
Maximum-Likelihood Estimation With a Contracting-Grid Search
Algorithm

Jacob Y. Hesterman,
Bioscan, Inc., Washington, DC 20007 USA

Luca Caucci,
College of Optical Sciences and Department of Radiology, University of Arizona, Tucson, AZ 85724
USA

Matthew A. Kupinski,
College of Optical Sciences and Department of Radiology, University of Arizona, Tucson, AZ 85724
USA

Harrison H. Barrett, and
College of Optical Sciences and Department of Radiology, University of Arizona, Tucson, AZ 85724
USA

Lars R. Furenlid
College of Optical Sciences and Department of Radiology, University of Arizona, Tucson, AZ 85724
USA
Jacob Y. Hesterman: jhesterman@bioscan.com

Abstract
A fast search algorithm capable of operating in multi-dimensional spaces is introduced. As a sample
application, we demonstrate its utility in the 2D and 3D maximum-likelihood position-estimation
problem that arises in the processing of PMT signals to derive interaction locations in compact gamma
cameras. We demonstrate that the algorithm can be parallelized in pipelines, and thereby efficiently
implemented in specialized hardware, such as field-programmable gate arrays (FPGAs). A 2D
implementation of the algorithm is achieved in Cell/BE processors, resulting in processing speeds
above one million events per second, which is a 20× increase in speed over a conventional desktop
machine. Graphics processing units (GPUs) are used for a 3D application of the algorithm, resulting
in processing speeds of nearly 250,000 events per second which is a 250× increase in speed over a
conventional desktop machine. These implementations indicate the viability of the algorithm for use
in real-time imaging applications.

Index Terms
Cell processors; contracting-grid search; graphics processing units; maximum-likelihood position
estimation

I. Introduction
A variety of inference tasks—2D and 3D position estimation, energy estimation, fluence
estimation, spectral distributions, etc.—occur in science and engineering fields where data
must be inverted to derive parameters of a physical model. Maximum-likelihood methods offer

NIH Public Access
Author Manuscript
IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

Published in final edited form as:
IEEE Trans Nucl Sci. 2010 June 1; 57(3): 1077–1084. doi:10.1109/TNS.2010.2045898.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



an attractive approach to solving inverse problems when the statistics of the forward problem
are at least approximately known. ML estimation methods possess several desirable properties
[1], [2]. They include:

• efficient if an efficient estimator exists,

• asymptotically efficient,

• asymptotically unbiased,

• independent of prior information.

The maximum-likelihood method can generally be formulated as a search over a parameter
space,

(1)

where θ is a vector of parameters, g is a vector of observations (data), λ is the likelihood, and
θ ̂ is a vector of estimated model parameters. In some instances, the maximum-likelihood
estimate may be solved directly. For example, in the case of independent, normally-distributed
noise, the maximum-likelihood method is equivalent to a least-squares solution. The general
method can be summarized in the form of a question: given a set of observations g, what is the
set of parameters θ that has the highest probability of generating the observed data?.

The need to search multidimensional spaces (each parameter to be estimated adds one
dimension) for extrema represents a fundamental research problem. Many techniques have
been developed to address this problem, including conjugate gradient methods [3] and a host
of others [4]. We have developed a new algorithm that falls in the class of variable-mesh,
derivative-free optimization (DFO) algorithms [5]–[7]. More specifically, within this class, the
algorithm belongs to a group of contracting-grid search methods [8], [9], that generalizes to
ML-estimation problems in N-dimensional spaces. Finally, while this work examines a
particular ML-estimation problem, the algorithm would work equally well for other problems
requiring optimization of a utility function, most notably maximum a priori (MAP) estimation.

II. Algorithm Description
The algorithm allows identification of a function maximum (or minimum) in a fixed number
of iterations that depends on the desired precision. If the function does not have local maxima
(or minima), the search algorithm’s computational efficiency increases dramatically. The
algorithm will be described for a general N-dimensional problem and has been successfully
implemented in a 7-D estimation problem [10]. The algorithm will be illustrated in detail for
a specific 2D/3D application: (x, y)/(x, y, z) position estimation in a modular scintillation
camera. Incidence rates of 25000 photons-per-second or less are typical of acquisitions for this
applications, although this number may vary greatly depending on the sensitivity and geometry
of the camera system.

This section will describe implementation of the algorithm to the searching of an N-
dimensional space (i.e., an N × 1 vector of parameters θ). For each parameter θi, we describe
its physically reasonable domain with Mi discrete samples such that the distance between any
two adjacent samples is smaller than or equal to the desired precision of the estimate, i.e., |
θi(m + 1) − θi(m)| ≤ δi.

