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I. REDOX BIOLOGY AND 
REGULATORY MECHANISMS

A. Redox homeostasis: ROS production 
and elimination

THE REDOX SYSTEM is essential in maintaining cellular ho-
meostasis. Under physiologic conditions, cells maintain

redox balance through generation and elimination of reactive
oxygen/nitrogen species (ROS/RNS). ROS include radical
species such as superoxide (O2

�) and hydroxyl radical (HO�),
along with nonradical species such as hydrogen peroxide
(H2O2). RNS include nitric oxide (NO�) and peroxynitrite
(ONOO�) (143). ROS are derived from oxygen, an obligate
component of eukaryotic organisms. Reduction of molecular
oxygen is the principal mechanism for ROS formation. The ini-
tial product, superoxide, results from the addition of a single
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ABSTRACT

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell
survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and
survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the bal-
ance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive sig-
naling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and
exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant
cell death and contribute to disease development. This review focuses on the roles of key transcription fac-
tors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox sys-
tems regulate the functions of these molecules. The current understanding of how disturbance in redox ho-
meostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative
disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be
used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374.



electron to molecular oxygen. Superoxide can be rapidly dis-
mutated by superoxide dismutase (SOD), yielding H2O2 and
O2, which can be reused to generate superoxide radical. In the
presence of reduced transition metals, H2O2 can be converted
into the highly reactive hydroxyl radical HO� (73).

Both exogenous and endogenous sources contribute to the
formation of intracellular ROS/RNS. Exogenous sources in-
clude irradiation (i.e., UV irradiation, x-ray, gamma-ray), atmo-
spheric pollutants, and chemicals. For example, exposure to
metabolites of polychlorinated biphenyls (PCBs) has been
shown to increase ROS production in HL-60 cells (286). As il-
lustrated in Fig. 1, a major endogenous source of cellular ROS
is from the mitochondria, where O2

� is generated by electron
leakage from complex I and III of the electron-transport chain
(177, 286). Microsomes and peroxisomes are also sources of
ROS, primarily H2O2, whereas immune cells such as neu-
trophils and macrophages possess oxygen-dependent mecha-
nisms to fight against invading microorganisms. Other en-
dogenous sources of ROS include the membrane-associated
NAD(P)H oxidase, cytochrome c oxidase, and xanthine oxi-
dase. The presence of redox-active metals such as Fe and Cu
also contributes to ROS generation. In the presence of Fe(II)
and Fe(III), HO� can be generated through the Fenton reaction
or Haber–Weiss reaction (151). Similarly, NO� generation oc-
curs through specific nitric oxide synthase isozymes, including
mitochondrial nitric oxide synthase (mtNOS), neuronal NOS
(nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS)
(93). NO can react with O2

� to generate ONOO� (293).

Cells are equipped with enzymatic and nonenzymatic anti-
oxidant systems to eliminate ROS/RNS and maintain redox ho-
meostasis. A major class of enzymatic antioxidants, which cat-
alyze the dismutation of O2

� to H2O2, is known as superoxide
dismutase (SOD). Multiple isoforms of SOD exist in different
cellular compartments. SOD1 (CuZnSOD) is the major super-
oxide scavenger found in the cytoplasm, mitochondrial inter-
membrane space, nucleus, and lysosomes, whereas SOD2 
(MnSOD) and SOD3 are found in the mitochondria and extra-
cellular matrix, respectively (83). Further conversion of H2O2

to H2O � O2 occurs through the action of catalase, a heme-
based enzyme that is normally localized in the peroxisome. In-
terestingly, catalase has extremely high substrate-turnover rates,
scavenging �6 million molecules of H2O2 per minute (309).
H2O2 also can be converted to O2 through coupled reactions with
the conversion of reduced glutathione (GSH) to oxidized glu-
tathione (GSSG), catalyzed by glutathione peroxidase (GPX).
Five isoforms of selenium (Se)-dependent GPXs are found in
humans [for review, see (33)]. The reduction of hydroperox-
ides by wild-type GPXs is nearly 1,000-fold the rate found in
mutated GPXs, which have a cysteine replacing selenocysteine
at the active site (197). Glutathione peroxidase 1 (GPX1) is
ubiquitously expressed and a major scavenger for H2O2 and
lipid hydroperoxides. GPX2 is epithelium-specific and highly
expressed in the gastrointestinal tract, whereas GPX3 is an ex-
tracellular glycosylated enzyme found in plasma. Interestingly,
GPX3 can use thioredoxin and glutaredoxin in addition to GSH
as electron donors to reduce a broad range of hydroperoxides.
GPX4 is present in cytosolic, mitochondrial, and nuclear forms
by alternative splicing, and is a major enzyme preventing oxi-
dation of membrane phospholipids. A newly discovered GPX6
is localized preferentially in olfactory mucosa and embryonic
tissue. Furthermore, enzymes such as glutathione S-transferases
(GSTs) are known to have Se-independent peroxidase activity
(279).

Nonenzymatic antioxidants, recognized to execute thiol–
disulfide exchange reactions, also play a major role in main-
taining cellular redox balance. In addition to being a cofactor
of various antioxidant enzymes, GSH, which is the most abun-
dant peptide in cells, possesses a plethora of functions. These
include direct scavenging of HO�, singlet oxygen, and regener-
ation of other antioxidants such as vitamin C and E to their ac-
tive forms (222). The thioredoxin system is another important
thiol antioxidant consisting of thioredoxin (Trx) and thioredoxin
reductase. Thioredoxin is a multifunctional selenoprotein con-
taining two redox-active cysteines and a conserved active site
(Cys-Gly-Pro-Cys) (27). Although many ROS are quenched by
GSH through reaction with its thiol group, other thiol-contain-
ing proteins are also attacked by ROS, leading to their oxida-
tion (184). Therefore, it is essential for cells to change these
oxidized proteins to their reduced forms to maintain proper
function. The thioredoxin system, in collaboration with the GSH
system, plays an important role in reducing oxidized thiol-con-
taining proteins. Similarly, the glutaredoxin (Grx) system, also
with the CXXC conserved active site, functions to reduce pro-
tein disulfides. Grx1, Grx2, and Grx3 obtain their protein-re-
ducing capacity from the GSH/glutathione reductase system,
which is maintained by NADPH (123). Peroxiredoxins (Prxs)
are a large family of proteins with cysteine-containing redox
active centers (260). The six mammalian isoforms of Prxs are
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FIG. 1. Redox homeostasis. Major sites of cellular ROS gen-
eration include the mitochondrial electron transport chain (Mito
ETC), the endoplasmic reticulum (ER) system, and the
NAD(P)H oxidase (NOX) complex. Nitric oxide synthases
(NOS) are key enzymes for production of NO. Major ROS-
scavenging enzymes are highlighted in grey. GSH and NAPDH
play roles in maintaining the reduced cellular redox state. GPX,
glutathione peroxidase; GR, glutathione reductase; TRXo,
thioredoxin (oxidized); TRXr, thioredoxin (reduced); GRXo,
glutaredoxin (oxidized); GRXr, glutaredoxin (reduced); HO�,
hydroxyl radical; NO�, nitric oxide; ONOO�, peroxynitrite;
SOD, superoxide dismutase; GSH, reduced glutathione; GSSG,
oxidized glutathione; NADPH, reduced nicotinamide adenine
dinucleotide phosphate; XO, xanthine oxidase.



classified into two groups: the two-cysteine peroxiredoxins
(I–IV, V) and one-cysteine class (Prx VI). Peroxiredoxins use
the peroxidatic cysteine (reactive center) to reduce hydroper-
oxides in a two-step reaction [for review, see (332)]. 

