

NIH Public Access

Author Manuscript

Twin Res Hum Genet. Author manuscript; available in PMC 2011 February 1.

Published in final edited form as:

Twin Res Hum Genet. 2010 February ; 13(1): 43–56. doi:10.1375/twin.13.1.43.

Variation at 8q24 and 9p24 and Risk of Epithelial Ovarian Cancer

Kristin L. White¹, Thomas A. Sellers², Brooke L. Fridley¹, Robert A. Vierkant¹, Catherine M. Phelan², Ya-Yu Tsai², Kimberly R. Kalli¹, Andrew Berchuck³, Edwin S. Iversen Jr³, Lynn C. Hartmann¹, Mark Liebow¹, Sebastian Armasu¹, Zachary Fredericksen¹, Melissa C. Larson¹, David Duggan⁴, Fergus J. Couch¹, Joellen M. Schildkraut³, Julie M. Cunningham¹, and Ellen L. Goode¹

¹Mayo Clinic College of Medicine, Rochester, MN, 55905, USA

²H. Lee Moffitt Cancer Research Institute, Tampa, FL, 33612, USA

³Duke University, Durham, NC, 27708, USA

⁴The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA

Abstract

The chromosome 8q24 region (specifically, 8q24.21.a) is known to harbor variants associated with risk of breast, colorectal, prostate, and bladder cancers. In 2008, variants rs10505477 and rs6983267 in this region were associated with increased risk of invasive ovarian cancer (p<0.01); however, three subsequent ovarian cancer reports of 8q24 variants were null. Here, we used a multi-site case-control study of 940 ovarian cancer cases and 1,041 controls to evaluate associations between these and other single-nucleotide polymorphisms (SNPs) in this 8q24 region, as well as in the 9p24 colorectal cancer associated-region (specifically, 9p24.1.b). A total of 35 SNPs from previous reports and additional tagging SNPs were assessed using an Illumina GoldenGate array and analyzed using logistic regression models, adjusting for population structure and other potential confounders. We observed no association between genotypes and risk of ovarian cancer considering all cases, invasive cases, or invasive serous cases. For example, at 8q24 SNPs rs10505477 and rs6983267, analyses yielded per-allele invasive cancer odds ratios of 0.95 (95% confidence interval (CI) 0.82-1.09, p-trend 0.46) and 0.97 (95% CI 0.84–1.12, *p*-trend 0.69), respectively. Analyses using an approach identical to that of the first positive 8q24 report also yielded no association with risk of ovarian cancer. In the 9p24 region, no SNPs were associated with risk of ovarian cancer overall or with invasive or invasive serous disease (all p-values > 0.10). These results indicate that the SNPs studied here are not related to risk of this gynecologic malignancy and that the site-specific nature of 8q24.21.a associations may not include ovarian cancer.

Ovarian cancer has the highest mortality rate among gynecologic malignancies, indicating a pressing need for better understanding of its etiology as a means to inform prevention approaches. Factors associated with increased risk of ovarian cancer include age, family history, fertility drug use, and postmenopausal hormone therapy (Morch, Lokkegaard, Andreasen, Kruger-Kjaer, & Lidegaard, 2009). In *BRCA1* and *BRCA2* mutation carriers, lifetime risk of ovarian cancer is approximately 40% and 20%, respectively (Antoniou et al., 2003), and these mutations are responsible for nearly half of ovarian cancer cases in families with two or more confirmed cases (Ramus et al., 2007). The remaining unexplained familial

Address correspondence to: Ellen L. Goode, Ph.D., M.P.H., Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Phone: 507/266-7997, Fax: 507/266-2478, egoode@mayo.edu.

The authors have no conflicts of interest.

and sporadic ovarian cancer risk is likely caused by common, low-penetrance alleles which individually cause a modest change in risk and lead to a notable increased risk in combination (Fasching et al., 2009; Pharoah & Ponder, 2002). Thus far, variants in the 9p22.2 chromosomal region (Song, Ramus, Tyrer et al., 2009) and in genes involved in cell cycle control (Gayther et al., 2007), steroid hormone metabolism (Pearce et al., 2008), DNA repair (Schildkraut et al., 2009), and one-carbon metabolism (Kelemen et al., 2008) have been associated with ovarian cancer risk.

Genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) in a non-coding 8q24 region (specifically, 8q24.21.a) that are associated with risk of prostate cancer (Gudmundsson et al., 2007; Haiman et al., 2007; Salinas et al., 2008; Suuriniemi et al., 2007; Yeager et al., 2007), breast cancer (Garcia-Closas et al., 2008; Schumacher et al., 2007), colorectal cancer (Ghoussaini et al., 2008; Gruber et al., 2007; Poynter et al., 2007; Tenesa et al., 2008; Tuupanen et al., 2009; Zanke et al., 2007), and bladder cancer (Kiemeney et al., 2008), and variants in the 9p24 region (specifically, 9p24.1.b) have been associated with risk of colorectal cancer (Poynter et al., 2007; Zanke et al., 2007). In 2008, a four-site study of 1,975 invasive ovarian cancer cases and 3,411 controls revealed the first association between 8q24.21.a loci (rs10505477, rs10808556, and rs6983267; 1.8 kb; $0.65 \le r^2 \le 0.93$) and risk of ovarian cancer (odds ratio (OR) 1.14, 95% confidence interval (CI) 1.04-1.23; OR 1.13, 95% CI 1.04-1.22; OR 1.11, 95% CI 1.03-1.20, respectively) (Ghoussaini et al., 2008). However, subsequent examinations of rs6983267 in 618 cases and 1,019 controls, rs13281615 in 2,502 cases and 3,892 controls, and rs1447295 in 274 cases and 682 controls found no association with risk (OR 1.00, 95% CI 0.81-1.23, p-trend=0.10; OR 1.00, 95% CI 0.70-1.30, ptrend=1.00; OR 0.99, 95% CI 0.92–1.06, p-trend =0.69, respectively) (Song, Ramus, Kjaer et al., 2009; Wokolorczyk et al., 2008; Wokolorczyk, Lubinski, Narod, & Cybulski, 2009). Due to discrepant ovarian cancer associations in 8q24, associations in both regions with other cancers, and the existence of other genetic factors in common across these cancers (Fasching et al., 2009), we examined risk of ovarian cancer in the 8q24.21.a and 9p24.1.b regions using case-control collections from two study populations.