1. For each θi in θ, pad the regions at the end of the physically reasonable parameter
space of size Mi with regions of zero event likelihood of width ceil((Pi − 3)Mi/4Pi),

Hesterman et al. Page 2

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where Pi is the initial number of regions used to cover the parameter space (i.e., the
grid dimension).1

2. Pre-compute all terms in the likelihood that depend only on calibration data or prior
knowledge, and scale appropriately to permit use of integer arithmetic.

3. for i = 1 to (ceil(log2(max(Mi)) −2)) where the function ceil rounds to the nearest,
larger integer,

a. Compute the function at the test locations. The number of test locations for

the first iteration will be . As the iteration number increases, the
algorithm will converge in some domains and the number of computations
(i.e., test locations) will decrease. In practice, we have found that it’s
advantageous to delay converging on parameters that will require fewer steps
until that number of steps remains in the global search.

b. Select the location that returns the highest/lowest likelihood. This location
will serve as the center of the next region of interest.

c. For each parameter space that has not yet converged, decrease the test
location grid spacing by a factor of 2 (other contraction rates may be used,
but a factor-2 rate is convenient as it corresponds to a 1-bit shift in hardware
implementations).

4. Evaluate the function at the remaining locations where the remaining locations are
those grid points surrounding the maximum likelihood location of the final iteration
in Step 3, given a step size of 1 grid point.. The highest/lowest value of these remaining
points represents the maximum/minimum of the function over the space of interest.

One nice feature of the algorithm is that the number of computations in a given iteration scale
with the grid spacing dimension Pi and not with the parameter dimension Mi. Also, prior
knowledge of the behavior of the likelihood function within the multi-dimensional parameter
space may be easily incorporated to tailor the search for optimum efficiency. For example, a
broad grid spacing may be used for slowly varying, smooth likelihood functions. For more
textured likelihood functions perhaps even with local maxima/minima, a built-in error
tolerance (achieved by allowing successive grids to overlap into regions of the previous grid)
combined with a fine grid spacing enables successful use of the algorithm. Another desirable
feature of the algorithm is that a final solution is achieved in a known number of iterations.
This feature is attractive for hardware implementation. The ease of implementation of the
algorithm and ability to extend to multiple dimensions makes it an attractive option for a variety
of applications, including 2D and 3D position estimation for nuclear-medicine cameras,
estimation of pulse amplitude and timing of the detection of scintillation pulses, and wavefront
sensing.

III. Application to 2D Position Estimation
The algorithm was first developed for performing 2D position estimation in modular
scintillation cameras [11], [12]. This section will provide some background about modular
cameras and their corresponding data-acquisition architecture, a thorough description of the
algorithm’s application to the position estimation problem, and comparison to other methods.

1The pad size is chosen to prohibit the evaluation of points outside of a defined likelihood region during the iterative search. The value
presented assumes a uniform grid-spacing across iteration for a given dimension. Note that in the case where Pi is less than or equal to
3, no padding is required.

Hesterman et al. Page 3

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A. Modular Gamma Cameras
The basic components of an Anger camera include a scintillation crystal, light guide (or optical
window), and array of PMTs. The modular camera used in this study employs a 117 mm square,
5 mm thick thallium-doped sodium iodide crystal. This crystal is separated from a 3 × 3 array
of 38.1 mm diameter PMTs by a 8 mm light guide. A thin plate of aluminum shields the crystal,
serving as an entrance window. A white near-Lambertian reflector, separates the aluminum
entrance window from the front crystal face. The diffuse rear crystal face is coupled to the light
guide using optical-grade room temperature vulcanization (RTV) silicone. Black absorbing
epoxy is used to hermetically seal the scintillation crystal and optical window. Index-matching
RTV couples the light guide to the PMTs, each of which is wrapped in a CO-NETIC shield.
Each PMT contains 10 dynode stages and operates at a voltage bias of ~800 V. A schematic
and photo of a modular gamma camera are shown in Fig. 1.

The basic operation of a gamma camera begins with the interaction of a gamma ray within a
scintillation crystal. This interaction produces a burst of visible-light photons which disperse
through the light guide to be spread over the array of PMTs. The PMTs convert the photons
to a number of primary electrons that are then amplified by the successive dynode stages until
a final current pulse is collected and processed by front-end electronics. The processing
includes the analog-to-digital (A/D) conversion of the electrical signals. Back-end buffers
accumulate lists of events during acquisition. In our systems, this process serves to convert
ensembles of incident gamma rays into lists of nine 12-bit digital numbers and is known as
super list-mode data acquisition.