B. Oxidative stress and its consequences

The delicate balance between ROS generation and elimina-
tion is maintained by many complex mechanisms, and a dys-
function of any of these mechanisms could lead to alterations
in cellular redox status. An increase in ROS production or a de-
crease in ROS-scavenging capacity due to exogenous stimuli
or endogenous metabolic alterations can disrupt redox homeo-
stasis, leading to an overall increase of intracellular ROS lev-
els, or oxidative stress. Increased oxidative stress plays a cru-
cial role in a variety of pathologic conditions including cancer,
neurodegenerative diseases, and aging (310). Under normal
physiologic conditions, the reactive nature of ROS/RNS at mod-
erate levels allows their incorporation into the structure of
macromolecules in a reversible fashion. Such reversible oxida-
tive modifications play a critical role in regulating cellular func-
tion. However, under oxidative stress, excessive ROS/RNS con-
stantly attack lipids, proteins, and DNA, leading to severe and
irreversible oxidative damage.

Lipids are most susceptible to oxidative modification. Lipid
peroxidation generates lipid radicals, which can further attack
the subsequent lipid molecules and propagate as a chain reac-
tion. The chain-reaction process consists of three stages: initi-
ation, propagation, and termination [for review, see (98)].
Polyunsaturated fatty acid residues of phospholipids are at-
tacked by a radical either at an internal position or near the end
of the conjugated system, generating a peroxyl radical (309).
Attack at an internal position allows the peroxyl radical to fur-
ther undergo either a cyclization or metal-catalyzed reaction and
produce reactive alkoxyl radicals. After cyclization, the fatty
acid may form a hydroperoxide or undergo another cyclization,
which produces aldehydes, including malondialdehyde (MDA)
and 4-hydroxy-2-nonenal (HNE) (243). While MDA can fur-
ther react with DNA bases, resulting in gene mutations, HNE
reacts mostly with proteins, leading to significant functional al-
terations affecting signaling pathways. Oxidative damage of
phospholipids can lead to cell death, not only through mem-
brane damage but also through the lipid peroxidation product
HNE. Attack of various proteins such as c-Jun N-terminal ki-
nase (JNK) and caspase-3 activation was found to be a mech-
anism of cell death induced by lipid peroxidation (8). 

Protein oxidation can be reversible or irreversible, depend-
ing on the target and the form of oxidative damage. The highly
reactive OH�, generated through ionizing radiation or the Fen-
ton reaction, and ONOO� are common reactive species that tar-
get proteins. Although all amino acid residues could be oxi-
dized by ROS/RNS, certain side chains are particularly
susceptible to oxidation. For instance, lysine, arginine, histi-
dine, proline, and threonine are highly sensitive to metal-cat-
alyzed oxidation (309). Oxidation of these side chains results
in carbonyl derivatives, which can also be generated through
glycation/glycoxidation pathways, lipid peroxidation, �-amida-
tion, and glutamic acid pathways (257). Because a variety of
mechanisms of protein oxidation can lead to formation of pro-
tein carbonyls, which are easily detectable, the level of protein

carbonyls has been used as a quantitative marker of protein ox-
idation and oxidative stress (62). Sulfur-containing amino acids
such as cysteine and methionine are also susceptible to either
reversible or irreversible oxidation. Reversible oxidation of the
sulfhydryl group includes intramolecular or intermolecular pro-
tein cross-linkages and glutathionylation (287). Irreversible pro-
tein oxidation includes nitrosylation of cysteine sulfhydryl
groups, tyrosine, methionine, and tryptophan by ONOO�. Ni-
tration of tyrosine residues may inhibit its phosphorylation or
adenylation, important for protein function (249). Severe ox-
idative stress can induce disulfide bond–mediated protein cross-
linkage or secondary oxidative modifications such as adduct
formation between oxidized proteins and lipid peroxides or gly-
cation products. These products can generate aggregation of
bulky protein complexes, which may inactivate both 26S and
20S proteosome, leading to accumulation of damaged proteins
and cell death (247).

Compared with lipids and proteins, nuclear DNA may seem
less susceptible to oxidative modifications because of its double-
helix structure and the protective shield from histone and other
coating proteins. However, oxidative nuclear DNA damage is de-
tectable under various conditions. Thus, oxidized products of
DNA bases such as 8-OHdG have been used as a marker for dam-
age caused by oxidative stress (109). The correlation between ox-
idative DNA damage and various stages of carcinogenesis has
been studied (305). DNA is subject to damage in nearly all of its
components. Both purine and pyrimidine bases and the sugar
backbone contain N and O as nucleophilic centers, which are
highly susceptible to react with electrophiles, especially OH�. Fur-
thermore, the double bonds within the bases are prime targets for
OH�. Reactions are primarily centered at the C-5 and C-6 of pyrim-
idines and C-4 and C-8 of purines (31). NO� and ONOO� have
been found to react with DNA bases and induce single-strand
breaks (305). Oxidative damage to the sugar backbone, through
H abstraction, has been known to cause single-strand breaks and
double-strand breaks (31). Unlike nuclear DNA, mitochondrial
DNA (mtDNA) is more susceptible to oxidative damage, not only
because of its close proximity to the major site of ROS genera-
tion (electron-transport chain), but also because of the limited ca-
pacity of mtDNA repair (129).

Under physiologic conditions, cellular DNA is constantly at-
tacked by ROS. It has been estimated that in mammalian cells,
�1.5 � 105 oxidative adducts in DNA per cell are found (15). As
such, those hits may induce mutations and play a role in the evo-
lution process. Moderate levels of DNA damage can trigger cell-
cycle arrest and initiate DNA-repair processes that ensure DNA
integrity. In contrast, excessive damage or failure in DNA repair
can induce apoptosis (60). It is worth noting that oxidative mod-
ifications of lipids, proteins, or DNA play a crucial role in phys-
iologic processes such as differentiation, maturation, and traf-
ficking of intracellular vesicles (73). However, when the
ROS/RNS levels are in excess, the biologic consequences are of-
ten deleterious. Therefore, regulation of ROS/RNS levels is crit-
ical in maintaining cellular homeostasis.

C. Redox-mediated mechanisms in regulation 
of cellular processes

Redox balance plays a critical role in maintaining the bio-
logic process under normal conditions. However, disruption of
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the balance due to an increase in ROS/RNS production or de-
crease in ROS-scavenging capacity may alter cellular functions.
Alterations in ROS/RNS levels can modulate biologic activity
through aberrant stimulation/suppression of certain signaling
pathways and through direct modifications of biomolecules, es-
pecially proteins. The redox system can modify functions of
proteins through regulating their expression, posttranslational
modifications, and stabilities, as depicted in Fig 2.

1. Transcriptional regulation. At the synthesis
level, expression of signaling proteins can be tightly controlled
through the rate of gene transcription. A number of transcrip-
tion factors contain redox-sensitive cysteine residues at their
DNA-binding sites (107). Examples of the factors are NF-�B,
AP-1, HIF-1� and P53. In most cases, thiol oxidation of these
proteins would inhibit their DNA-binding activities (306). Un-
der physiologic conditions, nuclear GSH plays a critical role in
maintaining the reducing environment to prevent excessive ox-
idative modifications of nuclear DNA and to ensure proper gene
transactivation (103). Furthermore, transcriptional co-activators
such as CBP/p300 are equipped with histone acetylation activ-
ity, which is required to uncoil DNA structure, allowing ac-
cessibility of transcription factors to promoter regions of target
genes (229). Interestingly, the enzyme histone deacetylase
(HDAC), which reverses the acetylation process, was recently
found to be redox sensitive (252). Thus, in addition to direct
modification of the transcription factors, alteration in ROS/RNS
level may regulate gene expression through modulation of chro-
matin remodeling.