MATERIALS AND METHODS

Study Participants

Participants were recruited at Mayo Clinic in Rochester, MN and at Duke University in Durham, NC and included cases enrolled within one year of histologically confirmed epithelial ovarian cancer and controls without ovarian cancer and without bilateral oophererectomy (Sellers et al., 2005). At Mayo Clinic, cases were women over 20 years of age living in the Upper Midwest. Controls were recruited from among women seen for general medical examinations and frequency-matched to cases on age and area of residence. At Duke University, cases were women between 20 and 75 years of age identified using the North Carolina Central Cancer Registry's rapid case ascertainment system within a 48-county region. Controls were identified from the same region as the cases using list-assisted random digit dialing and frequency-matched to cases on race and age. Information on known and suspected risk factors was collected through in-person interviews at both sites using similar questionnaires. Mayo Clinic participants had an extra vial of blood drawn during their scheduled medical visit, and DNA was extracted using the Gentra AutoPure LS Purgene salting out methodology (Gentra, Minneapolis, MN). Duke University participants had venipuncture performed at the conclusion of their interview, and DNA samples were transferred to Mayo Clinic for whole-genome amplification (WGA) with REPLI-G (Qiagen Inc, Valencia CA) which we have shown yielded highly reproducible results with these samples (Cunningham et al., 2008). Samples were bar-coded to ensure accurate and reliable sample processing, and

DNA concentrations were adjusted to 50 ng/ μ l and verified using PicoGreen dsDNA Quantitation kit (Molecular Probes, Inc., Eugene, OR).

SNP Selection and Genotyping

A broad SNP selection approach was applied. In 8q24.21.a, seven SNPs were included due to a prior ovarian cancer report (Ghoussaini et al., 2008), one due to a prior prostate cancer report (Haiman et al., 2007), five SNPs which tagged 1 kb surrounding the regional pseudogene POU5F1P1, and twelve SNPs which additionally tagged the region; in 9p24.1.b, we included three SNPs from a colorectal cancer report (Poynter et al., 2007) and nine additional regional tagSNPs (Table 1 about here, Figure 1 about here). Genotyping of 897 genomic and 1,279 WGA DNA samples (2,176 including 129 duplicates) on 2,047 unique study participants was performed at Mayo Clinic using the Illumina GoldenGate BeadArray assay and BeadStudio software (Oliphant, Barker, Stuelpnagel, & Chee, 2002). Briefly, of 2,047 participants genotyped, we excluded 44 due to call rate < 90% and 22 due to study ineligibility; thus 1,981 participants were analyzed here. We assessed departures from Hardy-Weinberg equilibrium (HWE) among white non-Hispanic controls using a Pearson goodness-of-fit test or, for SNPs with a minor allele frequency (MAF) < 5%, a Fisher exact test (Weir, 1996). Of 1,152 total attempted SNPs, we excluded 15 due to call rate < 90%, nine due to poor clustering, one due to unresolved replicate errors, 64 due to MAF < 0.01, and eleven due to HWE p-value < 0.0001. In the 8q24.21.a and 9p24.1.b regions, 37 SNPs were attempted, and two failed (POU5F1P1 tagSNP rs7002225 and prostate cancer-associated SNP rs7000448 (Ghoussaini et al., 2008) (Table 1 about here). Estimates of pair-wise linkage disequilibrium (LD) among genotyped SNPs were obtained for self-reported white non-Hispanic participants using Haploview v. 4.1 (Barrett, Fry, Maller, & Daly, 2005).

Statistical Methods

Data were summarized using frequencies and percents for categorical variables and means and standard deviations for continuous variables; we compared distributions of demographic variables across case status using chi-square tests and t-tests, as appropriate. Individual SNP associations with ovarian cancer risk were assessed using logistic regression models, in which ORs and 95% CIs were estimated. Separate analyses were carried out using all ovarian cancer cases (N=940), all invasive cases (N=749), and all serous invasive cases (N=452). Primary tests of association assumed an ordinal (log-additive) effect using simple tests for trend. Association analyses included adjustment for the following covariates: study site, age, body mass index (BMI), hormone therapy, oral contraceptive use, number of live births, age at first live birth, geographic region, and principal components which accounted for the possibility of population stratification using an approach similar to that described previously (Price et al., 2006). Briefly, population structure principal components were created using 2,517 SNPs from this and prior genotyping panels (Kelemen et al., 2008); scatter-plot matrices by self-reported race indicated that the first four principal components reasonably approximated racial differences across individuals and were thus included as covariates in all models (Figure 2 about here). No adjustments were made for multiple testing; all statistical tests were two-sided and, unless otherwise indicated, analyses were carried out using SAS software (SAS Institute, Inc., Cary, NC).

RESULTS

Demographic, lifestyle, reproductive, and tumor characteristics of 940 epithelial ovarian cancer cases and 1,041 controls are described (Table 2 about here). In general, the expected distributions of risk factors were observed: a larger proportion of cases than controls had a first or second degree relative with ovarian cancer, had not used oral contraceptives, had used postmenopausal hormone therapy, and were nulliparous. Overall, 80% of tumors were invasive

and 20% were borderline; the distribution of histologic subtypes was 61% serous, 14% endometrioid, 10% mucinous, 6% clear cell, and 9% other histologies. LD (defined as $r^2 \ge 0.65$) was observed between six pairs of 8q24.21.a SNPs and four pairs of 9p24.1.b SNPs in these study populations (Figure 1 about here).

No associations between SNP genotypes and ovarian cancer risk were seen in the current study (Table 3 about here). In the 8q24 region, SNPs previously associated with increased risk (rs10505477 and rs6983267) revealed invasive cancer per-allele ORs of 0.95 (95% CI 0.82-1.09, p-trend=0.46) and 0.97 (95% CI 0.84-1.12, p-trend=0.69), respectively. Thus, these results contradict prior findings from the first report (OR 1.14, 95% CI 1.04–1.23, ptrend<0.01; OR 1.11, 95% CI 1.03–1.20, *p*-trend<0.01, respectively) (Ghoussaini et al., 2008), but are consistent with other results for rs6983267 (OR 1.00, 95% CI 0.81–1.23, ptrend=0.10) (Wokolorczyk et al., 2008). Our null invasive cancer results for 8q24 SNPs rs13281615 (OR 0.92, 95% CI 0.74-1.15, p-trend=0.48), and rs1447295 (OR 0.97, 95% CI 0.85–1.12, p-trend=0.72) are also consistent with results from prior studies (Ghoussaini et al., 2008;Song, Ramus, Kjaer et al., 2009;Wokolorczyk et al., 2009). Analyses also failed to reveal associations between any of the 23 selected 8q24 SNPs and risk of serous invasive disease. To examine potential heterogeneity due to sample characteristics or statistical methods, we repeated analyses restricted to self-reported white non-Hispanic women and used minimal covariate adjustments. No suggestion of association with increased risk was observed for previously-reported SNPs (Table 4 about here) or for any other 8q24 SNPs (data not shown). In the 9p24 region, no SNPs were associated with risk of ovarian cancer overall or with invasive or invasive serous disease (p-values > 0.10; Table 3 about here).