The list-mode data is used with carefully acquired calibration data to determine the location
of each gamma ray’s point of incidence on the camera face in a process known as position
estimation. By performing position estimation on a collection of gamma rays, and binning each
gamma ray into its location on the camera face into a 2D histogram, a projection image is
generated.

Performing the task of position estimation with maximum-likelihood methods requires
knowledge of the probability of the data, given the parameters to estimate—namely, x and y
position. For example, a probability function of the form Pr(Vj|x, y) where Vj is the K × 1 vector
of PMT outputs for event j (assuming a camera with K PMTs) is required for the 2D estimation
problem. The output signal at each PMT anode is proportional to the number of primary
photoelectrons produced at the PMT photocathode. The generation of these primary
photoelectrons approximately obeys Poisson statistics [1], and the signals in different PMTs
are independent. Thus, the probability of generating a particular list-mode data vector from an
event at a particular location may be written in terms of the mean signals in each PMT resulting
from events at that location. This scaled Poisson model may be expressed as,

(2)

where ōk(x, y) is the mean PMT output (assuming zero-mean fluctuations around PMT gain)
for the kth PMT at a given location on the camera face (x, y) and ok is the PMT output of the
kth PMT for the event in question. The term o is a 9-element vector composed of the ok.

B. Maximum-Likelihood Position Estimation
The log-likelihood expression (found by taking the natural log of (2)) is given by

Hesterman et al. Page 4

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

The computationally intensive task in ML position estimation is finding the (x, y) that
maximizes the log-likelihood λ(x, y). This ML estimation process must be repeated for every
event acquired.

C. Mean Detector Response Function
Likelihoods based on Poisson statistics are characterized by a single parameter, the mean
signal. Hence, measurement of the mean detector response function (MDRF) is the only
calibration procedure necessary to employ ML position estimation [13]. The MDRF matrix
contains the mean PMT outputs, represented by ō in (3), for a collection of points on the camera
face. The process of collecting the MDRF involves stepping a collimated source in a uniform
grid over the camera face. The grid locations will define the camera pixels in the projection
images, although it is generally possible to collect a sparse grid and interpolate intermediate
locations. A typical MDRF for a 3 × 3 PMT modular camera consists of a 79 × 79 grid covering
the camera face in 1.5 mm steps. At each point on the grid, the nine PMT output means are
generated by applying a filtering window to eliminate scattered events. A representative mean
data set is illustrated in Fig. 2. Each of the 79 × 79 pixels in one of the nine images in Fig. 2
represents the mean response of a particular PMT to a collimated source at that location on the
camera face. Post-process smoothing and interpolation procedures are also typically applied
to MDRF data.

D. Application of Contracting-Grid Search
The log-likelihood function, given in (3), evaluated with a single event’s nine PMT values,
will produce a likelihood map of dimension M × M, where M is the MDRF dimension (e.g.
M = 79). An example likelihood map is shown in Fig. 3(a). The likelihood map representing
the camera face has been padded with a border of zero event probability, allowing the search
algorithm to be implemented without conditionals (i.e., “if” statements that force the selection
of a point on the camera face). A more peaked rendering of the same likelihood map has been
generated for illustrative purposes in Fig. 3(b). The goal is to determine which pixel value has
the largest likelihood.

The key to the search algorithm lies in computing only a fraction of the likelihood values shown
on the likelihood map [14]. We begin by defining a grid of sixteen evenly-spaced test points
on the zero-padded likelihood map as shown in Fig. 4(a). The likelihood is computed at these
sixteen points. The maximum is found and a new grid is defined centered on that maximum
value. The separation of the points in a new grid is half that of the previous grid, although the
contraction rate can be made slower for estimation problems with more complicated likelihood
maps. This process is repeated for the fixed number of iterations required to make the grid
spacing match the pixel spacing.

The gradual homing in on the maximum-likelihood value and use of overlapping coordinate
locations from iteration to iteration mean that the algorithm has a built-in error tolerance. For
example, if the maximum-likelihood location selected from the initial sixteen coordinate
locations is far from the true value (due to local features in the likelihood map), the algorithm
allows the coordinate locations to migrate toward the true peak value over the course of its
operation.

