used and not discussed in the book. Our challenge is to
retain the research spirit of the book but adapt the content to

undergraduates who have just begun to understand the role
of mathematics in neuroscience.

We have chosen Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems as a main textbook.
However, during the course we referred to other textbooks
on specific topics. For example, when considering modeling
neurons with simple nondifferential equations, we used
some models and diagrams from Dynamical Systems in Neu-
roscience: The Geometry of Excitability and Bursting (Izhikevich,
2010).

Another challenge is building adequate enrollment. MCN
is an elective course. It has to compete for students with
many well-established courses that do not “scare” biology
students with mathematics. The health career focus of the
majority of majors presents a real challenge. It is hoped that
courses such as MCN, supported by the introductory se-
quence and early independent research opportunities, will
be useful in attracting more students intent on science grad-
uate programs, as well as changing the ambitions of current
students.

INTRODUCTORY MATHEMATICS SEQUENCE
FOR LIFE SCIENCE MAJORS

In this section, we describe several versions of the year-long
Mathematics 115/116-Life Science Calculus 1/2 that have
been taught at Emory over the past 14 yr.

In the early 1990s, the Science and Mathematics Depart-
ments at Emory College were meeting regularly to discuss
Science 2000, an ambitious faculty, program, and infrastruc-
ture development plan. We were eager to expand our ma-
jors, individually and in collaborative interdisciplinary pro-
grams. We also wanted to modify the premed orientation of
the strong majority of lab science majors and to attract more
students to our majors intent on graduate education in what
have come to be called the science, technology, engineering,
and mathematics (STEM) disciplines. Even 20 yr ago, it was
obvious that the life sciences were being transformed by the
essential use of mathematics, statistics, and computing and
that the standard physics-based calculus sequence did not
provide the right quantitative training for life science
majors.

Early Versions of the Sequence
We began in 1997–1998 after extended discussions with
faculty in biology and biostatistics.

Version 1: 1997–1999. Main reference: Mathematics for the
Biosciences (Cullen, 1983). The two-course sequence was pur-
posely designed to have the first term quite similar to Cal-
culus 1, so that students could switch freely between the
standard Math 111/112-Calculus 1/2 and the life science
sequence. The second course was substantially different
from standard Calculus 2, substituting DEs, discrete proba-
bility, and inferential statistics for integration techniques
and series and sequences.

The course was designed with input from the Department
of Biology and was recommended by it for its majors, but it
was not required. Enrollments in 1997–1998 in 115/116 were
28/12 and increased the next year to 48/20 students. The
course was taught in two small sections each fall, with one
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section in the spring. During the same years, enrollments in
standard, business, and Advanced Placement (AP)-based
calculus were approximately 400–500.

The department was pleased with the initial offerings but
not with the available texts. We found it difficult to maintain
enough similarity with Math 111 to allow students to switch
between sequences and to introduce interesting life science
applications. Enrollments were disappointingly low, be-
cause the courses were not well enough publicized and
although recommended by the Department of Biology, they
were not required by any majors.

Version 2: 1999–2007. Main reference: Modeling the Dynamics
of Life: Calculus and Probability for Life Scientists (Adler, 1989,
2005). The text and syllabus marked a substantial departure
from the original objective of keeping the first term close to
Calculus 1. Adler begins with a precalculus review and an
introduction to discrete dynamics. This is followed by dif-
ferential calculus and then by applications featuring the
relationship between the derivative and stability of equilib-
ria. DEs and definite and indefinite integrals complete the
first course. Substantial modeling topics are included
throughout the syllabus.

The second term begins with more DEs, including equi-
libria and stability for autonomous DEs. Systems of DEs and
the phase plane are used to model competition, predator–
prey interactions, and epidemics. An ambitious model of the
neuron concluded the DE modeling segment of the second
term, approximately one-third of the course. This was fol-
lowed by an introduction to probability and descriptive
statistics, discrete and continuous random variables, the
binomial and normal distributions, and the central limit
theorem (CLT). Inferential statistics, featuring estimates
of the mean, confidence intervals, and hypothesis testing,
are the last topics.