DISCUSSION

Association studies have highlighted the undisputed importance of variation in the 8q24.21.a chromosomal region in etiology of breast cancer, prostate cancer, and colorectal cancer (Garcia-Closas et al., 2008; Ghoussaini et al., 2008; Gruber et al., 2007; Gudmundsson et al., 2007; Haiman et al., 2007; Poynter et al., 2007; Salinas et al., 2008; Schumacher et al., 2007; Suuriniemi et al., 2007; Tenesa et al., 2008; Tuupanen et al., 2009; Yeager et al., 2007; Zanke et al., 2007). Growing evidence, at least in colorectal cancer, suggests that rs6983267 lies in a transcriptional enhancer and that the risk G allele increases binding of the transcription factor TCF4 (also called TCF7L2) (Pomerantz et al., 2009; Tuupanen et al., 2009). TCF4 interacts with β -catenin to activate transcription of Wnt target genes, thus a connection between inherited associations and cancer-related functional consequences including possible interaction with the MYC promoter (335 kb downstream) is emerging (Pomerantz et al., 2009; Tuupanen et al., 2009). Somatic amplifications at 8q are trademarks of prostate tumors (Cher et al., 1996; van Duin et al., 2005; Visakorpi et al., 1995), indicating that 8q24 risk variants may lead to amplification of a larger chromosomal region, which contains the protooncogene c-Myc(Haiman et al., 2007; Harismendy & Frazer, 2009; Sole et al., 2008; Witte, 2007). The 9p24.1.b chromosomal region has also been shown to contain colorectal cancer associated SNPs (Poynter et al., 2007; Zanke et al., 2007), although mechanisms are unknown.

In ovarian cancer, seven 8q24.21.a SNPs (rs13254738, rs6983561, rs16901979, rs13281615, rs10505477, rs6983267, and rs1447295) have been evaluated in more than one report, including the current analysis (Ghoussaini et al., 2008; Song, Ramus, Kjaer et al., 2009; Wokolorczyk et al., 2008; Wokolorczyk et al., 2009). The first association study of 1,975 invasive ovarian cancer cases and 3,411 controls found evidence of the 8q24 ovarian cancer susceptibility SNPs rs10505477, rs10808556, and rs6983267 (Ghoussaini et al., 2008), but another examination of 618 invasive cases and 1,019 controls found no association with rs6983267 (OR 1.00, 95% CI 0.75–1.30, *p*-trend=0.10) (Wokolorczyk et al., 2008) and other reports at 8q24 SNPs were null (Ghoussaini et al., 2008; Song, Ramus, Kjaer et al., 2009;

Wokolorczyk et al., 2008; Wokolorczyk et al., 2009). Additionally, no endometrial cancer 8q24 susceptibility loci were revealed in a recent study (Setiawan et al., 2007), suggesting that not all cancers will have an 8q24 association. The 9p24 region has not yet been targeted in gynecologic cancer studies; our data suggest that additional study of this region in ovarian cancer is not warranted.

This analysis evaluated the largest number of 8q24.21.a SNPs (N=23) in ovarian cancer to date. Although associations were non-significant, it is also noteworthy that rs10505477 and rs6983267 risk estimates were close to 1.0, consistent with a prior report of rs6983267 (Wokolorczyk et al., 2008), but contradicting the larger first report (Ghoussaini et al., 2008). Our smaller sample size is a concern; however, current risk estimates were also inconsistent with increased risk. Differing analytical approaches and study populations could also contribute to the opposing 8q24 results; yet, our analyses of invasive cancer in white non-Hispanic women with study site as the only covariate also yielded no suggestion of association with risk of ovarian cancer. These results indicate that differing covariate adjustments, including our adjustment for population structure, do not account for the contradictory results. Based on data from the Ovarian Cancer Association Consortium (Song et al., 2006), cases recruited at the largest site in the first report may have longer survival times than other studies. Thus, SNPs in 8q24.21.a may confer risk of invasive ovarian cancer only among women with longer survival times; however, this situation is unlikely. Additionally, it is likely that case populations have varied histological distributions (Goode et al., 2009). Although risk estimates from other study populations have not been reported by histological subtype, our results for women with serous disease were also null and non-suggestive. Finally, a true association may exist only between ovarian cancer risk and rs10808556, which we did not assess. However, because $r^2 \ge 0.65$ with this SNP and both rs10505477 and rs6983267 (Ghoussaini et al., 2008), a modest signal would likely have been detected in our analysis.

In conclusion, SNPs in 9p24.1.b are not worthy of follow-up in ovarian cancer, and SNPs in 8q24.21.a are increasingly unlikely to represent ovarian cancer susceptibility alleles. Thus, much remains to be learned about the cancer site-specific role that variants in these regions play in carcinogenic processes, and the search for additional ovarian cancer loci must continue.

Acknowledgments

This work was supported by the National Cancer Institute [R01 CA122443, R01 CA88868, and R01 CA76016], the Ovarian Cancer Research Fund, and the Mayo Foundation. We thank Mr. Matt Kosel for statistical analysis, Dr. Paul P.D. Pharoah for advice on SNP selection, Ms. Ashley Pitzer and Ms. Karin Goodman for subject recruitment, and Ms. Katelyn Goodman for assistance with preparation of Tables and Figures.