Hesterman et al. Page 5

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The pixels in the “zero-padded” region are actually assigned likelihoods beyond the range of
possible values defined by the outputs of the system A/D converters, ensuring that the algorithm
will never attempt to place the event in one of these virtual pixels. The motivation for the zero-
padding is algorithm speed. By zero-padding, we are able to avoid conditional statements when
determining each set of coordinate locations to test. Conditional statements slow software,
prevent pipelining and parallel processing, and are difficult or impossible to implement in
hardware. Employing a factor of two grid reduction method enables the use of simple pointer
arithmetic with additions (and subtractions) to assign coordinate locations relative to the new
grid center. This method for determining coordinate locations is viable and fast in both software
and hardware. Fig. 4(b) demonstrates the necessity of the zero-padding to allow the division-
of-two grid reduction for test locations near the edge of the camera face. Fig. 4 illustrates the
substantial reduction in computation provided by the search algorithm. An exhaustive search
would require 79 * 79 = 6241 computation whereas the grid search requires only 16 * 6 = 96
computations, several of which are zero multiplications.

E. Likelihood Windowing
Several techniques exist for determining whether a given set of PMT outputs resulted from a
scattered photon or an unscattered photon. Three such techniques include energy windowing,
likelihood windowing, and Bayesian windowing [15], [16]. Energy windowing and Bayesian
windowing rely on separate computation of an energy estimate for the incident photon. We
will not discuss those two methods of filtering.

Scattered events constitute noise in the data collected by a gamma camera. Likelihood
windowing provides a natural method by which to eliminate scatter events when performing
maximum-likelihood position estimation. In likelihood windowing, after the ML estimate of
incidence location for an event has been calculated, the event’s likelihood value is compared
to a likelihood threshold. If the likelihood for the event exceeds the threshold, the event is
retained and added to the image [17].

Likelihood thresholds are calculated using the list-mode MDRF calibration data. After
generating a mean file, position estimation is performed on the MDRF data as if it were an
acquired image. The likelihood values for all events binned into a given pixel are then sorted.
A pixel’s likelihood threshold is determined as the likelihood value in that pixel that achieves
a desired event-acceptance rate. For example, with a 5000 event MDRF and a desired event-
acceptance rate of 60%, the 3000th largest likelihood value in each pixel would be set as its
likelihood threshold.

There are penalties associated with likelihood windowing, including the loss of counts as with
any filtering procedure. However, since likelihoods have already been computed for the
position estimation, there is minimal extra cost in computing time.

F. Comparison to Other Methods
Several alternative search methods exist for performing ML position estimation with
conventional multipurpose CPU processing. This section will briefly address several of these
methods, including exhaustive search, subset search, nested search, directed search, and lookup
tables.

The performances of the contracting-grid search algorithm, directed search, and LUT with
directed search methods were compared in terms of speed and the percentage correct with
respect to the gold standard (exhaustive search). Flood data comprising two million events was
used and computations were performed on a 2.0GHz processor (AMD Athlon MP 2400+) with
1.0GB of memory. In this 2D performance comparison, a parameter space of 79 × 79 was used.

Hesterman et al. Page 6

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A performance summary for the different methods is shown in Table I. Percentage correct was
calculated using both all possible events (no windowing of any kind) and also events accepted
by both methods in question with likelihood windowing. For the parameters used in this study,
the contracting-grid search method performed best in terms of percentage correct but was the
slowest algorithm. However, this rank-ordering in terms of speed may change for detectors
with more pixels because techniques like directed search and LUT become cumbersome with
increases in pixel number or dimension. For example, the number of possible combinations of
PMT signals in the cameras described above is N = 29*12 = 2108. This number is so large that
the use of lookup tables for these cameras is unfeasible, even with the use of data compression
techniques. In the case of directed search algorithms, increased pixel number can result in a
convergence time increasingly dependent on the initial evaluation position. The contracting-
grid search algorithm requires only one more iteration (evaluation of 16 likelihood locations)
for each factor 4 increase in detector area.

One final but significant shortcoming of all of the alternative methods is the difficulty of
implementing them in hardware. True real-time position estimates need to be a part of the data-
acquisition electronics. The ability to implement this algorithm in hardware represents one of
its greatest strengths.