During summer 2003, with a grant from the Faculty Sci-
ence Council and College Center for Science Education, the
sequence was revised to include a MATLAB (The Math-
Works, Natick, MA) component. This was used for both
modeling and statistics. The department has an instructional
computer lab with 32 networked work stations that allowed
MATLAB training and assignments.

During this period, enrollments grew to almost 100 in the
fall term, taught in several small sections, with never �50 in
the spring. Instructors were pleased with the evolving syl-
labus and choice of topics. However, students were not so
happy about the introduction of MATLAB. The course be-
came difficult to offer logistically and just a bit overwhelm-
ing. Although the courses were still not required by any of
the life science majors, Department of Biology advisors
strongly suggested the sequence to freshmen and continuing
students who had delayed taking mathematics.

Version 3: 2007–2008. Main references: Mathematical Models
in Biology (Allman and Rhodes, 2004), Calculus Lite (Morgan,
2001), and Chance in Biology: Using Probability to Explore
Nature (Denny and Gaines, 2000). This was the most signif-
icant departure from standard calculus that we attempted.
We used Mathematical Models in Biology (Allman and Rhodes,
2004) to introduce topics such as population dynamics and
initially study them with discrete difference equations. Cal-

culus was introduced, as needed, to understand continuous
change. In term 1, we developed discrete and continuous
models of populations, infectious disease, and predator–
prey systems. These were analyzed with cobwebbing and
phase lines; stability of equilibria was determined with the
derivative. After introducing the integral and DEs, we saw
how autonomous DEs provide continuous versions of the
previous population models.

Term 2 began with systems of DEs, including predator–
prey and the susceptible-infected-recovered (SIR) model of
epidemics. Phase planes and slope fields were used to pro-
vide qualitative information about solutions. Probability
and statistics were then motivated by genetics and molec-
ular evolution. Probability topics included Bayes theorem,
rare disease examples, discrete and continuous random
variables, binomial and geometric distributions, the nor-
mal distribution, and the CLT. Statistical methods in-
cluded descriptive and inferential statistics, with empha-
sis on hypothesis testing, sampling distributions, and
analysis of variance.

MATLAB was an important demonstration tool in the
course, in part because it is used extensively in the Allman
and Rhodes (2004) textbook. We had more opportunity for
this because an extra lab hour was added to the course in
2007–2008, a feature that we have retained. Students in
each lecture section (approximately 40 in each of two)
are divided into two labs that taught by the same lab
instructor.

Both course instructors were pleased with the syllabus.
Presenting students with both discrete and continuous ver-
sions of the same models seemed to work well. This pro-
vided invaluable exposure to modeling and problem solv-
ing. However, several organizational issues forced us to
return to a more standard syllabus. First, the Department of
Biology (finally) decided to require the sequence for its B.S.
degree program. This meant that we needed to accommo-
date more students, with more varied backgrounds. It was
decided to allow students with AP Calculus credit to place
out of Math 115 and enroll in Math 116 in the spring term
and to allow students to switch from Math 115 to Math 112.
This required that Math 115 topics more closely approximate
Math 111 and that Math 116 not presume exposure to dis-
crete dynamics. In fact, discrete dynamics has, essentially,
disappeared from the first-term course and is mentioned
only briefly in comparison with DE modeling in the second
term. The next section contains a detailed description of the
course as it exists now.

Concerning enrollments in these versions of the course,
the Department of Biology graduated �100 students per
year between 2000 and 2009, with a high of 132 and a low of
92. Numbers in the 1990s were somewhat higher—the Neu-
roscience and Behavioral Biology Program (subsequently
becoming a department) has attracted many majors, some
away from biology. It is difficult to get an accurate estimate
of the proportion of biology majors who took the 115/116
sequence as their main college mathematics in the past. It
may be possible to query the registrar’s databases to com-
pare grades of biology graduates in specific quantitatively
intensive life science courses who took Math 115/116 with
those of students who took other, or no, mathematics
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courses. The results would be confounded to some extent by
precollege mathematics background.

Math 115: Life Science Mathematics 1
Below are the main topics in the current first-semester
syllabus.

