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A Method for Removing Effects of Nonspecific Binding on the
Distribution of Binding Stoichiometries: Application
to Mass Spectroscopy Data
Liat Shimon,† Michal Sharon,†* and Amnon Horovitz‡*
†Department of Biological Chemistry and ‡Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
ABSTRACT There is often an interest in knowing, for a given ligand concentration, howmany protein molecules have one, two,
three, etc. ligands bound in a specific manner. This is a question that cannot be addressed using conventional ensemble tech-
niques. Here, a mathematical method is presented for separating specific from nonspecific binding in nonensemble studies. The
method provides a way to determine the distribution of specific binding stoichiometries at any ligand concentration when using
nonensemble (e.g., single-molecule) methods. The applicability of the method is demonstrated for ADP binding to creatine
kinase using mass spectroscopy data. A major advantage of our method, which can be applied to any protein-ligand system,
is that no previous information regarding the mechanism of ligand interaction is required.
INTRODUCTION
Ligand-protein interactions are the major driving force for
many cellular processes. Determining the equilibrium
constants and energetics of such interactions is therefore
of fundamental importance. Traditional biochemical
methods can provide reliable estimates of affinities, but
they cannot reveal distributions of binding stoichiometries,
which can be valuable for deciphering reaction mechanisms.
However, such distributions can be extracted using the more
modern, single-molecule (1) and mass spectroscopy (MS)
techniques (2–4). In recent years, MS has proven to be
a very valuable tool for characterizing noncovalent interac-
tions (5–13). The power of this approach originates from its
high sensitivity, high mass accuracy, low sample require-
ments and speed of analysis.

Analysis of binding reactions must often take into account
the issue of nonspecific binding. Classical biochemical
methods can deal with this issue in a fairly straightforward
manner (14), but for single-molecule and MS techniques it
is a major problem. In the case of MS, nonspecific binding
can occur throughout the electrospray process during the des-
olvation of droplets, leading to an increase in ligand concen-
tration. Consequently, the protein/ligand ratio is altered and
the gas-phase measurements no longer reflect the true stoi-
chiometries (15). Several approaches have been suggested
for overcoming the problem of nonspecific binding in MS
studies (16–21). For example, controlled dissociation of
nonspecific gas-phase interactions by blackbody infrared
radiation was utilized byWang et al. (21), but complex disso-
ciation may be induced when the nonspecific binding is
strong. Another suggested strategy involves the addition of
a reference protein to monitor the appearance of nonspecific
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complexes (18,19). In this method, there is uncertainty
regarding the generality of the approach (20), and the ioniza-
tion efficiency of the target protein may be compromised,
especially in the case of large protein complexes. Finally,
van der Rest and co-workers have suggested a mathematical
model for distinguishing between specific and nonspecific
binding (17), but in their approach, noncooperative binding
of the ligand was assumed. Given that nonspecific binding
is a problem not only in MS studies, we were motivated to
develop a new method for dealing with this issue that is
simple, straightforward, and of general applicability.

THEORY

Our analysis of specific versus nonspecific binding is
general in the sense that it does not assume any particular
reaction mechanism and is applicable for studying weak
complexes. Two assumptions made are that 1), the number
of specific binding sites, Ns, is known, and 2), the nonspe-
cific binding is noncooperative and can be described by
a single binding constant. The first step in the analysis
involves extracting the value of the nonspecific binding
constant from the ratio of the areas of the peaks (referred
to as intensities in what follows) corresponding to binding
numbers that are larger than Ns. For example, in the case
of a dimer with two specific binding sites, we can extract
the value of the nonspecific association binding constant,
Kn, from the intensities I3 and I4, corresponding to popula-
tions with three and four bound ligand molecules, respec-
tively. The ratio I4/I3 for this example is given by

I4
I3

¼ ½E�K1K2K
2
n ½S�4 þ ½E�K1K

3
n ½S�4 þ ½E�K4

n ½S�4
½E�K1K2K1

n ½S�3 þ ½E�K1K2
n ½S�3 þ ½E�K3

n ½S�3
¼ Kn½S�;

(1)

where K1 and K2 are the specific association binding
constants, [S] is the free ligand concentration, and [E] is
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the free protein concentration. The nonspecific binding
constant can be evaluated at different [S] values and for
different charge states.

Given thevalueof the nonspecificbinding constant from the
intensities corresponding to binding numbers that are larger
than Ns, we can now determine the values of the specific
binding constants from the other peaks in the spectra. The ratio
of the intensities I1 and I0, corresponding to populations with
one and zero bound ligandmolecules, respectively, is given by

I1
I0

¼ ½E�K1½S� þ ½E�Kn½S�
½E� ¼ Kn½S� þ K1½S�: (2)

Hence, K1½S ¼ ðI1 � I0Kn½S Þ=I0�� . Likewise, the ratio of the
intensities I2 and I0, corresponding to populations with two
and zero bound ligand molecules, respectively, is given by

I2
I0

¼ K1K2½S�2 þKn½S�ðKn½S� þ K1½S�Þ: (3)

Hence, by combining Eqs. 2 and 3, we get
K1K2½S�2 ¼ ðI2 � I1Kn½S Þ=I0� . It can be seen, therefore,
that the population of protein species that have ligand bound
only to the specific sites can be determined from the appro-
priate measured intensities and the value of the nonspecific
binding constant.