IV. Algorithm Implementation
A. Imaging in Software

A need for real-time projection data motivated the development of this new algorithm.
However, full hardware implementation represents a long-term goal. As a short-term solution
and first step towards final hardware implementation, the algorithm has been successfully
incorporated into the Center for Gamma-Ray Imaging’s (CGRI’s) current LabView data-
acquisition software. On a standard CPU, the algorithm is computationally slower than some
other methods, but algorithm speed is sufficient to allow the software to perform position
estimation on a significant fraction of the incoming data, presenting the user with regularly-
refreshed projection images of the object’s radiotracer source distribution. Further, upon
collection of final data sets, the software presents the user with corresponding projection images
within seconds of acquisition. The latest version of the software includes likelihood-windowing
capability. Likelihood windowing slows the software slightly, but is qualitatively invaluable,
particularly for low-count imaging applications. These tools have proven indispensable to the
successful collection of data for real biomedical studies on the FastSPECT II system [18].

B. Hardware Implementation in FPGAs
The search algorithm has been carefully tailored to allow it to be built into hardware—an
attribute lacking in the other ML position-estimation techniques described above. The goal of
the hardware implementation of the position-estimation algorithm is to append position
estimation data to raw data packets as they are transmitted to the back-end electronics.

In order to achieve high performance, a pipeline structure is employed. The pipeline works
similarly to a shift register. As illustrated in Fig. 6, by staggering the clock values on which
memory reads are performed, six sets of sixteen position estimates each may be computed
simultaneously with five intermediate and one final position estimate returned for each of the
six stages with every clock cycle (there is a short lag upon the initial arrival of events as the
first event works its way through the pipeline).

The first device chosen for trial hardware implementation of the contracting-grid search
algorithm was an Orca Series 3 OR3T125B352 field-programmable system chip (FPSC). The
chip is mounted on a board that contains several other components, including two static
memories (SRAMs), a 33 MHz oscillator, general purpose LEDs, dual-inline-package (DIP)

Hesterman et al. Page 7

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



switches, and various probe and card connectors. The FPSC was programmed using VHDL
via the Leonardo Spectrum software in the MentorGraphics suite of tools. Orca Foundry
software was used for mapping and place-and-route. After writing the subsequent bitmap onto
the chip, LabView software was used for testing.

The ORCA 3 chip used for programming was not large enough for full implementation of the
algorithm with all six iterative steps. However, two VHDL designs were synthesized as proof-
of-principle demonstrations that the algorithm is implementable in hardware. The first design
computes a full log-likelihood, including log-factorial terms, for a 9-PMT modular camera.
The second design computes two likelihoods in parallel.

C. 2D ML Position Estimation on a PLAYSTATION 3 Console
The Sony PLAYSTATION 3 (PS 3) console includes the Cell/BE processor, a powerful yet
inexpensive processing unit that has been widely applied for scientific computation [19]–
[26]. The Cell processor consists of a power processing element (PPE) and eight synergistic
processing elements (SPEs). The PPE is used for general-purpose operations and to launch
threads on the SPEs. Each SPE contains a synergistic processing unit (SPU), 256 KB of fast,
on-chip memory (local store) and the logic to implement direct memory access (DMA) data
transfers between main memory and local stores. Of the eight SPEs present in the Cell of the
Sony PS 3, only six are available for external programming.

The 2D ML position estimation algorithm was successfully implemented using the following
approach. Original event data are divided into six partitions, one partition for each PPE. Each
PPE acquires its designated data partition and a portion of the necessary calibration data via
DMA transfer. Because of the 256 KB size limit of the local store, only subsections of the
calibration data may be stored at one time. A compromise between performance, memory
constraints, and programming complexity is achieved by locally storing calibration data for
each of the first three iterations of the algorithm. Calibration data for the remaining iterations
are fetched as needed. Because objects tend to be centered in the object space field of view
(FOV), calibration data for pixels near the detector center are used more often than data for
pixels near the detector edge. Therefore, local store memory space was allocated across the
SPEs for storage of calibration data corresponding to a 44 × 44 region in the detector center.
This local storage method allows SPE-to-SPE DMA transfers for retrieval of the more
frequently used detector center calibration data. Calibration data outside of the central 44 × 44
region are stored in main memory and accessed via memory-to-SPE DMA transfers. The
intermediate values needed to implement the maximum search described by (1) are computed
using vector floating point operations.

The Cell implementation was compared to an implementation written for a conventional cluster
machine. The cluster machine code can process approximately 108,000 events per second when
run on an AMD Opteron Processor 270 (2 GHz clock frequency, 1 MB cache size). The Cell
code was compiled using the IBM XL C/C++ compiler, version 9.0 and can process
approximately 1,012,000 events per second on a PS 3.