REFERENCES

- Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003;72(5):1117–1130. [PubMed: 12677558]
- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21(2):263–265. [PubMed: 15297300]
- Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996;56(13):3091–3102. [PubMed: 8674067]
- Cunningham JM, Sellers TA, Schildkraut JM, Fredericksen ZS, Vierkant RA, Kelemen LE, et al. Performance of amplified DNA in an Illumina GoldenGate BeadArray assay. Cancer Epidemiol Biomarkers Prev 2008;17(7):1781–1789. [PubMed: 18628432]

- Fasching PA, Gayther S, Pearce L, Schildkraut JM, Goode E, Thiel F, et al. Role of genetic polymorphisms and ovarian cancer susceptibility. Mol Oncol 2009;3(2):171–181. [PubMed: 19383379]
- Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, et al. Heterogeneity of breast cancer associations with five susceptibility Loci by clinical and pathological characteristics. PLoS Genet 2008;4(4):e1000054. [PubMed: 18437204]
- Gayther SA, Song H, Ramus SJ, Kjaer SK, Whittemore AS, Quaye L, et al. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2007;67(7):3027–3035. [PubMed: 17409409]
- Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 2008;100(13):962–966. [PubMed: 18577746]
- Goode EL, Fridley BL, Vierkant RA, Cunningham JM, Phelan CM, Anderson S, et al. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 2009;18(3):935–944. [PubMed: 19258477]
- Gruber SB, Moreno V, Rozek LS, Rennerts HS, Lejbkowicz F, Bonner JD, et al. Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther 2007;6(7):1143–1147. [PubMed: 17630503]
- Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, et al. Genomewide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007;39(5):631–637. [PubMed: 17401366]
- Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007;39(5):638–644. [PubMed: 17401364]
- Harismendy O, Frazer KA. Elucidating the role of 8q24 in colorectal cancer. Nat Genet 2009;41(8):868– 869. [PubMed: 19639026]
- Kelemen LE, Sellers TA, Schildkraut JM, Cunningham JM, Vierkant RA, Pankratz VS, et al. Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer Res 2008;68(7):2498– 2506. [PubMed: 18381459]
- Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 2008;40(11):1307–1312. [PubMed: 18794855]
- Morch LS, Lokkegaard E, Andreasen AH, Kruger-Kjaer S, Lidegaard O. Hormone Therapy and Ovarian Cancer. JAMA 2009;302(3):298–305. [PubMed: 19602689]
- Oliphant A, Barker DL, Stuelpnagel JR, Chee MS. BeadArray technology: enabling an accurate, costeffective approach to high-throughput genotyping. Biotechniques, Suppl 2002:56–58. 60–51.
- Pearce CL, Wu AH, Gayther SA, Bale AE, Beck PA, Beesley J, et al. Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the ovarian cancer association consortium pooled analysis. Br J Cancer 2008;98(2):282–288. [PubMed: 18219286]
- Pharoah PD, Ponder BA. The genetics of ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2002;16 (4):449–468. [PubMed: 12413928]
- Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009;41 (8):882–884. [PubMed: 19561607]
- Poynter JN, Figueiredo JC, Conti DV, Kennedy K, Gallinger S, Siegmund KD, et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res 2007;67(23):11128–11132. [PubMed: 18056436]
- Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006;38(8):904–909. [PubMed: 16862161]
- Ramus SJ, Harrington PA, Pye C, DiCioccio RA, Cox MJ, Garlinghouse-Jones K, et al. Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat 2007;28(12):1207–1215. [PubMed: 17688236]

- Salinas CA, Kwon E, Carlson CS, Koopmeiners JS, Feng Z, Karyadi DM, et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17(5):1203–1213. [PubMed: 18483343]
- Schildkraut JM, Goode EL, Clyde MA, Iversen ES, Moorman PG, Berchuck A, et al. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2009;69(6):2349–2357. [PubMed: 19276375]
- Schumacher FR, Feigelson HS, Cox DG, Haiman CA, Albanes D, Buring J, et al. A Common 8q24 Variant in Prostate and Breast Cancer from a Large Nested Case-Control Study. Cancer Res 2007;67 (7):2951–2956. [PubMed: 17409400]
- Sellers TA, Schildkraut JM, Pankratz VS, Vierkant RA, Fredericksen ZS, Olson JE, et al. Estrogen bioactivation, genetic polymorphisms, and ovarian cancer. Cancer Epidemiol Biomarkers Prev 2005;14(11 Pt 1):2536–2543. [PubMed: 16284375]
- Setiawan VW, Ursin G, Horn-Ross PL, Van Den Berg D, Le Marchand L, Henderson BE, et al. Germ line variation at 8q24 and endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 2007;16(10): 2166–2168. [PubMed: 17932368]
- Sole X, Hernandez P, de Heredia ML, Armengol L, Rodriguez-Santiago B, Gomez L, et al. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility. BMC Genomics 2008;9:12. [PubMed: 18190704]
- Song H, Ramus SJ, Kjaer SK, DiCioccio RA, Chenevix-Trench G, Pearce CL, et al. Association between invasive ovarian cancer susceptibility and 11 best candidate SNPs from breast cancer genome-wide association study. Hum Mol Genet 2009;18(12):2297–2304. [PubMed: 19304784]
- Song H, Ramus SJ, Quaye L, Dicioccio RA, Tyrer J, Lomas E, et al. Common variants in mismatch repair genes and risk of invasive ovarian cancer. Carcinogenesis 2006;27(11):2235–2242. [PubMed: 16774946]
- Song H, Ramus SJ, Tyrer J, Bolton KL, Gentry-Maharaj A, Wozniak E, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet. 2009
- Suuriniemi M, Agalliu I, Schaid DJ, Johanneson B, McDonnell SK, Iwasaki L, et al. Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 2007;16(4):809–814. [PubMed: 17416775]
- Tenesa A, Farrington SM, Prendergast JG, Porteous ME, Walker M, Haq N, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 2008;40(5):631–637. [PubMed: 18372901]
- Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 2009;41(8):885–890. [PubMed: 19561604]
- van Duin M, van Marion R, Vissers K, Watson JE, van Weerden WM, Schroder FH, et al. High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 2005;44(4):438–449. [PubMed: 16130124]
- Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995;55 (2):342–347. [PubMed: 7529134]
- Weir, BS. Genetic data analysis II: methods for discrete population genetic data. Sunderland MA: Sinauer Associates, Inc.; 1996.
- Witte JS. Multiple prostate cancer risk variants on 8q24. Nat Genet 2007;39(5):579–580. [PubMed: 17460686]
- Wokolorczyk D, Gliniewicz B, Sikorski A, Zlowocka E, Masojc B, Debniak T, et al. A range of cancers is associated with the rs6983267 marker on chromosome 8. Cancer Res 2008;68(23):9982–9986. [PubMed: 19047180]
- Wokolorczyk D, Lubinski J, Narod SA, Cybulski C. Genetic heterogeneity of 8q24 region in susceptibility to cancer. J Natl Cancer Inst 2009;101(4):278–279. [PubMed: 19211453]
- Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007;39(5):645–649. [PubMed: 17401363]

Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007;39(8):989–994. [PubMed: 17618283]

White et al.