2. Direct oxidative modification. At the posttrans-
lational level, oxidative modification was found to be a major
mechanism for redox regulation of protein functions (81). Mul-

tiple types of amino acids can be oxidatively modified, with
various susceptibilities (27). Direct oxidation is mostly medi-
ated by HO� and NO�. Among those amino acids, sulfur-con-
taining ones such as methionine and cysteine are preferential
targets. Oxidative modifications of amino acid residues in a
peptide may lead to structural and functional changes, ranging
from a slight conformational change to a severe denaturation
accompanied by fragmentation. The functional outcome of the
oxidation depends on the types of modifications and the criti-
cality of the modified amino acid in the protein function. It may
lead to either activation or inhibition of the protein activities.
Examples of common oxidative modification of proteins are il-
lustrated in Fig. 3. Mild oxidative stress can induce modifica-
tions of Cys such as reversible glutathionylation (94), disulfide
formation (4), and S-nitrosylation (292). These modifications
are known to have regulatory roles in the function of many pro-
teins such as TRX, p53, I�B, RAS, Akt, and protein tyrosine
phosphatase. Conversely, a severe increase in oxidative stress
likely promotes more-damaging types of modifications, such as
sulfenic acid, sulfinic acid, and sulfonic acid formation (246).
Protein carbonylation can occur through either direct oxidative
attack (of Lys, Arg, Pro, Thr) or interaction between amino
acids (such as Lys, Cys, His) and oxidation products of lipids
and sugars. Protein carbonylation is often used as an indicator
for protein oxidations, as it accumulates in vivo at high levels
relative to other oxidative modifications and is readily de-
tectable (59). Examples of proteins modified by carbonylation,
which can impair their functions, include ANT, Hsp, and BCL2
(81). Besides Cys, Tyr is another attractive target for redox
modification. Nitration of tyrosine by RNS yields nitrotyrosine,
which causes the protein to lose its ability as a substrate for
phosphorylation. Kinases such as JNK, p38MAPK, and PKC
are targets for tyrosine nitration, which inhibits their activations
(272). In contrast, reversible oxidation of a methionine residue
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FIG. 2. Redox-mediated mechanisms that
regulate protein functions. Protein expres-
sion can be regulated through redox modifica-
tion of transcription factors. Oxidation of Cys
at or near the DNA-binding site may disrupt
the transactivation activity. Newly synthesized
protein can be directly modified by oxidation
of amino acids such as Cys, Tyr, and Met, re-
sulting in alteration of the protein functions.
Certain proteins are stabilized by their redox-
sensitive interacting proteins. Modification of
the interacting proteins can dissociate the com-
plex and allow activation of the functional pro-
teins. Posttranslational modifications such as
phosphorylation can either activate or inhibit
protein functions. Phosphatases, which are re-
sponsible for dephosphorylation, can be ox-
idatively inactivated, promoting phosphoryla-
tion of proteins. Stability of signaling proteins
determines both the level and duration of their
functional effects. Most proteins can be de-
graded through the ubiquitin–proteosome sys-
tem. Ubiquitin-activating enzyme E1 and pro-
teosome 26S and 20S can be inactivated under oxidative stress. TF, transcription factor; -SH, reduced thiol; SOx, oxidized thiol;
PTP, protein tyrosine phosphatase; ub, ubiquitin. X, inhibition; white, inactive state; light grey, partially activated; dark grey,
fully activated molecules.



in calmodulin (CaM) is essential for its function as a calcium-
regulatory protein (23).

3. Regulation of redox-sensitive interacting pro-
teins. Many proteins are stabilized by contact with others.
Such protein–protein interactions may also modulate their func-
tions, mostly being negative regulations of each other. Oxida-
tive modification of the interacting partners can lead to disso-
ciation of the protein complex, allowing activation of the free
functional proteins (55) (see Fig. 2 for illustration). Examples
of proteins whose function can be altered by such redox-sensi-
tive mechanism include ASK1-TRX, JNK-GST, p53-JNK, and
Nrf2-Keap1.

4. Regulation of redox-sensitive modifying en-
zymes. Posttranslational modification of proteins, especially
by phosphorylation, has been known to be a critical regulatory
mechanism for protein function. Phosphorylation of proteins
may either lead to their activation or flag for degradation in a
site-specific manner (137). Phosphorylation status is the out-
come of the balance between kinases and phosphatases. Inter-
estingly, whereas thiol oxidation of phosphotyrosine kinase
(PTKs) leads to their activation, transient oxidation of protein
tyrosine phosphatases (PTPases) inhibits their functions (48).
Under physiologic conditions, because of its low pKa, the cat-
alytic cysteine of active PTPases is in the thiolate anion form
and thus susceptible to oxidative modification. Thiol modifica-
tions such as direct oxidation, inter- and intramolecular disul-
fide bridges, S-glutathionylation, and S-nitrosylation can all
lead to inactivation of PTPases (119). The oxidative inhibition
of PTPases consequently shifts the balance toward a phospho-
rylated state in target proteins. Besides PTPases, the lipid phos-
phatase PTEN and the low-molecular-weight phosphatase
cdc25 can also be modified in a similar fashion (50).

5. Regulation of protein turnover. Stability of pro-
teins can determine the extent of their functional effects. The
rates of protein turnover can also be regulated by redox-medi-
ated mechanisms. Many proteins are degraded by the proteo-
some system, whereas certain proteins are substrates of other
proteases such as caspases. Under nonstressed conditions, ubiq-
uitin and 26S proteosome play a crucial role in the degradation
of misfolded/damaged proteins (256). Redox-mediated phos-
phorylation of I�B, Bcl-2, and p53 seems to increase the bind-
ing to their specific ubiquitin ligase E3 and to promote the pro-

teosome-mediated degradation of these proteins. However, un-
der oxidative stress, although the ubiquitin-activating enzymes
(E1) and 26S proteosome are oxidatively inactivated, oxidized
proteins may no longer be ubiquitinated and degraded (22). In-
stead, such oxidized products can be eradicated by the 20S pro-
teosome in a ubiquitin-independent manner (285).

II. REDOX REGULATION OF SIGNALING
PROTEINS AFFEECTING CELL 

DEATH AND SURVIVAL

The roles of ROS and antioxidant systems in regulation of
cell survival are bifurcated. In general, ROS at low levels act
as signaling molecules that promote cell proliferation and cell
survival. In contrast, a severe increase in ROS can induce cell
death. Previous studies suggest that regulation of signaling path-
ways by the redox system relies mostly on direct oxidative mod-
ifications of the redox-sensitive signaling proteins (143). How-
ever, recent evidence shed new light on the novel role of redox
regulation in chromatin remodeling, which affects death/sur-
vival signals at the transcriptional level (252). Furthermore,
posttranslational modifications of signaling proteins such as
phosphorylation have recently been shown to be regulated in
part through a redox-mediated mechanism (119). Oxidative
modification of ubiquitin-proteosome or other proteases can
also affect the turnover of signaling proteins (247). The fol-
lowing sections summarize redox regulation of cell survival
through modulation of those factors at the transcription, signal
transduction, and death-execution levels. Figure 4 illustrates an
overview of the redox regulation at these levels and their cross-
talk.

A. Redox regulation of cell survival at the
transcription level

Intracellular redox homeostasis regulates the expression of
multiple gene-encoded proteins affecting cell death and sur-
vival. In response to alterations in oxidative status, the tran-
scription of those genes can be modulated in part through a re-
dox control of transcription factors. Here, we focus on the roles
of transcription factors NF-�B, AP-1, Nrf2, and HIF in cell sur-
vival and how the redox system regulates the functions of these
factors.
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FIG. 3. Oxidative modification of proteins. Pro-
tein can be oxidatively modified by multiple types of
modifications, and the consequence can be either ac-
tivation or inactivation of protein functions. Cys in
thiol proteins is a major target, which could be mod-
ified by reversible S-glutathionylation, disulfide for-
mation, S-nitrosylation, or formation of sulfinic,
sulfenic, and sulfonic acid derivatives. Nitration of
Tyr is known to modulate the function of multiple ki-
nases. P, protein.