The protein species with ligand bound also to nonspecific
sites are considered next. For example, in the case where
intensities corresponding to binding numbers from 0 to 3
are observed, the total concentration of species with one
ligand bound at a specific site, C1, is equal to:

C1 ¼ ½E�K1½S� þ ½E�K1Kn½S�2 þ ½E�K1K
2
n ½S�3: (4)

It can be readily shown that C1/[E] can be expressed as

C1=½E� ¼
�
I1 � Kn½S�I0

I0

�
þ
 
Kn½S�I1 � K2

n ½S�2I0
I0

!

þ
 
K2

n ½S�2I1 � K3
n ½S�3I0

I0

!
; (5)
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where the first, second, and third terms in parentheses corre-
spond to K1[S], K1Kn[S]

2, and K1Kn
2[S]3, respectively. In

general, in the case where intensities corresponding to
binding numbers from zero to a are observed, one can
express C1//[E] as

C1=½E� ¼
Xa
i¼ 1

ðKn½S�Þi�1
I1 � ðKn½S�ÞiI0
I0

: (6)

Likewise, it can be readily shown that one can express
C2//[E] as

C2=½E� ¼
Xa
i¼ 1

ðKn½S�Þi�1
I2 � ðKn½S�ÞiI1
I0

: (7)

In general, one can show that CN//[E] is given by:
CN=½E� ¼
Xa
i¼ 1

ðKn½S�Þi�1
IN � ðKn½S�ÞiIN�1

I0
; (8)

where N is an integer between zero and the total number of

specific binding sites, Ns, (0% N % Ns) and a is, as before,
the total number of intensity peaks observed (each of which
corresponds to a different number of bound ligand mole-
cules, including zero). By definition, IN�1 ¼ 0 when
N ¼ 0. It is important to note that, in the above treatment,
mixed species with ligand molecules bound to both specific
and nonspecific sites are not eliminated but are counted
together with other species that have the same number of
bound ligands at specific sites. For example, a protein popu-
lation with, say, one ligand molecule bound to a specific site
and two ligand molecules bound to nonspecific sites contrib-
utes to I3 but is counted in our above treatment together with
the populations of other species that have only one ligand
molecule bound to a specific site. In other words, our math-
ematical treatment makes it possible to correct the detected
intensity of each ligand-bound state by 1), subtracting the
artificial increase in intensity due to nonspecific binding,
and 2), adding the different intensities after subtraction to
those that correspond to species with the same number of
ligand molecules bound to specific sites (Fig. 1).
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FIGURE 1 An illustration demonstrating the

calculated specific and nonspecific components

that contribute to the peak intensities of the 19þ

charge state in the case of a solution containing

4 mM CK and 50 mM ADP. (A) Histogram showing

the experimentally observed intensities correspond-

ing to the different ligand-bound states. Both specific

and nonspecific binding are reflected in each inten-

sity. (B) A histogram generated after correcting for

the contribution of nonspecific binding, so that the

intensities reflect only specific binding. Listed below

each intensity are the factors that contribute to it. The

intensities are normalized with respect to I0. The

relative contributions of the free protein and protein

bound with one or two ligand molecules at the

specific sites before (A) and after (B) the correction

are indicated in blue, red, and green, respectively.



FIGURE 2 Nanoelectrospray mass spectra of CK obtained at increasing

concentrations of ADP. The number of bound ADP molecules is high-

lighted for the 19þ charge state. The spectra were acquired in the presence

of 4 mM CK in 250 ammonium acetate (pH 7).

TABLE 1 Corrected concentrations of apo CK (C0), and CK

with one (C1) and two (C2) specifically bound ADP ligands

ADP concentration C0 C1 C2

0 4.00 0.00 0.00

5 3.28 0.72 0.00

10 2.31 1.38 0.31

15 2.28 1.51 0.21

20 1.71 1.81 0.48

30 1.09 1.89 1.02

40 0.87 1.71 1.42

50 0.29 1.50 2.22

100 0.13 1.41 2.46

Corrected concentrations were obtained from an average of three charge

states in a typical experiment. All values are in mM.
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The final step needed to determine the CN values is to
substitute [E] in Eq. 8 with a term that can be calculated.
Given that the total protein concentration, CT, is

CT ¼ PNs

N¼0

CN , we can express [E] as ½E� ¼ CT=
PNS

N¼0

CN=½E�,
where the terms in the denominator are calculated using
Eq. 8. Hence, in general, CN can be calculated from

CN ¼ ðCN=½E�ÞCTPNS

N¼ 0

CN=½E�
: (9)

It can be seen by inspection of Eq. 8 that CN/[E] is related to
CN�1/[E], as follows:

CN=½E� ¼ KN½S�CN�1=½E�; (10)

where KN is the binding constant of the ligand to the Nth
specific site. Hence, the value of KN can be obtained from
the slope of a plot of (CN/[E])/(CN�1/[E]) versus [S] for
different substrate concentrations by assuming that [S] z
[S]total. This assumption is not valid in the case of tight
binding. It is important to note, however, that it is not required
for determining the distribution of binding stoichiometries.
MATERIALS AND METHODS

Creatine kinase (CK) from rabbit muscle and adenosine 50-diphosphate
sodium salt (ADP) were purchased from Sigma (St. Louis, MO). CK was

further purified on a gel filtration column in 20 mM Tris-HCl (pH 7.5).