• Precalculus review including trigonometric, exponential
and logarithmic functions, exponential growth, and decay
models.

• Introduction to differential calculus, including transcen-
dental functions and applications of the derivative to op-
timization and graphing, higher-order derivatives, empha-
sis of growth models including logistic growth, optimal
foraging, and Newton’s law of cooling.

• Introduction to integral calculus including antiderivatives,
definite integrals, Riemann sums, and the fundamental
theorem of calculus, integration by substitution and by
parts, area under the curve, and volume of a solid, im-
proper integrals.

• Introduction to differential equations, separation of vari-
ables, equilibria of autonomous DEs, simple epidemic
model, and more growth models.

The main text for the course is Calculus for the Life Sciences by
Bittinger et al. (2006). Additional material is drawn from the
Web-based courses offered by Leah Keshet and colleagues at
the University of British Columbia (www.math.ubc.ca/
keshet) and from a National Science Foundation-sponsored
project led by Moore and Smith at Duke University (CCP
materials, www.math.duke.edu/education/modules2/
materials). This academic year, we enrolled almost 150 stu-
dents in two 60-student and one 30-student sections, with
labs of 30 students each.

Math 116: Life Science Mathematics 2
Below are the main topics in the current second-semester
syllabus.

• Systems of differential equations, particularly predator–prey
systems, models of species competition, and the SIR model
of infectious disease. Slope fields and phase plane diagrams
describe the qualitative behavior of solutions.

• Introduction to matrices and partial derivatives. Use of the
Jacobian to describe the type and stability of equilibria of
systems and the shapes of trajectories.

• Introduction to probability theory, motivated by genetics
and molecular evolution, including: discrete spaces, con-
ditional probability, rare disease examples, discrete ran-
dom variables, binomial and geometric distributions, con-
tinuous random variables, probability density functions,
the normal distribution, and the CLT.

• Introduction to statistical methods: descriptive and inferen-
tial statistics, with emphasis on confidence intervals and
hypothesis testing, sampling distributions, and analysis of
variance.

• Additional material may include probabilistic topics such
as random walks applied to diffusion and genetic drift,
and statistical tools such as the chi-square test, contin-
gency tables, goodness-of-fit, and nonparametric tests.

We begin with one chapter from Bittinger et al. (2006) and
continue with material from Chance in Biology (Denny and
Gaines, 2000). Many sources are used for the statistical ma-
terial. This year, we enrolled almost 100 students in three
sections.

Examples from the Course
We illustrate the level and focus of the courses with two sets
of examples drawn from the current syllabi of the two
courses: modeling biological systems with DEs and the CLT
and sample means.

Modeling Biological Systems with DEs. In Math 115, we
develop various population models, beginning with exponen-
tial and logistic growth. Optimization applications include
optimizing food intake of bees and maximizing a sustainable
fish harvest. Autonomous differential equations are illus-
trated with Newton’s law of cooling.

Systems of autonomous DEs are introduced in Math 116—
basic predator–prey models provide an important example.
Let p � p(t) and q � q(t) be two populations described by

dp
dt

� p � 0.4p�1 �
p

10� � 0.05pq;
dq
dt

� � 0.8q � 0.08pq.

In developing this model (Figure 1), we begin with a
logistic growth model for the prey population p(t) and
exponential decay for the predator population q(t). We
use the law of mass action to introduce the interspecies
interaction terms �0.05pq and 0.08pq. The Jacobian is used
to describe the nonextinction equilibrium and the behav-
ior of trajectories.

This is one of three models of biological systems that we
study in the first part of Math 116. This is based on extensive
discussion of exponential and logistic growth in Math 115.
It requires a brief introduction to two-variable functions,
partial derivatives, and very basic matrix theory, includ-
ing eigenvalues and eigenvectors. The qualitative descrip-
tion of trajectories also is applied to competition models
and to the SIR epidemic models. We use Web materials
developed at Duke (CCP materials, www.math.duke.edu/
education/modules2/materials), particularly for the epi-
demic models.