D. 3D ML Position Estimation on a GPU Supercomputer
The contracting-grid algorithm is extendable to multiple dimensions and was previously
implemented for a 3D ML search task [27]. The algorithm was run on a graphics processing
unit (GPU) supercomputer equipped with four NVIDIA GeForce 9800 GX2 graphics cards.
The system configuration closely resembles the one developed at the Vision Lab, University
of Antwerp, Belgium.

Hesterman et al. Page 8

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Because of its high performance and mass production, GPU hardware is revolutionizing
scientific computing. A desktop machine capable of approximately 4 TFLOPS can be
assembled at a total cost not exceeding <??? >3000. Consequently, many research projects
now use GPU hardware [28]–[33]. The computational model is based on fine-grain threads,
which share resources and cooperate with each other to carry out a complex task. An extension
of the C/C++ programming language called CUDA (Compute Unified Device Architecture)
allows the programmer to access the massively parallel computational power of GPUs and
define threads to be run on any CUDA-enabled GPU device.

In the CUDA programming model, threads are grouped into ID, 2D, or 3D thread blocks. These
thread blocks are grouped to form a ID or 2D grid. Threads in the same thread block can share
a small amount (usually 16 KB) of fast on-chip memory. GPU engines are also equipped with
off-chip memory, which, in the case of the NVIDIA GeForce 9800 GX2 card, comprises 1 GB.
GPU engines typically have a few hundred simple cores, each capable of executing a single
thread. Built-in variables store block and thread indexes, which are used by the thread to
determine those elements of the input and/or output data on which it is to operate. Threads are
handled automatically by the hardware, so that their generation and scheduling is extremely
efficient. Thousands of threads can be generated/scheduled at the same in just a few clock
cycles, diminishing the effect of memory latency since memory transfers and computation
occur at the same time for different threads. For example, the execution of a thread that is about
to perform a memory access will be suspended during the memory transfer, while another
thread that already has data available for use will be selected for execution.

In the CUDA 3D ML implementation, a 69 × 69 × 25-voxel detector is considered. Each event
is represented by the output of 64 MAPMT anodes [27]. The contracting grid algorithm is
extended to the 3D case by considering a 4 × 4 × 4 grid instead of the 4 × 4 grid described for
the 2D case above. Each event is assigned to a 4 × 4 × 4 thread block. Each thread in the thread
block loads one of the 64 MAPMT outputs for the current event. This datum is copied to the
shared memory where it may be accessed by all other threads in the thread block. Each thread
in the thread block computes one of the likelihood values of the grid according to (3). Note
that the fact that the number of MAPMT outputs (64) equals the number of grid points (4 × 4
× 4) is a fortunate coincidence that allows for this efficient thread usage. The location in the
3D grid at which the maximum likelihood value occurs is calculated and the grid contracted,
as described above.

For comparison purposes, the 3D contracting grid algorithm was also implemented on a
conventional machine. The conventional implementation was run on a system equipped with
an AMD Phenom 9850 processor (2.5 GHz clock frequency, 512 KB cache size), resulting in
the processing of approximately 1000 events per second. The CUDA implementation was
capable of processing approximately 246,000 events per second when all GPU cards in the
system were used.

V. Summary
An iterative search algorithm capable of operating in a multidimensional space and well-suited
for hardware implementation was presented. The algorithm was developed to provide a fast
means of determining the maximum-likelihood position estimate of an incident gamma ray
upon the face of a scintillation camera. The algorithm may also prove useful in such
applications as wavefront sensing, multidimensional position estimation, and pulse amplitude
and timing. The algorithm was shown to have accuracy equal to or better than alternative search
methods, to be applicable to complicated problems, and to easily extended to multiple
dimensions. Also, the algorithm has been developed to allow for implementation in hardware,
a feature lacking in other ML position estimation approaches. A general approach for the

Hesterman et al. Page 9

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hardware implementation procedure in FPGAs was introduced and successful proof-of-
principle trials were conducted in a small gate array. A 2D version of the algorithm was
successfully implemented in the Cell processor of a Sony PLAYSTATION 3, resulting in event
processing capabilities exceeding one million events per second. A 3D version of the algorithm
was successfully implemented in a four-GPU system using CUDA, resulting in 3D event
processing capabilities of almost 250,000 events per second compared to 1000 events per
second on a conventional computer system. The algorithm is currently in use on several
imaging systems at the CGRI.

Acknowledgments
The authors would like to thank W. Hunter and J. Chen for their work with ML search strategies.

CGRI is funded by NIBIB Grant P41-EB002035.