1. NF-�B. Nuclear factor kappa B (NF-�B) is a redox-
sensitive transcription factor that coordinates regulators of im-
munity, inflammation, development, cell proliferation, and sur-
vival. In mammals, the NF-�B family consists of NF-�B1
(p50/p105), NF-�B2 (p52/p100), RelA (p65), c-Rel, and RelB.
All members are characterized by the presence of the Rel ho-
mology domain (RHD). The RHD mediates DNA binding, dimer-
ization between the family members, and the association of 
NF-�B dimers with the inhibitors of kappa B (I�B) (117). Nor-
mally, the NF-�B components are sequestered and inactivated by
I�Bs in the cytosol. A wide range of stimuli, including cytokines
and ROS stress, are capable of activating NF-�B through activa-
tion of I�B kinase (IKK). Active IKK phosphorylates I�B, lead-
ing to dissociation of NF-�B from the inhibitor and the attraction
of I�B to degradation by ubiquitin/proteasome system (96). Free
NF-�B translocates to the nucleus, binds to DNA at the promoter
region, and activates the transcription of target genes.

a. Role of NF-�B in cell survival. Active NF-�B controls
cell survival through altering transcription of multiple genes as
illustrated in Fig. 5. In response to oxidative stress, activation
of NF-�B leads to elevated expression of (a) antiapoptotic Bcl-
2 family members such as Bcl-xL and A1/Bfl-1; (b) the inac-
tive homologue of caspase-8 (FLIPL); (c) caspase inhibitors
such as IAPs that directly prevent activation of caspases; (d)
TNF receptor–associated factor TRAF1; (e) Gadd45, which in-

hibits JNK-mediated cell death; and (f) antioxidants such as
Mn-SOD and ferritin heavy chain (FHC) (147).

b. Redox regulation of NF-�B. NF-�B has long been recog-
nized as a redox-sensitive transcription factor. Experimental ev-
idence suggests that ROS seem to have paradoxic effects on
NF-�B regulation. ROS can either activate or inhibit NF-�B
activity, depending on the level of ROS, types of stimuli, and
cell types (140, 236). Moderate increase of ROS often leads to
NF-�B activation, which requires sequential steps in the cytosol
and nucleus. Conversely, severe increase of ROS could inacti-
vate NF-�B, leading to cell death. As depicted in Fig. 6, mul-
tiple redox-mediated mechanisms can regulate NF-�B activity
at various stages.

c. Redox regulation of nuclear NF-�B. Studies since the
early 1990s demonstrated that the reduced form of nuclear 
NF-�B is required for its DNA binding. Oxidation of the re-
dox-sensitive site Cys62 of the p50 subunit inhibits its ability
to bind DNA (210, 298). Oxidation of p50 is reversible, and
DNA binding can be restored through reduction by thioredoxin
(204). Detailed studies revealed that nuclear NF-�B can be in-
activated by several redox modifications including glu-
tathionylation (244) and S-nitrosylation (200). Besides direct
structural modification, DNA binding activity of NF-�B can be
modulated by chromatin remodeling (252). Histone acetylation,
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FIG. 4. Redox-sensitive signaling pathways for regu-
lation of cell survival. The redox system can regulate the
cell-fate decision through regulations of many functional
proteins involving cell life-or-death decisions. Many of
those signaling proteins are redox sensitive, which controls
survival at the levels of signal transduction, transcriptional
regulation, or execution. Examples of the key redox-sensi-
tive molecules involved at each level are indicated. The
possible crosstalk among these regulators/executors is in-
dicated by arrows. Signal transduction may involve in tran-
scriptional regulation, and p53 is a redox-sensitive mole-
cule that affects cell survival at all three levels. Therefore,
oxidative stress not only serves as a type of stimulus to trig-
ger stress-response signal-transduction pathways, but also
can modulate cell death/survival through direct oxidative
modification of those signal molecules.

FIG. 5. Role of NF-�B in cell survival. NF-
�B functions as a transcription factor regulat-
ing the expression of multiple genes. Activa-
tion of NF-�B by stimuli such as oxidative
stress or cytokines promotes increased expres-
sion of antiapoptotic proteins such as Bcl-xL
and XIAP, which suppress the execution phase
of cell death. Induction of GADD45 leads to in-
hibition of JNK and prevents JNK-induced
apoptosis. NF-�B also promotes the expression
of antioxidant genes such as MnSOD, which
plays a major role in scavenging mitochondria
superoxide and in maintaining redox homeo-
stasis. Overall, the activation of NF-�B by ROS
leads to inhibition of apoptosis, redox rebal-
ance, and enhanced cell survival.



which is catalyzed by histone acetylase (HAT), uncoils the he-
lical structure of DNA and exposes the binding sequence at the
promoter regions, thus promoting NF-�B–DNA binding activ-
ity. Conversely, removal of the acetyl group from histone by
histone deacetylase (HDAC) renders recoiling of DNA struc-
ture and prevents DNA binding by NF-�B. Acetylation of the
RelA (p65) subunit of NF-�B was shown to increase DNA-
binding activity, which can be reversed by HDAC (252). In-
terestingly, recent evidence suggests that HDAC activity can
be inhibited by ROS. Oxidative inactivation of HDAC results
in a shift of balance in favor of histone acetylation, which un-
winds the DNA and promotes NF-�B activity (251). Further
work suggested that inhibition of HDAC prevents apoptosis in
leukemia cells by activation of NF-�B and downregulation of
c-Jun kinase (57).

d. Cytoplasmic regulation of NF-�B. A key step in activa-
tion of NF-�B is the dissociation of NF-�B from I�B. Phos-
phorylation of either I�B or NF-�B subunits promotes such dis-
sociations (236). Under certain conditions, hydrogen peroxide
is able to activate NF-�B activity directly through phosphory-
lation/activation of IKK (144), or indirectly via MEKK-1 or
Akt (196, 226). The transactivation of NF-�B induced by
MEKK-1 or Akt was shown to be critical in mediating its an-
tiapoptotic effect (225, 314). Conversely, in other system oxi-
dants such as H2O2, arsenic, and lipid peroxidation product 4-
HNE were found to inhibit IKK activity through direct

oxidation, S-glutathionylation, or S-nitrosylation at Cys-179 of
the IKK �-subunit (258, 259). Furthermore, MEKK-1 and Akt
are redox sensitive. S-glutathionylation can inhibit their kinase
activities (54, 219). It is worth noting that the oxidative acti-
vation or inhibition of IKK activity may or may not translate
into corresponding changes in NF-�B activity. The overall con-
sequences may be dependent on the different redox states of
the cell types, the levels of the oxidants, and the durations of
ROS exposure. For example, in human bronchial epithelial cells
treated with H2O2, whereas the IKK activity was increased,
leading to I�B phosphorylation, NF-�B–DNA-binding activity
was inhibited. The unexpected result was attributed to an in-
hibitory effect on proteosomal degradation of I�B under ox-
idative stress (135). Besides phosphorylation of I�B by IKK,
emerging evidence demonstrated that the NF-�B subunit may
also be directly phosphorylated. Akt, protein kinase A (PKA),
PKC �, mitogen and stress-activated kinase-1 (MSK-1), the 
90-kDa ribosomal S6 kinase-1 (RSK-1), and casein kinase 2
(CK-2), can all phosphorylate RelA subunit. The phosphoryla-
tion of RelA can affect its binding affinity to I�B, to DNA and
to the recruitment of essential cofactors (76, 236, 319, 344). In-
terestingly, these kinases were all redox sensitive, thus provid-
ing another layer for redox regulation of NF-�B.

2. AP-1. The AP-1 family of proteins represents an ex-
ample of transcription factors whose functions involve control
of both cell growth and apoptosis. Under certain conditions,
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FIG. 6. Redox regulation of NF-��B. The function of NF-�B can be activated or inhibited through various redox-mediated
mechanisms at multiple levels of the activation pathways. In the nucleus, direct oxidation of Cys in the DNA-binding domain
can inhibit NF-�B–DNA-binding activity. In contrast, enzyme histone deacetylase (HDAC), which catalyzes the removal of an
acetyl (Ac-) group from histone, can be inactivated by oxidative stress, allowing histone acetylation, chromatin uncoiling, and
increased accessibility for NF-�B. In cytosol, activation of NF-�B can be regulated through phosphorylation of NF-�B itself or
phosphorylation of its inhibitor I�B. Normally, NF-�B and I�B form a complex, which is sequestered in cytosol. Increased ROS
can activate I�B-kinase (I�K) either directly through redox modification of I�K, or indirectly through activation of Akt and/or
MEKK1, which then phosphorylates and activates I�K. Active I�K phosphorylates I�B and liberates active NF-�B from the com-
plex to translocate to the nucleus. Phosphorylated I�B undergoes ubiquitination and degradation by proteosomes. Because the
proteosome system is also redox sensitive, ROS can also regulate NF-�B activity by affecting the stability of I�B. Furthermore,
phosphorylation of NF-�B by certain kinases may dissociate NF-�B from I�B and promote its nuclear translocation. Grey, Ac-
tive forms of the proteins. *Major target molecules of redox regulation.