9p24

NM_015061 JMJD2C NM_033516 TPD52L3 NM_152896 THE UHRF2 NM 000170 -11111 GLDC 7000k 6300k 6400k 6500k 6600k 6700k 6800k 6900k П rs17705436 rs10491835 rs16924434 rs7850988 rs1407856 rs3847262 rs1821892 rs1340513 rs7865955 rs721352 rs719725 10 12 2 3 4 5 6 8 9 11 0 0 0 0 0 0 0 0

> 0 0 0

0 0

Figure 1. Regional linkage disequilibrium

rs12237914

1

Haploview 4.1 (Barrett et al., 2005) based on self-reported white-non-Hispanic controls; $r^2=0$ =white and $r^2=1$ =black; numbers represent $r^2 * 100$; associations with risk of other cancers with at least one replication study and a p-value $< 1 \times 10^{-15}$ are shown for genotyped SNPs based on Hindorff LA, Junkins HA, Mehta JP, and Manolio TA. A Catalog of Published Genome-Wide Association Studies, available at www.genome.gov/gwastudies, accessed July 29, 2009.

Figure 2. Matrix of scatterplots for four population structure principal components by self-reported race

Population structure principal components analysis based on 1,981 participants and 2,517 SNPs including imputed genotypes; for each scatterplot, vertical axis corresponds to the component listed in diagonal element to the left of the plot, and horizontal axis corresponds to the component listed in diagonal underneath the plot; results suggest that the first component differentiated white non-Hispanic and black non-Hispanic from other samples, while the fourth component helped to further differentiate Asian from other samples; these four population structure principal components were used as covariates in association analyses.

<u> </u>	
Φ	
a	
Ĕ	

SNP and genotype information

											Case		Ŭ	ontrol	
				Nearest	Location to	Distance	Call	HWE		Gen	otype,	Z	Gen	otype,	Z
rsid	Position	Alleles	Selection Strategy	gene	gene	to gene	Rate	p-value	MAF	AA	AB	BB	AA	AB	BB
8q24.21.a															
rs10808550	127,691,632	A/G	Ghoussaini et al., 2008	FAM84B	5' upstream	51,984	0.997	0.78	0.16	667	243	26	729	287	23
rs13254738	128,173,525	A/C	Ghoussaini et al., 2008	POUSFIPI	5' upstream	323,769	0.998	0.50	0.33	430	383	126	465	453	120
rs6983561	128,176,062	A/C	Ghoussaini et al., 2008	POUSFIPI	5' upstream	321,232	0.999	0.62	0.07	822	101	16	921	93	26
rs16901979	128,194,098	C/A	Ghoussaini et al., 2008	POUSFIPI	5' upstream	303,196	0.999	0.62	0.07	825	66	15	924	94	22
rs13281615	128,424,800	A/G	Ghoussaini et al., 2008	POUSFIPI	5' upstream	72,494	0.996	0.77	0.40	338	439	158	371	506	162
rs16902149	128,476,287	G/C	regional tagSNP	POUSFIPI	5' upstream	21,007	0.992	0.71	0.07	794	131	9	897	133	4
rs10505477	128,476,625	A/G	regional tagSNP	POUSFIPI	5' upstream	20,669	0.998	0.81	0.48	270	445	222	287	500	254
rs10808555	128,478,693	A/G	regional tagSNP	POUSFIPI	5' upstream	18,601	0.998	0.34	0.33	422	420	76	465	468	105
rs10505475	128,480,639	A/C	regional tagSNP	POUSFIPI	5' upstream	16,655	0.999	0.30	0.06	824	109	٢	921	116	2
rs6983267	128,482,487	C/A	Haiman et al., 2007	POUSFIPI	5' upstream	14,807	0.998	0.77	0.47	288	433	217	311	483	245
rs10956368	128,492,832	G/A	regional tagSNP	POUSFIPI	5' upstream	4,462	0.998	0.59	0.41	325	435	177	366	494	181
rs4871789	128,497,243	A/G	POU5FIP1 tagSNP	POUSFIPI	5' upstream	51	0.999	0.48	0.50	244	452	243	273	494	273
rs6998061	128,497,820	G/A	POU5FIP1 tagSNP	POUSFIPI	rna_exon	0	0.991	0.93	0.40	346	431	154	376	479	177
rs13274084	128,497,933	A/G	POUSFIP1 tagSNP	POUSFIPI	ma_exon	0	0.999	0.29	0.13	716	206	16	796	223	22
rs7002225	128,498,005	C/G	POU5FIP1 tagSNP	POUSFIPI	ma_exon	0			Failed, 6	cluster o	compres	ssion			
rs9297754	128,498,444	C/G	POU5FIP1 tagSNP	POUSFIPI	3' downstream	71	0.989	0.42	0.22	560	330	41	628	356	45
rs7005829	128,504,126	G/A	regional tagSNP	POUSFIPI	3' downstream	5,753	0.995	0.72	0.28	504	362	71	545	405	85
rs9297756	128,509,349	C/A	regional tagSNP	POUSFIPI	3' downstream	10,976	0.995	0.89	0.14	698	219	19	763	249	24
rs6999921	128,510,110	A/G	regional tagSNP	POUSFIPI	3' downstream	11,737	0.999	0.21	0.09	781	150	×	874	157	10
rs7000448	128,510,352	C/T	Ghoussaini et al., 2008	POUSFIPI	3' downstream	11,979			Failed, 6	cluster o	compres	ssion			
rs12334695	128,523,110	A/G	regional tagSNP	POUSFIPI	3' downstream	24,737	0.998	0.14	0.38	411	397	131	415	465	158
rs10109622	128,527,333	G/A	regional tagSNP	POUSFIPI	3' downstream	28,960	0.997	0.87	0.25	552	308	78	589	371	78
rs10094059	128,530,789	G/C	regional tagSNP	POUSFIPI	3' downstream	32,416	0.999	0.14	0.26	517	359	63	576	381	83
rs9643221	128,534,669	G/A	regional tagSNP	POUSFIPI	3' downstream	36,296	0.998	0.13	0.21	592	291	53	655	326	60
rs1447295	128,554,220	C/A	Ghoussaini et al., 2008	POUSFIPI	3' downstream	55,847	0.997	0.33	0.12	725	203	6	812	206	20

White et al.