References
1. Barrett, HH.; Myers, KJ. Foundations of Image Science. Hoboken, NJ: Wiley; 2004.
2. Barrett HH, Hunter WCJ, Miller BW, Moore SK, Chen Y, Furenlid LR. Maximum-likelihood methods

for processing signals from gamma-ray detectors. IEEE Trans Nucl Sci Jun;2009 56(3):725–735.
[PubMed: 20107527]

3. Hestenes MR, Steifel E. Methods of conjugate gradient for solving linear systems. J Res Nat Bureau
Standards 1952;49:309–436.

4. Knuth, D. Sorting and Searching. 2. Vol. 3. Reading, MA: Addison-Wesley; 1998. The Art of Computer
Programming.

5. Audet C, Dennis JJE. Mesh adaptive direct search algorithms for constrained optimization. SIAM J
Optimization 2006;17:188–217.

6. Conn, AR.; Scheinberg, K.; Vicente, LN. Introduction to Derivative-Free Optimization, ser. MPS-
SIAM Series on Optimization. Philadelphia, PA: SIAM; 2008.

7. Kolda TG, Lewis RM, Torczon V. Optimization by direct search: New perspectives on some classical
and modern methods. SIAM Rev 2003;45:385–482.

8. Sambridge MS, Kennett BLN. Seismic event location: Nonlinear inversion using a neighbourhood
algorithm. Pure Appl Geophys 2001;158:241–257.

9. Kennett BLN, Brown DJ, Sambridge MS, Tarlowski C. Signal parameter estimation for sparse arrays.
Bulletin Seismological Soc Amer 2003;93(4):1765–1772.

10. Hunter, WCJ. PhD dissertation. Univ. Arizona; Tempe: 2007. Modeling stochastic processes in
gamma-ray imaging detectors and evaluation of a multi-anode PMT scintillation camera for use with
maximum-likelihood estimation methods.

11. Milster TD, Selberg L, Barrett H, Easton R, Rossi G, Arendt J, Simpson R. A modular scintillation
camera for use in nuclear medicine. IEEE Trans Nucl Sci Feb;1984 31(1):578–580.

12. Sain, JD. PhD dissertation. Univ. Arizona; Tempe: 2001. Optical modeling, design optimization, and
performance analysis of a gamma camera for detection of breast cancer.

13. Chen, Y-C.; Furenlid, LR.; Wilson, DW.; Barrett, HH. Small-Animal SPECT Imaging. Vol. ch 12.
New York: Springer; 2005. p. 195-201.

14. Furenlid, L.; Hesterman, J.; Barrett, HH. Real-time data acquisition and maximum likelihood
estimation for gamma cameras. Proc. 14th IEEE-NPSS Real Time Conf; 2005. p. 498-501.

15. Chen, J. PhD dissertation. Univ. Arizona; Tempe: 1995. Modular cameras: Improvements in scatter
rejection and characterization and initial clinical application.

16. Chen JC. Scatter rejection in gamma cameras for use in nuclear medicine. Biomed Eng Appl, Basis
Commun 1997;9(20–26)

17. Chen, J.; Barrett, H. Likelihood window, energy window, and Bayesian window for scatter rejection
in gamma cameras. Proc. Nucl. Sci. Symp. Med. Imag. Conf; 1993. p. 1414-1416.

Hesterman et al. Page 10

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



18. Furenlid LR, Wilson DW, Chen YC, Kim H, Pietraski PJ, Crawford MJ, Barrett HH. FastSPECT II:
A second-generation high-resolution dynamic SPECT imager. IEEE Trans Nucl Sci Jun;2004 51(3):
631–635. [PubMed: 20877439]

19. Kahle JA, Day MN, Hofstee HP, Johns CR, Maeurer TR, Shippy D. Introduction to the cell
multiprocessor. 2005;49(4/5):589–604.

20. Pham D, Aipperspach T, Boerstler D, Bolliger M, Chaudhry R, Cox D, Harvey P, Harvey P, Hofstee
H, Johns C, Kahle J, Kameyama A, Keaty J, Masubuchi Y, Pham M, Pille J, Posluszny S, Riley M,
Stasiak D, Suzuoki O, Takahashi M, Warnock J, Weitzel S, Wendel D, Yazawa K. Overview of the
architecture, circuit design, and physical implementation of a first-generation cell processor. Jan;
2006 41(1):179–196.