AP-1 activation could lead to cell death, whereas under other
circumstances, AP-1 may promote cell proliferation and sur-
vival. The AP-1 family consists of several groups of basic
leucine zipper domain (bZIP) proteins, including Jun (c-Jun,
JunB, JunD), Fos (c-Fos, FosB, Fra-1, and Fra2), Maf (c-Maf,
MafB, MafA, MafG/F/K, and Nrl), and ATF (ATF2,
LRF1/ATF3, B-ATF, JDP1, JDP2) subfamilies (3). AP-1 pro-
teins form heterodimers and bind to the target DNA sequence.
Activation of AP-1 is regulated at both transcript and protein
levels. The intracellular levels of c-jun and c-fos are controlled
mainly by their transcription rates, which are tightly regulated
by a variety of stimuli (278). The mitogen-activated protein ki-
nase (MAPK) plays a major role in controlling activation of
AP-1 proteins through phosphorylation. All three classes of
MAPKs are involved in regulation of AP-1 activity (i.e., c-jun
is regulated mainly by JNK and ERK in some cell types). 
c-Fos is a substrate of ERK, and ATF2 is regulated by JNK and
p38 kinases (146). JNK and p38 are both activated by stress
stimuli.

a. Role of AP-1 in cell survival. AP-1 transcription factors
are involved in both the induction and prevention of apoptosis,
and the exact outcomes are highly tissue and developmental-
stage specific (278). The pivotal role of c-Jun in cell survival
was evidenced by embryonic lethality of mice lacking c-Jun,
which is associated with prominent apoptosis of liver cells, lead-
ing to liver failure (121). Furthermore, by using sorbitol as an
osmotic stressor, a recent study showed that c-Jun–deficient fi-
broblasts were more sensitive to osmotic stress-induced cell
death, and downregulation of c-jun promoted cell death in c-
Jun �/� cells (334). These findings suggested a protective role
of c-Jun against cell death. In contrast, studies in PC12 cells
revealed a dual effect of c-Jun on cell death, depending on the
stage of differentiation. In differentiated cells, c-Jun mediated
induction of apoptosis, whereas in cells that were not yet dif-
ferentiated, c-Jun exerted its cytoprotective effect (181). The
role of c-Jun as an inducer of apoptosis was also seen in other
systems. For example, overexpression of c-Jun was found to in-
duce apoptosis in 3T3 fibroblast (26). Inhibition of c-Jun by an-
tisense oligonucleotides is known to increase survival of lym-
phoid cells deprived of growth factor (53). Some studies
suggested that the apoptosis-inducing effect of c-Jun may be
triggered by JNK (71, 338). The role of the JNK signaling path-
way in cell survival is discussed later in this section.

The mechanism by which c-Jun mediates cell survival or
death seems to depend on the balance between the proapoptotic
and antiapoptotic target-gene transcriptions and may be further
regulated by p53 and p21 through their cell-cycle regulatory ac-
tivity. FasL, Bim, and Bcl3 are target genes of c-Jun. Induction
of FasL and Bim may promote apoptosis, whereas upregulation
of BCL3 by c-jun may potentiate its antiapoptotic function
(278). It is the equilibrium between the positive and negative
regulators of apoptosis that determines overall cell fate. This
balance may be cell-type and stimulus dependent, as well as
the integration of the effects from other transcription factors.
Furthermore, c-Jun was shown to regulate the decision between
p53-mediated cell-cycle arrest and apoptosis. A high level of
c-Jun, which repressed p53-mediated p21 induction, was shown
to prevent UV-induced growth arrest and shift most of p53 ac-
tivity toward the induction of apoptosis (277). Interestingly, a

recent report showed that Jun proteins (c-Jun, JunD, and JunB)
upregulate antioxidant-responsive element (ARE)-mediated ex-
pression of antioxidant genes, such as thioredoxin, by associ-
ating with Nrf2 and Nrf1 and binding with ARE (318). This
function may be important in the adaptive response to survive
under oxidative stress.

b. Redox regulation of AP-1. Oxidative stress can activate
c-Jun and ATF2 through phosphorylation by JNK and p38, re-
spectively. Redox regulation of the JNK and p38 pathway is
discussed later in this review. Like NF-�B, transcriptional ac-
tivation of AP-1 can be regulated by chromatin remodeling (10,
211). Oxidative stress is known to promote AP1 activity through
histone acetylation by inhibition of HDAC (251). Likewise, ni-
tric oxide may suppress the DNA-binding activity of AP-1
through S-glutathionylation (158). Furthermore, the intracellu-
lar level of AP-1 can be regulated by redox-mediated mecha-
nisms at the levels of transcription and protein turnover. Recent
reports show that expression of c-Jun can be transcriptionally
repressed by HDAC or proteosomally degraded through
MEKK1-induced ubiquitination in response to osmotic stress.
This downregulation of c-Jun plays an important role in apop-
tosis induction by oxidative stress (333, 334).

3. Nrf2. NF-E2–related factor 2 (Nrf2) is a member of
p45 NF-E2–related proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3
(162, 163). The proteins in this family require a heterodimeric
formation with small Maf proteins for DNA binding (215). Un-
der normal conditions, Nrf2 localizes in the cytoplasm, where
it interacts with the actin-binding protein, Kelch-like ECH-as-
sociating protein 1 (Keap1) (133). Keap1 functions as an adap-
tor of Cul3-based E3 ubiquitin ligase and targets Nrf2 for rapid
degradation by the ubiquitin-proteasome (161). Oxidative stress
and electrophiles are major activators of Nrf2 pathway. Disso-
ciation of Nrf2 from Keap1 is a key step in activating Nrf2.
The free Nrf2 translocates to the nucleus, heteromerizes with
Maf(s), and binds to a cis-acting element known as antioxidant
responsive element (ARE) or electrophile responsive element
(EpRE) within the regulatory regions of many genes. Studies
using Nrf2-deficient mice and microarray-based assays suggest
that Nrf2 modulates transcription of almost 200 genes whose
protein products function as antioxidants, phase II detoxifica-
tion enzymes, proteosomes, heat-shock proteins, and glu-
tathione-synthesis enzymes. These proteins all play a critical
role in cellular defense against oxidative stress (132, 162).

a. Role of Nrf2 in cell survival. Nrf2 plays a critical role in
protection against oxidative damage induced by acute injury,
hyperoxia, nitrosative stress, ER stress, and exogenous proox-
idative agents (43, 178, 189, 295). Nrf2 activation promotes cell
survival under oxidative stress through multiple mechanisms.
One major function is the transactivation of many antioxidant
proteins, including heme oxygenase-1, ubiquitin/PKC-interact-
ing protein A170, peroxiredoxin 1, the heavy and light chains
of ferritin, catalase, glutathione peroxidase, superoxide dismu-
tase, and thioredoxin (131). These proteins directly or indirectly
scavenge free radicals and decrease the dose-dependent toxicity
of ROS. Furthermore, Nrf2 regulates the synthesis of glu-
tathione by controlling both the basal and inducible expression
of genes encoding the heavy and light chains of glutamylcys-
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teine synthetase (14). Because glutathione is not only the most
abundant scavenger of ROS, but also the key controller of re-
dox status of proteins affecting cell survival and death, the reg-
ulatory effect of Nrf2 on glutathione synthesis plays an impor-
tant role in cell survival. Furthermore, Nrf2 was shown to
modulate elimination of prooxidative electrophilic compounds
through regulating expression of phase II detoxification en-
zymes such as glutathione-S-transferase (GST) and transporters
such as multidrug resistance–associated protein 1/ATP-binding
cassette transporter C. Direct roles of Nrf2 on cell survival and
the death pathway are also evident. Nrf2 has been identified as
an inhibitor of Fas-induced apoptosis (166, 213). In the absence
of Nrf2, death-receptor–induced apoptosis was found to be en-
hanced. The cell death could be suppressed by supplementation
of glutathione, suggesting that the antiapoptotic effect of Nrf2
was through elevating intracellular glutathione levels (166,
213).