Control Genotype, N	AA AB BB		409 453 161	647 337 56	726 277 36	913 122 4	479 413 148	579 379 80	823 198 18	417 466 156	342 459 238	750 259 30	595 378 66	720 286 35
Case Genotype, N	AA AB BB		335 431 159	600 282 56	649 262 27	820 114 6	440 364 133	539 327 73	756 174 10	395 421 120	306 442 190	674 234 30	541 345 51	646 265 26
НШЕ	p-value MAF		0.20 0.38	0.35 0.22	0.17 0.17	0.35 0.06	0.02 0.34	0.10 0.26	0.26 0.11	0.32 0.37	<0.01 0.45	0.88 0.15	0.97 0.25	0.43 0.17
Distance Call	to gene Rate		21,479 0.983	17,467 0.998	3,030 0.998	0 0.999	2,231 0.998	5,090 0.998	27,664 0.999	35,013 0.997	4,904 0.998	0 0.998	0 0.997	0 0.998
I acation to	gene		5' upstream	5' upstream	5' upstream	F118L	3' downstream	3' downstream	3' downstream	3' downstream	5' upstream	intron	intron	Q767E
Negrect	gene		TPD52L3	UHRF2	GLDC	JMJD2C	JMJD2C							
	Selection Strategy		regional tagSNP	CRC Affymetrix 10k 2.0	CRC Affymetrix 10k 2.0	CRC Affymetrix 10k 2.0								
	Alleles		A/G	G/C	G/A	G/A	C/A	T/A	A/G	A/C	C/G	G/C	A/G	G/C
	Position		6,296,896	6,300,908	6,315,345	6,318,947	6,322,901	6,325,760	6,348,334	6,355,683	6,398,247	6,606,648	6,967,633	7,036,901
	rsid	9p24.1.b	rs12237914	rs17705436	rs10491835	rs3847262	rs721352	rs7850988	rs16924434	rs719725	rs7865955	rs1821892	rs1340513	rs1407856

White et al.

Duke University

Mayo Clinic

Table 2

Characteristics of study participants

		Cases (N=401)	Controls (N=469)	p value	Cases (N=539)	Controls (N=572)	p value
Age	Mean (S.D.) yrs	59.9 (13.27)	60 (12.98)	0.88	54 (11.47)	54.5 (12.14)	0.48
Race	White	386 (98%)	460 (98.9%)	0.61	453 (84.2%)	484 (84.6%)	0.71
	African American	3 (0.8%)	2 (0.4%)		70 (13%)	77 (13.5%)	
	Asian	2 (0.5%)	2 (0.4%)		6(1.1%)	3 (0.5%)	
	Other	3 (0.8%)	1 (0.2%)		9 (1.7%)	8 (1.4%)	
	Missing	7	4		1	0	
Body mass index	$< 23 \ kg/m^2$	84 (21.8%)	109 (24.9%)	0.03	134 (25.5%)	142 (25.6%)	0.24
	$23-26 \text{ kg/m}^2$	87 (22.5%)	122 (27.9%)		117 (22.3%)	125 (22.5%)	
	$26-29 \text{ kg/m}^2$	99 (25.6%)	112 (25.6%)		105 (20%)	135 (24.3%)	
	$\geq 29 \text{ kg/m}^2$	116 (30.1%)	95 (21.7%)		169 (32.2%)	153 (27.6%)	
	Missing	15	31		14	17	
Age at menarche	< 12 years	54 (18.1%)	68 (15.8%)	0.58	133 (24.8%)	118 (20.6%)	0.36
	12 years	78 (26.1%)	100 (23.2%)		153 (28.5%)	164 (28.7%)	
	13 years	81 (27.1%)	127 (29.5%)		136 (25.3%)	163 (28.5%)	
	\geq 14 years	86 (28.8%)	136 (31.6%)		115 (21.4%)	127 (22.2%)	
	Missing	102	38		2	0	
Oral contraceptive use	Never	178 (47.5%)	166 (38.4%)	<0.001	185 (35%)	180 (31.7%)	0.26
	1–48 months	100 (26.7%)	92 (21.3%)		158 (29.9%)	161 (28.4%)	
	\geq 48 months	97 (25.9%)	174 (40.3%)		186 (35.2%)	226 (39.9%)	
	Missing	26	37		10	S	
Hormone therapy	Never	241 (63.3%)	249 (58.9%)	0.44	193 (37.5%)	339 (62.8%)	<0.001
	1–60 months	65 (17.1%)	79 (18.7%)		206 (40.1%)	106 (19.6%)	
	$\geq 60 \text{ months}$	75 (19.7%)	95 (22.5%)		115 (22.4%)	95 (17.6%)	
	Missing	20	46		25	32	