CLT and Sample Means. Probability theory is easily linked
to a variety of life science topics. Conditional probability,
Bayes’ theorem, and rare disease examples provide one of
the most accessible and surprising applications. In Math 116,
we do enough probability theory to discuss random vari-
ables and several distributions. We illustrate the discrete
geometric and binomial distributions with several life sci-
ence examples, notably topics in genetics such as the Hardy–
Weinberg law. The Poisson distribution is very important in
understanding biological processes and provides a link be-
tween discrete and continuous distributions. Aside from the
normal distribution, we also discuss the memoryless expo-
nential distribution.

The CLT links probability theory and the main tests of
inferential statistics, a powerful mathematical tool that we
repeatedly emphasize in the course. It asserts that if suf-
ficiently large random samples are drawn from a popu-
lation then the distribution of sample means is approxi-
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mately normal. In Figure 2 we display this using the
exponential distribution with parameter � � 0.2 and
hence mean � � 5 and variance �2 � 25. Note the change
from an exponentially shaped curve with n � 3 to an
approximately normal curve with n � 30. We show how

the CLT supports the use of confidence intervals and of
hypothesis tests such as the z test and t test. We do not
develop the theory behind the chi-square test but it is
used to test compound hypotheses. When time allows, we
also consider tests of paired data.

Figure 1. Numerical methods and MATLAB yield the trajectory on the left and the solution curves on the right. There is also Web-based direction
field software that will draw trajectories. This allows easy experimentation with different initial conditions and with varied constants in the
equations.

Figure 2. Left, sample size, n � 3. Right, n � 30, with a very close fit to the normal curve predicted by the CLT. Can we approximate the
variances for each? Can we account for the difference in variances?
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Issues and Future Directions
There are several issues that we continue to face in offering this
course. As noted, biology majors bring substantial variation in
mathematical background and aptitude. Calculus is not a pre-
requisite for the sequence. However, students who enter
Emory College without calculus usually have spotty math
background and weak skills. Conversely, students with exten-
sive high school math, such as the BC version of AP Calculus,
have quite clear ideas about what math is all about. They can
be resistant to new topics and new foci on model building.
Dealing with a heterogeneous population and maintaining a
balance between a challenging course and realistic expectations
will always be an issue with an introductory math for bio
sequence.

An important related point is that this is a mathematics
sequence, taught by math faculty. Even math faculty who do
very applied work want to introduce the required theory.
For example, analysis of equilibria and trajectories of
solutions of systems of DEs requires enough matrix theory
to talk about eigenvalues and enough about approxima-
tion through linearization to justify conclusions based on
the Jacobian of partial derivatives. And the CLT is a
mathematical gem that supports the tests of inferential
statistics. We could spend considerably more time on
learning recipes if we did not develop the mathematics
required for qualitative analysis of equilibria or the CLT.

It is important to introduce students to appropriate compu-
tational software. A graphing calculator and a spreadsheet
program such as Excel (Microsoft, Redmond, WA) are ade-
quate for almost all the statistical material. But it would be
useful to reintroduce MATLAB into the courses in order to
solve larger linear systems and to obtain numerical approxi-
mations.

The main text (Bittinger et al., 2006) is adequate for the first
term as it now is defined. There is no text at the right level that
provides the calculus, probability, and inferential statistics ma-
terial. The Adler text (2005) has just about the right mix but
does not do a good job of presenting inferential statistics in a
concise, readable way. Over the past couple of years, we have
consolidated the material for Math 116 but we would still prefer
a single text, or pair of inexpensive texts, for the sequence.

There are at least two strategies for improving this course
sequence. First, we can strengthen the internal organization of
the courses. For example, population models could be more
realistically developed, based on a more thorough grounding
in population biology. The predictions of our models could
then be tested using the statistical methods we later study.
Second, there is a great deal to be gained by linking our
syllabus with those of related life science courses. If, for in-
stance, our presentation of probability could be coordinated
with the right topics in the genetics course, there would be
mutual reinforcement. Given the way students take courses—
and departments organize them—this sort of cooperation is
very difficult. This is one of the reasons that science educators
are intrigued by interdisciplinary introductory science courses.