Accumulation of unfolded polypeptides after oxidative stress
could also trigger apoptosis. In response to unfolded protein
stress, Nrf2 is a direct substrate of phosphorylation by PERK
and acts as an effector of PERK-dependent cell survival (56).
PERK is an ER transmembrane protein kinase that phosphory-
lates the subunit of translation-initiation factor 2 (eIF2a) in re-
sponse to ER stress. Phosphorylation of eIF2a reduces the
global translation, allowing cells sufficient time to correct the
impaired protein folding (329). Induction of 26S proteosome
and heat-shock proteins by Nrf2 facilitates the repair or elimi-
nation of the damaged proteins and thus protects cells from
apoptosis (171).

b. Redox regulation of Nrf 2. Association and dissociation of
the Nrf2–Keap1 complex is considered as a key step in regu-
lating Nrf2 activity. Multiple reactive Cys residues in Keap1
are targets of modifications by ROS and electrophiles. As il-
lustrated in Fig. 7, sulfhydryl modifications dissociate Keap1
from Nrf2, allowing the translocation of Nrf2 to the nucleus,

where it transactivates target-gene expression (70). Among the
possible targeted residues for oxidation, Cys273 and Cys288 of
Keap1 seem crucial for the ubiquitination-promoting activity.
Therefore, the oxidative modification of Keap1 may also in-
hibit Keap1-mediated proteosomal degradation of Nrf2, allow-
ing stabilization and nuclear accumulation of Nrf2 (163). In ad-
dition to targeting Keap1, oxidants and electrophiles can
activate Nrf2 through phosphorylation by PKC and PERK.
Phosphorylation of Nrf2 promotes its dissociation from Keap1,
allowing the free Nrf2 to translocate to nucleus (56, 126). In
the nucleus, Nrf2 can also be regulated at the step of DNA bind-
ing. Nrf2 cannot bind to the ARE without forming a heterodimer
with one of the small Maf proteins (149, 215); therefore, the
expression level of Maf protein likely regulates the Nrf2–DNA-
binding capacity. Interestingly, expression of Maf can also be
transcriptionally regulated by Nrf2/ARE itself, thus serving as
an autoregulatory feedback mechanism (150). In addition to
Maf, c-Jun and ATF-4 can heteromerize with Nrf2 and enhance
Nrf2-DNA–binding activity (118). In contrast, Bach1, a tran-
scriptional repressor of ARE/EpRE, can compete with Nrf2 to
bind to the same DNA sequence, thus preventing Nrf2/ARE
transcriptional activation. Recent study showed that oxidative
stress can trigger nuclear accumulation of Bach1, leading to
transcriptional suppression of ARE target genes (220).

4. HIF. Hypoxia-inducible factor (HIF) is generally
known as an important transcription factor that regulates cellu-
lar metabolism and cell survival under hypoxic stress (29). How-
ever, HIF can also be activated by nonhypoxic stimuli such as
thrombin and CoCl2 under normoxia (248). HIF is composed of
an alpha and beta subunit (HIF-� and HIF-�). Three � isoforms
have been described (HIF-1�, HIF-2�, HIF-3�), with HIF-1 �
being most intensively studied (30). Active HIF requires het-
erodimeric formation of the two subunits, which then translo-
cates to nucleus, binds to the hypoxia-response element (HRE),
and associates with coactivators such as CBP/p300. The binding
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FIG. 7. Redox regulation of
Nrf2. In unstressed cells, Nrf2 is
sequestered in cytosol by Keap1,
which functions as an adaptor for
Cul3 (a ubiquitin E3 ligase) to tar-
get Nrf2 for ubiquitination and
degradation. On oxidative stress or
electrophilic stimuli, Nrf2 is acti-
vated via two mechanisms: (a) thiol
oxidation of Keap1 and (b) phos-
phorylation of Nrf2 by kinases such
as PKC or PERK. These cause re-
lease of Nrf2 from the inactive
complex. The free Nrf2 is translo-
cated to the nucleus, where it forms
a heterodimer with Maf proteins
and then binds to the antioxidant-
responsive element or electrophile-
responsive element (ARE/EpRE).
The active binding triggers tran-
scription of multiple target genes

that encode antioxidants, glutathione synthesis enzymes, proteosomes, and heat-shock proteins. Grey, Active forms of the
molecules. GPX, glutathione peroxidase; Trx, thioredoxin; SOD, superoxide dismutase; GCL, glutamylcysteine ligase, GST;
glutathione-S-transferase.



results in activation or suppression of many genes involved in
metabolism, angiogenesis, invasion/metastasis, and cell sur-
vival/death (29). The stability and activity of HIF1 can be regu-
lated by oxygen-requiring hydroxylases [for review, see (270)].
Although HIF-� is constantly expressed regardless of oxygen lev-
els, the stability of HIF-� is highly dependent on oxygen. Under
atmospheric levels of oxygen (21%), the dioxygenase PHD (pro-
lyl hydroxylase domain) hydroxylates HIF-1� on two proline
residues. The hydroxylated HIF is then recognized by the von
Hippel–Lindau (VHL) ubiquitin E3 ligase complex, which pro-
motes the degradation of HIF-1� by the 26S proteosome (134).
The hydroxylation of HIF requires iron in ferrous form (Fe2�),
oxygen, and 2-oxoglutarate as cofactors for the PHD catalytic
activity (30). Under hypoxia, ferrous iron is converted to ferric
form (Fe3�), resulting in a decrease in HIF-� hydroxylation by
PHD and subsequent stabilization of HIF-� (18). When the free
HIF-1� binds to HIF-� and translocates to nucleus, another oxy-
gen-dependent hydroxylase enzyme called factor-inhibiting 
HIF-1 (FIH-1) can regulate the DNA binding and transcriptional
activity of HIF. Under normoxia, FIH-1 hydroxylates an N-ter-
minal asparagines residue and renders HIF inactive by prevent-
ing the binding between HIF and its coactivators (175). Interest-
ingly, genes encoding two isoforms of PHD proteins (phd 2 &
3) are HIF targets. Therefore, HIF can also be autoregulated un-
der hypoxia by increased expression of its regulators. This re-
sponse ensures a rapid and optimal degradation of HIF-� when
the cells return to normoxia (30).

a. Role of HIF in cell survival. HIFs can act as both pro-
survival and prodeath factors, depending on the stress condi-
tions. Under most circumstances, HIF-1 actively contributes to
adoptive responses to promote cell survival under hypoxia
through transcriptional regulation of angiogenic factors and gly-
colytic enzymes (90). In tumor cells, HIF plays a major role in
the metabolic switch that shunts glucose metabolites from mi-
tochondria respiration to cytosolic glycolysis (Warburg effect)
(194). HIF activation not only increases anaerobic glycolysis,
but also attenuates mitochondrial respiration. The former oc-
curs through upregulation of genes encoding glucose transporter
(GLUT), glucokinases, aldolase A, and lactate dehydrogenase
A (LDH-A), the enzymes that convert pyruvate to lactate. The
latter occurs through the induction of pyruvate dehydrogenase
kinase 1 (PDK1), which inhibits pyruvate dehydrogenase, the
enzyme that converts pyruvate into acetyl-CoA in the mito-
chondria. These two phenomena were known to prevent the en-
try of pyruvate to the TCA cycle and shunt pyruvate toward
lactate formation through glycolysis (29, 155). Recent study
showed that silencing LDH-A resulted in a metabolic switch
from glycolysis to the mitochondrial pathway and reduced 
tumor growth (82). These suggest that formation of lactate
through glycolysis is important for tumor cell metabolism. Fur-
thermore, it has been proposed that the increase in glycolysis
mediated by HIF facilitates cell survival through maintaining
ATP production and preventing the deleterious effect of ROS
generated from mitochondrial respiration (155). Conversely, re-
cent evidence suggests that HIF1 can also promote hypoxic cell
death under certain conditions. It is proposed that active HIF
may induce apoptosis though increased expression of several
proapoptotic factors, including mitochondrial HGTD-P, Noxa,
BNIP3, NIX, and IGFBP-3 (104). Thus, in response to hypoxia,