		N	Aayo Clinic		Du	ke University	
		Cases (N=401)	Controls (N=469)	p value	Cases (N=539)	Controls (N=572)	p value
Parity, n/Age at first birth, yrs	Nulliparous	71 (18.3%)	66 (15.0%)	0.09	115 (21.4%)	75 (13.1%)	<0.001
	$1-2 \ / \le 20 \ yrs$	29 (7.5%)	25 (5.7%)		75 (13.9%)	72 (12.6%)	
	1–2 / >20 yrs	105 (27.1%)	132 (30.0%)		191 (35.5%)	233 (40.7%)	
	$\geq 3 / \leq 20 \text{ yrs}$	73 (18.8%)	64 (14.5%)		82 (15.2%)	91 (15.9%)	
	$\ge 3 / >20 \text{ yrs}$	110 (28.4%)	153 (34.8%)		75 (13.9%)	101 (17.7%)	
	Missing	13	29		1	0	
Ovarian cancer family history	Yes	51 (13.1%)	33 (7.4%)	0.01	48 (8.9%)	31 (5.4%)	0.02
	No	338 (86.9%)	411 (92.6%)		491 (91.1%)	541 (94.6%)	
	Missing	12	25		0	0	
Ovarian or breast cancer family history	Yes	168 (43.2%)	189 (42.6%)	0.86	202 (37.5%)	195 (34.1%)	0.24
	No	221 (56.8%)	255 (57.4%)		337 (62.5%)	377 (65.9%)	
	Missing	12	25		0	0	
Smoking, pack years	None	236 (64.8%)	285 (68.3%)	0.28	300 (57.6%)	293 (53.4%)	0.37
	<=20	72 (19.8%)	84 (20.1%)		132 (25.3%)	150 (27.3%)	
	>20	56 (15.4%)	48 (11.5%)		89 (17.1%)	106 (19.3%)	
	Missing	37	52		18	23	
		Mayo Cl	inic Cases (N=4	101)	Duke Univ	ersity Cases (N	=539)
Histology	Serous	2	42 (60.5%)			331 (61.8%)	
	Mucinous		28 (7%)			64 (11.9%)	
	Endometrioid	-	55 (16.3%)			65 (12.1%)	
	Clear Cell		23 (5.8%)			33 (6.2%)	
	Other	7	42 (10.5%)			43 (8%)	
	Missing		1			б	
Stage	Ι	1	02 (25.9%)		1	.89 (35.6%)	
	П		29 (7.4%)			41 (7.7%)	
	III		205 (52%)		(I	281 (52.9%)	

Twin Res Hum Genet. Author manuscript; available in PMC 2011 February 1.

White et al.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

			Mayo Clinic		DU	ıke University	
		Cases (N=401)	Controls (N=469)	p value	Cases (N=539)	Controls (N=572)	p value
	IV		58 (14.7%)			20 (3.8%)	
	Missing		7			8	
jrade	0		62 (15.7%)			127 (25.3%)	
	1		13 (3.3%)			52 (10.4%)	
	2		42 (10.7%)			121 (24.2%)	
	3		156 (39.6%)			193 (38.5%)	
	4		121 (30.7%)			8 (1.6%)	
	Missing		7			38	
ehavior	Invasive		339 (84.5%)			410 (76.2%)	
	Borderline		62 (15.5%)			128 (23.8%)	
	Missing		0			1	

Data are counts (percentage) unless otherwise indicated; p-values are from t-test for continuous variables and Chi square test for categorical variables; family history indicates first or second degree relative.

NIH-PA Author Manuscript

Table 3

8q24 and 9p24 polymorphisms and covariate-adjusted risk of epithelial ovarian cancer

				All Cases		Invasive Cas	ses	Invasive Serou	s Cases
				Ordinal Model OR	(95% CI)	Ordinal Model OR	(95% CI)	Ordinal Model OR	((95% CI)
Region	rsid	kb to next	MAF	per-allele	p-value	per-allele	p-value	per-allele	p-value
8q24.21.a	rs10808550	481.9	0.16	0.97 (0.81–1.16)	0.73	0.96 (0.79–1.16)	0.68	0.92 (0.74–1.16)	0.50
	rs13254738	2.5	0.33	1.01 (0.88–1.17)	0.84	$0.98\ (0.85{-}1.14)$	0.83	0.96 (0.80–1.15)	0.65
	rs6983561	18.0	0.07	0.93 (0.70–1.23)	0.61	1.00 (0.74–1.36)	0.98	0.86 (0.60–1.25)	0.43
	rs16901979	230.7	0.07	0.95 (0.72–1.26)	0.73	1.04(0.76 - 1.41)	0.82	0.87 (0.59–1.26)	0.45
	rs13281615	51.5	0.40	1.01 (0.88–1.15)	06.0	0.97 (0.85–1.12)	0.72	0.94 (0.80–1.11)	0.48
	rs16902149	0.3	0.07	1.22 (0.94–1.57)	0.13	1.28 (0.98–1.68)	0.07	1.14 (0.82–1.59)	0.42
	rs10505477	2.1	0.48	0.99 (0.87–1.13)	0.87	$0.95\ (0.82{-}1.09)$	0.46	0.90 (0.76–1.06)	0.22
	rs10808555	1.9	0.33	0.99 (0.86–1.14)	0.93	0.99 (0.86–1.15)	0.92	1.11 (0.93–1.32)	0.25
	rs10505475	1.8	0.06	1.11 (0.85–1.45)	0.46	1.11 (0.83–1.48)	0.47	1.15 (0.82–1.60)	0.43
	rs6983267	10.3	0.47	1.01 (0.88–1.15)	06.0	0.97 (0.84–1.12)	0.69	0.92 (0.78–1.09)	0.35
	rs10956368	4.4	0.41	1.02 (0.89–1.16)	0.80	1.07 (0.93–1.24)	0.33	1.12 (0.95–1.33)	0.17
	rs4871789	0.6	0.50	1.00 (0.88–1.14)	0.99	0.95 (0.83–1.09)	0.46	0.94 (0.80–1.11)	0.47
	rs6998061	0.1	0.40	0.98 (0.85–1.12)	0.74	$0.93\ (0.81{-}1.08)$	0.34	0.92 (0.78–1.09)	0.35
	rs13274084	0.5	0.13	1.01 (0.83–1.22)	0.92	1.02 (0.84–1.26)	0.82	0.94 (0.74–1.21)	0.64
	rs9297754	5.7	0.22	0.99 (0.84–1.16)	0.92	1.03 (0.87–1.22)	0.71	1.05 (0.86–1.28)	0.66
	rs7005829	5.2	0.28	0.99 (0.86–1.14)	06.0	1.01 (0.87–1.18)	0.88	1.01 (0.85–1.21)	0.87
	rs9297756	0.8	0.14	0.98 (0.81–1.18)	0.82	1.00 (0.82–1.21)	0.98	1.08 (0.86–1.36)	0.49
	rs6999921	130.0	0.09	1.00 (0.79–1.25)	0.98	1.01 (0.79–1.28)	0.96	0.92 (0.68–1.24)	0.59
	rs12334695	4.2	0.38	0.92 (0.81–1.05)	0.20	$0.95\ (0.82{-}1.09)$	0.45	0.94 (0.80–1.11)	0.50
	rs10109622	3.5	0.25	0.97 (0.83–1.13)	0.68	0.98 (0.83–1.14)	0.76	0.98 (0.80–1.19)	0.82
	rs10094059	3.9	0.26	0.97 (0.84–1.12)	0.69	$0.94\ (0.81{-}1.10)$	0.45	0.95 (0.79–1.14)	0.57
	rs9643221	19.6	0.21	0.97 (0.82–1.14)	0.68	0.92 (0.77–1.09)	0.34	0.94 (0.77–1.15)	0.54
	rs1447295	n.a.	0.12	0.96 (0.78–1.18)	0.72	0.92 (0.74–1.15)	0.48	0.92 (0.71–1.20)	0.53
9p24.1.b	rs12237914	4.0	0.38	1.09 (0.96–1.25)	0.19	1.08 (0.94–1.24)	0.30	1.11 (0.94–1.31)	0.23
	rs17705436	14.4	0.22	0.98 (0.84–1.15)	0.85	0.99 (0.84–1.17)	0.88	1.09 (0.90–1.32)	0.40
	rs10491835	3.6	0.17	1.03 (0.87–1.22)	0.75	1.02 (0.85–1.22)	0.85	0.95 (0.76–1.18)	0.63