MATHEMATICAL CONCEPTS IN
NEUROSCIENCES

Life Science Mathematics 1 and 2 develop a background to
teach mathematics related to specific areas of life sciences.

Along these lines, we developed the MCN course. This is a
course for majors in biology and in neuroscience and behav-
ioral biology. In what follows, we describe the main ideas
behind the syllabus of the course, the syllabus itself, and some
of the hands-on experience.

Problem-driven Mathematics
In the course, mathematical concepts are introduced in a
problem-driven way. We start with real biological problems
and discuss appropriate mathematical models of the pro-
cesses considered. Students engage their biological expertise
and think about the meaning and strengths and weaknesses
of mathematical models. Then, they are presented with the
mathematical apparatus necessary for the model analysis.

Neuroscience has quite a number of problems that have
been critically advanced by using mathematical models. We
do not pretend to cover them all. Rather we strive to select
such a sequence of problems that allows us to use simple
mathematics first and then gradually increase the complex-
ity, and to use mathematical concepts repetitively, so that
the students could understand them more deeply and learn
to use them in different contexts.

The course is intense. To quickly and clearly present biolog-
ical problems, experiments, data, and mathematical models,
we use a lot of slides. Some of these slides are available at a
WikiFuse site (to which we contribute) at http://wikifuse.
pbworks.com/browse/ and select Math for Neuroscience.
Although the problems are drawn from the neurosciences,
it should be clear from the syllabus below that the math-
ematical models and methods considered are quite gen-
eral and are fundamentally important for other areas of
biology as well.

Syllabus
The structure and main items of the MCN syllabus are
presented in Table 1. As the table shows, some themes are
repeated. First, these are the basic characteristics of random
variables such as the mean and variance. They appear as an
initial description of experimental spike time series. Later,
these characteristics are calculated for the binomial and
Poisson distributions. Stable steady states of ordinary
differential equations (ODEs) are considered multiple
times: initially while deducing the equations of ionic
channel kinetics (Hodgkin and Huxley, 1952), then by
exploring steady states of neuronal activity, and finally
while considering a network model in which stable steady
states model memorized items. Matrices and vectors also
are used in various contexts starting from simplest de-
scriptions of population activity through the analyses of
network dynamics.

Examples from MCN Course
The following examples illustrate the problem-driven ap-
proach to introducing mathematics in the MCN course. The
first example deals with the analysis of experimental data on
activity of hippocampal neurons. The hippocampus is a
brain structure that is critically involved in learning and
memory. The understanding of the hippocampal function-
ing gained a lot from hippocampal cell recordings in rats. In
particular, experiments with navigating rats revealed that
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hippocampal cells encode the spatial context of the behavior
(O’Keefe and Dostrovsky, 1971). In a typical experiment, a
rat with chronically implanted electrodes forages for food
pellets. Pellets are dropped to random locations of the arena by
an automatic feeder. During a sufficiently long recording (�10
min), the rat visits most locations of the arena multiple times.
Remarkably, many hippocampal cells spike only in some parts
of the arena, specific for each cell. Figure 3 shows the data for
two such cells. The left column of the figure represents the
firing rates of the cells. The firing rate in a location (here a 2- �
2-cm square) is defined simply as a ratio of all the cell spikes
observed while the rat was in the location to the total time the
rat spent in the location. The figure shows that the peak firing
rates of the cells are quite similar. The rat hippocampal cells
presumably encode not only animal locations. Do these two
cells encode different information? To determine other corre-
lates of the cell spiking, more sensitive measures of cell activity
are necessary.

Indeed, the firing rate is an estimate of the mean of the
distribution of spike counts observed in the time bins when
the rat was in the location. One therefore may think of
measures that take into account other properties of this
distribution. One such measure follows from averaging the

difference between the uncertainty �log P(k) of observing k
spikes in an arbitrary time bin and the uncertainty �log
P(k�xi) of observing k spikes in location xi:

Ipos�xi� � �
k � 0

P�k�xi�log
P�k�xi�

P�k�
.