HIF may promote or prevent cell death in a cell-type and stim-
ulus-dependent manner.

b. Redox regulation of HIF. Under normoxia, a variety of
stimuli [including growth factors such as IGF-1, hormones, va-
soactive peptides such as thrombin, metal ions such as CoCl2,
H2O2, and certain NO donors such as S-nitrosoglutathione
(GSNO) and NOC-18] are known to stabilize HIF, in part
through increase ROS/RNS production (17, 100, 208). Inter-
estingly, attenuation of ROS/RNS levels by antioxidants, such
as NAC, ascorbate, and catalase, or genetic downmodulation of
ROS-producing enzymes, such as NADPH oxidase 4 (NOX4),
were found to decrease HIF1 expression under certain condi-
tions (17, 153, 160, 276). At least three mechanisms have been
proposed to explain how ROS/RNS stabilize HIF under nor-
moxia (18). The first possibility is that the increased generation
of OH� from H2O2 through Fenton reactions, likely promotes
the conversion of Fe2� to Fe3�. Because Fe2� but not Fe3� is
required for active PHD activity, accumulation of ROS would
lead to inactivation of PHD and consequently stabilization of
HIF1 (248). This idea is supported by the findings that ROS
accumulation by genetic loss of JunD–dependent antioxidant
pathways leads to increased HIF1 activation through decreased
availability of Fe2� and attenuated activity of PHD (92). Fur-
thermore, direct oxidative modifications such as S-nitrosylation
of HIF or pVHL have been shown to cause stabilization of HIF
(183, 234). Another putative mechanism of oxidative stabiliza-
tion of HIF1 is that ROS/RNS activate multiple signaling path-
ways, such as PI3K/Akt and p38 MAPK, which may render
PHD catalytically inactive (80, 148, 216).

Under hypoxic conditions, both ROS and RNS were found to
inhibit HIF-1 DNA-binding activity and HIF-1 accumulation (34,
127). A study in HEK293 cells demonstrated that NO can desta-
bilize HIF under hypoxic conditions through an increase in PHD-
dependent degradation of HIF-1� (108). The author proposed that
under hypoxia, NO inhibited mitochondrial respiration; thus, oxy-
gen may be redistributed to other oxygen-dependent targets, such
as PHD, and consequently promotes prolyl hydroxylation of HIF
(108). Another study suggests that NO mediates destabilization
of HIF under hypoxia through increased ROS production (40). In
vitro HIF-1�–pVHL interaction assays demonstrated that a low
level of ROS formation increased PHD activity and promoted
ubiquitination and degradation of HIF (40). In addition to redox
modulation of PHD, several lines of evidence suggest that a re-
ducing condition is required for HIF-DNA–binding activity (152,
187, 325), and oxidative agents such as H2O2 can decrease HIF-
DNA–binding activity and the expression of its target genes, such
as EPO, aldolase A, and glucokinase (152). Taken together, these
studies suggest the important role of the redox system in regulat-
ing HIF under both normoxia and hypoxia. However, further in-
vestigation is needed to provide a clear understanding of how
ROS/RNS modulate HIF stability and activity under hypoxia.

B. Redox regulation of cell survival at the 
signal-transduction level

1. Mitogen-activated protein kinase. MAPK operates in a
cascade fashion with a MAP kinase kinase kinase (MAPKKK)
phosphorylating and activating a MAP kinase kinase
(MAPKK), which then phosphorylates and activates a MAP ki-
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nase (MAPK). The MAPK family consists of extracellular reg-
ulated kinases (ERK1/2), Jun N-terminal kinase (JNK), p38 ki-
nase, ERK3/4, and the big mitogen-activated protein kinase 1
(BMK1/ERK5) pathways. The JNK and p38 kinase pathways
are sometimes grouped together and referred to as the stress-
activated protein kinases (SAPKs) (172).

a. Role of MAPK for cell survival under oxidative stress.
Generally, ERK1/2 signaling promotes cell survival under mild
oxidative stress, whereas SAPKs seem to induce cell death as
a response to oxidative injuries (203). In response to oxidative
stress, JNK and p38 activation can induce both intrinsic and 
extrinsic pathways of apoptosis and necrosis (206, 280). In-
duction of apoptosis by activated JNK involves direct phos-
phorylation of pro/anti-apoptotic BCL2 family members, trans-
activation of AP-1 (c-Jun and ATF2), and stabilization of p53.
Phosphorylation of Bcl-2, Bcl-xL, and Mcl-1 by JNK is known
to inhibit their antiapoptotic activities, whereas phosphoryla-
tion of Bim, Bmf, and Bad by JNK results in activation of those
BH3-only proteins. The inhibition of antiapoptotic proteins and
the activation of BH3-only proteins may promote translocation
and activation of Bax/Bak, leading to mitochondria-mediated
apoptosis (331). Furthermore, activation of JNK was shown to
promote its dissociation from p53, leading to stabilization of
p53. Active p53 in combination with AP-1 leads to Bid cleav-
age followed by the translocation of Bax protein to mitochon-
dria and initiation of apoptosis (291). Although JNK and p38
activation can lead to cell death, the requirement of kinases
seems to be cell-type and stimulus specific. An example is the
critical role of p38 MAPK but not JNK in induction of apop-
tosis in keratinocytes by UVB irradiation (311). A recent study
showed that the SAPK pathways can also induce apoptosis
through the death-receptor pathway (280, 282). Conversely,
JNK or p38 MAPK activation has been reported to have an an-
tiapoptotic effect in malignant B and T lymphocytes, respec-
tively (41, 191). The bifunctional role of the SAPK pathways
in cell-fate decision may be dependent on different cell types
and stimuli. Furthermore, the duration of the SAPK activation
may dictate its consequences; that is, a transient activation may
promote cell survival, whereas a sustained activation tends to
induce apoptosis (203).

b. Redox regulation of MAPK. Multiple evidence shows that
oxidative stress can activate the ERK pathway (301). This ac-
tivation involves the stimulation of growth-factor receptor (ty-
rosine kinase receptor), which activates Ras, recruits Raf-
1MAPKKK to the plasma membrane, and sequentially 
phosphorylates and activates MEK1/2 and ERK1/2. Redox
modification can regulate ERK activation at the level of the ty-
rosine kinase receptor and the Ras activation. Autophosphory-
lation and activation of the tyrosine kinase receptor can be pro-
moted by direct thiol-modification of the receptor (46).
Furthermore, sustained activation of the receptor by oxidative
stress could be obtained through oxidative inactivation of the
phosphatases, the enzymes that dephosphorylate and inactivate
the receptors (159). At the level of Ras activation, oxidative
stress can modulate the function of Ras through thiol modifi-
cations. S-nitrosylation or glutathionylation of Ras is known to
activate the protein directly and initiate the Ras-Raf-MEK/ERK
cascade (174, 199).