NIH-PA Author Manuscript

White et al.

				All Case	s	Invasive C	ases	Invasive Serou	is Cases
				Ordinal Model OR	t (95% CI)	Ordinal Model OF	R (95% CI)	Ordinal Model OF	8 (95% CI)
gion	rsid	kb to next	MAF	per-allele	p-value	per-allele	p-value	per-allele	p-value
	rs3847262	4.0	0.06	1.13 (0.87–1.48)	0.36	1.21 (0.91–1.60)	0.18	0.93 (0.65–1.32)	0.67
	rs721352	2.9	0.34	1.00 (0.88–1.15)	0.94	1.01 (0.87–1.17)	0.89	1.01 (0.85–1.20)	0.91
	rs7850988	22.6	0.26	0.98 (0.85–1.14)	0.81	0.99 (0.85–1.15)	0.86	1.06 (0.89–1.27)	0.50
	rs16924434	7.3	0.11	0.89 (0.72–1.10)	0.27	0.91 (0.73–1.13)	0.40	1.02 (0.80–1.32)	0.85
	rs719725	42.6	0.37	0.92 (0.81–1.05)	0.24	0.93 (0.81–1.07)	0.33	1.04 (0.88–1.22)	0.66
	rs7865955	208.4	0.45	0.97 (0.85–1.10)	0.62	0.98 (0.86–1.13)	0.81	1.02 (0.87–1.20)	0.80
	rs1821892	361.0	0.15	1.04 (0.87–1.25)	0.65	1.01 (0.83–1.22)	0.93	0.95 (0.76–1.19)	0.67
	rs1340513	69.3	0.25	0.97 (0.83–1.12)	0.66	0.97 (0.83–1.14)	0.73	0.96 (0.80–1.16)	0.69
	rs1407856	n.a.	0.17	$0.96\ (0.81{-}1.15)$	0.68	1.01 (0.84–1.21)	0.93	1.10 (0.90–1.36)	0.36

Kb to previous represents distance in kilo-base pairs between SNPs; MAF, minor allele frequency among controls; adjusted for study site, population structure, age area of residence, body mass index, hormone therapy use, oral contraceptive use, parity, and age at first birth.

<u> </u>
П
~
-
-
\mathbf{r}
~
_
C
=
<u> </u>
_
_
\frown
\mathbf{U}
_
<u> </u>
>
2
S
Š
Ma
Mar
Man
Manu
Manu
Manus
Manus
Manuso
Manusc
Manuscr
Manuscri
Manuscrip

NIH

,	4
	Φ
÷,	0
	g

8q24 SNPs and risk of invasive ovarian cancer in self-reported white non-Hispanic women across multiple studies

		<u>Ghoussaini et a</u>	<u>al 2008</u>	<u>Wokolorczyk et</u>	al 2008	Wokolorczyk et :	al., 2009	Song et al 2	600	Current Ana	lysis
	N Cases	1,975		618		274		2,502		671	
	N Controls	3,411		1,019		682		3,892		939	
	Studies	MAL, SEA, STA	A, UKO	POL1		POL1		AOS, MAL, SEA, ST_i	A, UKO, USC	MAY, NC	0
	Adjustments	Study site	G	None		None		Study site	e e	Study site	0
rsid	kb to next	OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value
rs13254738	2.5	1.02 (0.94–1.11)	0.64	1	+	;	:			0.98 (0.84–1.14)	0.77
rs6983561	18.0	0.90 (0.72–1.13)	0.36	1	;	1	ł	1	1	1.13 (0.77–1.66)	0.53
rs16901979	230.7	0.89 (0.71–1.11)	0.30	ł	1	;	1	ł	1	1.15 (0.78–1.69)	0.48
rs13281615	51.8	0.99 (0.91–1.07)	0.75	1	;	1	1	0.99 (0.92–1.06)	0.69	1.00 (0.87–1.15)	1.00
rs10505477	5.9	1.14 (1.04–1.23)	<0.01	1	1	:	:	1	1	0.94 (0.82–1.08)	0.40
rs6983267	71.7	1.11 (1.03-1.20)	<0.01	1.00 (0.81–1.23)	0.10	:	:	-		0.95 (0.83–1.09)	0.46
rs1447295	n.a.	1.07 (0.93-1.22)	0.35	1	;	1.00 (0.70–1.30)	1.00	1	;	1.00 (0.79–1.27)	0.98

rtium study acronyms: MAL, Malignant Ovarian Cancer Study (Copenhagen, Denmark); SEA, SEARCH Cambridge UK (UK); STA, Genetic Epidemiology of Ovarian Cancer Study (California, USA); UKO, United Kingdom Ovarian Cancer Population Study (UK); POL1, Polish Ovarian Cancer Study (Poland); AOS, Australian Ovarian Cancer Study (Australia); USC, Los Angeles County Case-Control Studies of Ovarian Cancer (Los Angeles, USA); MAY, Mayo Clinic Ovarian Cancer Study (Upper Midwest, USA); NCO, North Carolina Ovarian Cancer Study (North Carolina, USA); kb to next represents distance in kilo-base pairs between SNPs; per-allele ORs are shown; pair-wise r²>0.90 indicated by dotted lines (based on self-reported white non-Hispanic controls in current analysis; 156983561-1516901979 r²=0.98, rs6983267rs10505477 r²=0.91); all other pair-wise r²<0.67; only SNPs analyzed in more than one report are shown.