Before MS analysis, the protein was buffer-exchanged into 250 mM ammo-

nium acetate (pH 7.5) using microbiospin 6 columns (BioRad, Hercules,

CA). Titration experiments were performed in the presence of 4 mM CK,

1 mM magnesium acetate and ADP concentrations ranging between

0 and 100 mM. CK/ADP complexes were incubated for 5 min at room

temperature before MS analysis.

MSmeasurements were performed in positive ionmode using a nanoelec-

trospray ionization quadrupole time-of-flight (ESI-Q-TOF) instrument

(Applied Biosystems, Foster City, CA) modified for high mass detection

(22,23). Aliquots of 2 ml were electrosprayed from gold-coated borosilicate

capillaries prepared in-house as described previously (24). The mass spec-

trometer was operated at a capillary voltage of 1100 V, declustering poten-

tial of 140 V, and second-declustering potential of 15 V. External calibration

of the mass spectra was achieved using solutions of 100 mg/ml cesium

iodide in water. For each mass spectrum, the peak areas for the free CK

and its ligand-bound states were calculated using deconvolution software

(peakfit v4, Jandel Scientific, San Rafael, CA).
RESULTS AND DISCUSSION

To test our methodology, we applied it to CK homodimer
(25) and its ligand ADP. Nanoelectrospray (nanoES) mass
spectra were acquired for 4 mM of CK and increasing
concentrations of ADP ranging from 0 to 100 mM. Fig. 2
shows the mass spectra of CK acquired at different concen-
trations of ADP. The CK charge-state distribution is
centered at 4550 m/z and the measured mass of the free
CK, 85,990 5 34 Da, is found to be highly consistent
with the calculated mass of the homodimer complex
(85,960 Da). When titrated with ADP, no change in charge
state was obtained, but additional peaks corresponding to
the various ligand-bound states appeared (Fig. 2). Due to
the relatively small difference in mass between apo and
ADP-bound CK (<1%), the binding of the nucleotide
Biophysical Journal 99(5) 1645–1649
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FIGURE 3 Determination of the values ofK1 (A)

and K2 (B) by plotting (CN/[E])/(CN�1/(E])) versus

[S] and fitting the data using Eq. 10, where [S] is

the ADP concentration. Each data point is calcu-

lated from the average of the three observed charge

states (18þ, 19þ, and 20þ) in four independent

experiments.
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does not appear to alter the ionization efficiency, as
observed by others (10,17,26).

For each mass spectrum, the peak areas for free CK and
its ligand-bound states were calculated using a deconvolu-
tion algorithm (Jandel Scientific peakfit v4) (Table S1 in
the Supporting Material). In all calculations, it was assumed
that the measured peak areas (referred to as In) correlate
with the solution concentrations (6,9–13). Initially, we
determined the value of Kn by calculating the average value
of the I4/I3 and I5/I4 ratios (Table S2) as in Eq. 1. It is impor-
tant to note that the values of Kn determined from the I4/I3
and I5/I4 ratios are very similar, thus supporting our assump-
tion that the nonspecific binding is not cooperative. Using an
average value of 0.007 5 0.003 mM�1 for Kn and the
measured intensities, we next corrected the distribution of
binding stoichiometries using Eq. 8 (Table S3). The absolute
values of C0, C1, and C2 were then calculated using Eq. 9
(Table 1 and Table S4). Finally, utilizing Eq. 10, we deter-
mined the values of the binding (association) constants K1

and K2 to be 0.085 0.002 and 0.025 0.001 mM�1, respec-
tively (Fig. 3). These values correspond to dissociation
constants of 12.65 0.3 and 475 2 mM, respectively, which
are in very good agreement with previously reported values
(17,27–31). In particular, they are in excellent agreement
with the respective values of 11.8 5 1.5 and 48 5 6 mM
for K1 and K2 determined more recently (17). The finding
that K1 < K2 is in agreement with the previously reported
negative cooperativity of ADP binding to CK (31).

In summary, the method presented in this article makes it
possible to separate specific from nonspecific binding when
using nonensemble methods, so that the distribution of
specific binding stoichiometries at any ligand concentration
can be determined. The method can be applied to data for
any ligand-protein system obtained using an experimental
approach that can distinguish between populations with
different numbers of bound ligand molecules. Major advan-
tages of ourmethodare that noprevious information regarding
the mechanism of ligand interaction is required and determi-
nationof thevalues of the binding constants is straightforward.
SUPPORTING MATERIAL

Details of the distribution binding calculations are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(10)00806-4.
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