21. Hofstee, P. Introduction to the cell broadband engine. IBM Corporation; Riverton, NJ: 2005.
22. Williams, S.; Shalf, J.; Oliker, L.; Kamil, S.; Husbands, P.; Yelick, K. The potential of the cell

processor for scientific computing. Proc. 3rd Conf. Comput. Frontiers; New York. 2006. p. 9-20.
23. Bader DA, Agarwal V, Madduri K, Kang S. High performance combinatorial algorithm design on

the cell broadband engine processor. 2007;33(10/11):720–740.
24. Benthin, IWC.; Scherbaum, M.; Friedrich, H. Ray tracing on the cell processor. Proc. IEEE Symp.

Interactive Ray Trac; Sep. 2006; p. 15-23.
25. Sakamoto, M.; Murase, M. Parallel implementation for 3-D CT image reconstruction on Cell

Broadband Engine. Proc. IEEE Int. Conf. Multimedia Expo; Jul. 2007; p. 276-279.
26. Kachelrieß M, Knaup M, Bockenbach O. Hyperfast parallel-beam and cone-beam backprojection

using the cell general purpose hardware. Apr;2007 34(4):1474–1486.
27. Hunter W, Barrett HH, Furenlid LR. Calibration method for ML estimation of 3D interaction position

in a thick gamma-ray detector. Feb;2009 56(1):189–196.
28. Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative

reconstruction using the GPU. Mar;2009 28(3):435–445.
29. Samant SS, Xia J, Muyan-Ozelik P, Owens JD. High performance computing for deformable image

registration: Towards a new paradigm in adaptive radiotherapy. Aug;2008 35(8):3546–3553.
30. Bi, W.; Chen, Z.; Zhang, L.; Xing, Y. Accelerate helical cone-beam CT with graphics hardware. In:

Hsieh, J.; Samei, E., editors. Med Imag: Phys Med Imag; Proc. SPIE; Mar. 2008 p. 69132T
31. Vetter, C.; Westermann, R. SPECT reconstruction on the GPU. In: Hsieh, J.; Samei, E., editors. Med

Imag: Phys Med Imag; Proc. SPIE; Mar. 2008 p. 69132R
32. Rossler F, Botchen RP, Ertl T. Dynamic shader generation for GPU-based multi-volume ray casting.

Sept./Oct;2008 28(5):66–77.
33. Schiwietz, T.; Chang, TC.; Speier, P.; Westermann, R. MR image reconstruction using the GPU. In:

Flynn, MJ.; Hsieh, J., editors. Med Imag: Phys Med Imag; Proc. SPIE; Mar. 2006 p. 61423T

Hesterman et al. Page 11

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
(a) A schematic of a modular scintillation camera. (b) A photograph of a modular scintillation
camera.

Hesterman et al. Page 12

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Example of a typical mean file generated by an MDRF. Each pixel of each of the nine images
represents the response of a given PMT to a point source centered over that location on the
camera face.

Hesterman et al. Page 13

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(a) Likelihood map for a sample event. The map was produced by computing the log-likelihood
function at all MDRF points using the event’s nine PMT values. The likelihood map shown
here has been zero-padded out to the nearest factor of two. White corresponds to high
likelihoods. (b) The same likelihood map as shown in (a) but raised to a higher power. This
transformation has been undertaken purely for illustrative purposes to make the algorithm’s
searching methods more clear in a later figure.

Hesterman et al. Page 14

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
A series of likelihood maps for a given event. The asterisks indicate the locations at which
likelihoods will be computed at each iteration for this particular event. Note that a more peaked
version of the likelihood map has been displayed for illustrative purposes.

Hesterman et al. Page 15

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
(a) Flood image generated without likelihood windowing. The outer ring of pixels has been
truncated. (b) Flood image generated with a 60% likelihood window. The outer ring of pixels
has been truncated.

Hesterman et al. Page 16

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
A flow chart outlining the pipeline structure to be used for implementing the position estimation
algorithm into hardware. The pipeline structure allows for position estimation to be performed
simultaneously on several events despite the time constraints imposed by the necessary
memory reads.

Hesterman et al. Page 17

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hesterman et al. Page 18

TABLE I

Performance Comparison of Different ML Search Schemes Implemented in Conventional Computing Hardware

Search Method Events/Second Percent Acceptance
Percent Correct

All Events Accepted Events

Brute-force 2,257 86.9957 - -

Directed 61,270 86.9738 99.12 99.77

LUT plus directed 85, 777 86.9731 98.99 99.71

Grid-Search 46,618 86.9784 99.43 99.85

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2010 September 2.