Here, P(k�xi) is the conditional probability of observing k
spikes in a time bin when the rat is in pixel xi, P(k) is the
unconditional probability of observing k spikes in a time bin
wherever the rat is, log(x) is the base 2 logarithm. Right

Figure 4. Bifurcation diagram for the Morris-Lecar model. Maxi-
mal and minimal values of the membrane potential V for different
values g�Ca; g�K � 3. Solid line, stable steady state; dashed line,
unstable steady state; filled circles, stable periodic oscillations; and
open circles, unstable oscillations. AHsup, supercritical Andronov–
Hopf bifurcation; AHsub, subcritical Andronov–Hopf bifurcation.
The diagram is obtained by using XPPAUTO (Ermentrout, 2002).

Table 1. Content of the course mathematical concepts in the
neurosciences

Area Problem Mathematical
concept

Neuronal coding Characterization of
neuronal spikes

Elementary statistics,
time averaging

Entropy and
information in
spikes

Binomial and
Poisson
distributions,
entropy, mutual
information,
stochastic
processes, Poisson
process

Neuronal
dynamics

Membrane excitability ODEs and their
solutions, phase
space

Steady state activity Stable and unstable
steady states of
dynamical
systems

Periodic neuronal
dynamics

Stable and unstable
periodic solutions
of dynamical
systems, Poincaré
mapping,
bifurcations

Neuronal morphology PDEs and their
solutions, linear
cable equation
and its solutions

Neuronal network
dynamics

Lyapunov function

Learning in
neuronal
networks

Synaptic plasticity Time averaging,
matrices,
orthogonality of
vectors

Figure 3. Information versus firing rate. Two hippocampal cells,
cell 1 (top row) and cell 2 (bottom row), fired only when the
foraging rat visited specific parts (red spots) of the circular arena.
Although their peak firing rates were similar (left column), the
information measure of spiking, Ipos was not (right column), indi-
cating important distinction between the information processing in
these two cells (adapted from Olypher et al., 2003).
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column of Figure 3 shows that Ipos(x) for the two cells is very
different. Analysis of multiple hippocampal cells shows that
Ipos(x) is significantly greater in the cells that fire close to
landmark cues; therefore, this measure may reflect increased
attention (Olypher et al., 2003).

The second example relates to the problem of neuronal
dynamics. Analysis of dynamical equations provides deep
explanation of possible regimes of neuronal activity and
transitions between them. In the example, we consider the
classical model of excitable membrane by Morris and Lecar
(1981). The model describes the time evolution of the electric
potential across the membrane of barnacle giant muscle
fiber. The membrane has two ionic currents, potassium and
calcium. The model is a system of two autonomous nonlin-
ear DEs. Among the parameters of the system are the max-
imal conductances of the ionic currents g�K and g�Ca. These
parameters can be increased or decreased in the experiment.
For example, g�Ca can be decreased by substituting CaCl2 in
the artificial sea water where the preparation is kept, by
MgCl2. If the membrane potential initially oscillated, then
this blockage abolishes the oscillations. This phenomenon is
explained by a bifurcational diagram of the system (Figure
4). The diagram shows that the oscillations disappear via
so-called supercritical Andronov–Hopf bifurcation (e.g.,
Rinzel and Ermentrout, 1989) when g�Ca decreases below
some critical value.

Assessment and Future Directions
The MCN course proves the vitality of teaching advanced
mathematics to life science students in a problem-driven
way. A consequence of the approach is a shortage of time for
expanded consideration of mathematical concepts. We ad-
dressed this problem by giving homework assignments that
motivated further thinking on concepts and suggesting ad-
ditional reading. One of the three weekly classes was a
discussion session. We believe that it is very important to
link the course content with ongoing research in the neuro-
sciences. Accordingly, we have developed a number of
homework assignments and tests motivated and closely re-
lated to influential publications.

We see the ultimate objective of the course in engaging
students in using mathematical concepts in the neuro-
sciences and developing their qualitative reasoning ability.
In our experience, the engagement of biological students
starts with their attempts to understand details of experi-
ments. That was one of the reasons for us to choose neurobi-
ological problems from the studies close to our own research
interests. Finally, our experience suggests that methods of
problem-based learning will help to achieve the main objec-
tives of the course.
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