The SAPK pathways are major transducers that signal cell
death or survival in response to oxidative stress. In most cir-
cumstances, activation of SAPK pathways by ROS stress re-
sults in induction of apoptosis. The stress-response pathways
are regulated at multiple levels, as illustrated in Fig. 8. The
apoptosis-regulating signal kinase 1 (ASK1) is an important re-
dox sensor for initiation of the SAPK signaling cascade.
ASK1/MEKK5 is a ubiquitously expressed MAP kinase kinase
kinase, which activates JNK and p38 MAP kinase pathways 
by Ser/Thr phosphorylation of their respective MKKs:
MKK4/MKK7 for JNK and MKK3/MKK6 for p38 MAP ki-
nases �/� (291). Under nonstressed condition, ASK1 is se-
questered by Trx in an inactive form (264). The association of
thioredoxin with ASK1 via Cys32 or Cys35 of Trx appears to
be necessary and sufficient to promote ASK1 ubiquitination and
degradation, leading to abrogation of the ASK1 apoptotic ac-
tivity. Because the binding between Trx and ASK1 requires a
reduced form of Trx, the ASK-1/Trx complex can be dissoci-
ated through oxidative modifications. Apoptotic stimuli such as
ROS and TNF induce oxidation of the critical cysteine residues
in Trx and cause its dissociation from ASK1. The free ASK1
can then form a multimeric complex with active kinase activ-
ity (101, 186). A study using genetic deletion of ASK1 has con-
firmed that ASK1 activation is required for sustained activation
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FIG. 8. Redox regulation of stress-responsive kinase
(SAPK) signaling pathways. In most cases, activation of the
SAPK pathway transduces an oxidative stress signal to cell
death. Under nonstressed conditions, apoptosis-regulating sig-
nal kinase 1(ASK1) is inhibited by the reduced form of thiore-
doxin (Trx) or glutaredoxin (Grx). Increased oxidative stress
causes oxidation of Trx and Grx and releases ASK1 to form
an active multimeric complex with proper trans- or autophos-
phorylation. The activation of ASK1 subsequently leads to ac-
tivation of c-Jun N-terminal kinase (JNK) and p38-MAPK, re-
sulting in induction of cell death. JNK can also be inhibited by
complex formation with glutathione S-transferase-� (GST-�)
under nonstressed conditions, and can be activated by ROS in
a similar fashion as ASK1. Negative regulatory molecules in-
clude the Ser/Thr phosphatase 5 (PP5), which inhibits ASK1
kinase activity by causing its dephosphorylation, and heat-
shock protein 72 (Hsp72), which inhibits JNK activity. *Site
of redox regulation. Grey, Active forms of the proteins.



of JNK/p38 MAPK and oxidative stress-induced apoptosis
(297). Interestingly, recent work suggested that in response to
H2O2, the active ASK1 seemed to undergo further oxidation via
interchain disulfide bond formation, which maintained a sus-
tained activation of JNK and induction of apoptosis (221). Be-
sides Trx, glutaredoxin (Grx) has been reported to function as
another negative regulator of ASK1 in a redox-sensitive and
glutathione-dependent fashion (283). As a negative regulatory
mechanism, activation of ASK1 can be inhibited through its
binding with Ser/Thr phosphatase 5 (PP5). In response to ox-
idative stress, PP5 was found to dephosphorylate and inactivate
ASK1 (212). At the level of JNK, recent studies showed that
under nonstressed conditions, the � and � classes of glu-
tathione-S-transferase (GST) are negative regulators of JNK (1,
326). Under oxidative stress, suppression of JNK activity by
GST can be reversed through dissociation of the GST/JNK com-
plex and oligomerization of GST� (1). The oxidative liberation
of JNK from GST resulted in induction of JNK-mediated apop-
tosis. In contrast, others reported that oxidative stress can in-
hibit JNK activity and apoptosis through induction of Hsp72
(238). RNS can oxidatively modify various SAPK pathways
and provide differential effects. For example, S-nitrosylation of
JNK1 and JNK2 was found to inhibit their activities (237),
whereas tyrosine nitration of p38MAPK by peroxynitrite was
shown to induce immediate activation of the kinase (269). The
fairly complex effect of oxidative stress on SAPK pathways
may be owing to the differential dose and duration of the stim-
uli and types of oxidative modifications.

2. PI3K/Akt pathway. Signal transduction via PI3-ki-
nases plays an important role in regulating cell growth, prolif-
eration, survival, and motility. A moderate level of ROS acti-
vates PI3K signaling and promotes cell survival, whereas
sustained oxidative stress may inhibit this pathway, allowing
apoptosis to occur (182). The PI3K cascade is stimulated by
phosphorylation of growth-factor receptor (tyrosine kinase re-
ceptor), which promotes its direct binding with PI3K or indi-
rect binding through adapter proteins such as IRS docking 
protein for IGF-1 signaling. Activated PI3K converts the mem-
brane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to the
lipid second messenger phosphatidylinositol 3,4,5-trisphos-
phate [PI(3,4,5)P3 or PIP3]. PIP3 recruits Akt and 3�-phospho-
inositide–dependent kinase-1 (PDK1) to the plasma membrane
through its binding with pleckstrin homology (PH) domains of
these proteins (315). Then the PDK1 can phosphorylate and ac-
tivate Akt (22, 315). Akt, which can also be phosphorylated by
the mTOR complex 2 (TORC2), regulates the functions of
downstream targets through its Ser/Thr kinase activity (266).
The activation of the PI3K/Akt pathway is tightly regulated by
phosphatases, especially the reversion of PIP3 back to PI(4,5)P2

by phosphatase and tensin homologue (PTEN) and the inacti-
vation of receptor tyrosine kinases by protein tyrosine phos-
phatases (PTPases) (68).

a. Role of PI3K/Akt in cell survival. Compelling evidence
suggests that oxidative stress–induced activation of the
PI3K/Akt pathway is crucial for cell survival (327). Paradoxi-
cally, under certain circumstances, phosphorylation of Akt
seemed to play a proapoptotic role through induction of ROS
production (105) or activation of the Fas-mediated death path-

way (193). The dual effects of PI3K/Akt are likely the results
of crosstalk with other signaling pathways, such as JNK and
PKC (105). Survival signals from PI3K/Akt pathways were
transduced mainly through the phosphorylation and inactiva-
tion of proapoptotic proteins such as BAD, caspase-9, P53, and
forkhead transcription factor (FKHRL1), which targets FasL,
Bim, IGFBP1, and Puma. Akt phosphorylates and activates IKK
and cyclic AMP response element–binding protein CREB, re-
sulting in elevated transcription of genes encoding antiapop-
totic proteins such as Bcl-2, Bcl-Xl, and Mcl-1 (203). Further-
more, Akt also exerts its antiapoptotic function by
phosphorylation and inhibition of ASK1 activity, which pre-
vent stress-induced apoptosis (154). This is an example of
crosstalk between PI3K/Akt and SAPK pathways in the regu-
lation of cell survival.

b. Redox regulation of PI3K/Akt. As depicted in Fig. 9, sev-
eral components of the PI3K/Akt signaling pathway are redox
sensitive. Activation or inhibition of this pathway by the redox
system is mainly through oxidative modification of Cys-de-
pendent phosphatases (CDPs) and protein kinases. Although the
oxidative inactivation of CDPs is known to be critical in acti-
vation of the pathways, redox modifications of protein kinases
seems to inhibit the survival signaling. CDPs comprises of a
large family of enzymes that share a conserved catalytic do-
main containing a highly reactive Cys residue. At physiologic
pH, the Cys exists as a thiolate anion, which is required for its
phosphatase activity. Oxidative modification of the Cys signif-
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FIG. 9. Redox regulation of the PI3K/Akt signaling path-
way. PI3K/Akt transduces the signal for cell survival mainly
through phosphorylation of target molecules by Akt. This re-
sults in inactivation of proapoptotic proteins and activation of
transcription factors, which target antiapoptotic proteins. Un-
der oxidative stress, this pathway is activated by oxidative in-
activation of phosphatases [i.e., protein tyrosine phosphatases
(PTPases) and PTEN], allowing constitutive activation of tyro-
sine kinase receptor and PI3K. However, direct oxidative mod-
ification of PI3K and Akt can result in their inactivation and
compromise the survival signals. Furthermore, the PI3K/Akt
pathway can also promote cellular production of ROS through
activation of Rac and NADPH oxidase (NOX). *Site of redox
regulation. Grey, Active forms of the proteins; TORC2, mTOR
complex 2.



icantly inhibits the enzyme activities (265). CDPs that regulate
PI3K/Akt signaling include PI3-phosphatase, PTEN, and 
PTPases. Oxidative inactivation of PTEN through an intramo-
lecular disulfide bond or S-nitrosylation of the active Cys is
known as an important mechanism of PI3K/Akt activation by
oxidative stress (179, 342). The reduction of oxidized PTEN in
cells appears to be mediated predominantly by the Trx system
(180). Redox modification of PTEN was recently shown to be
a mechanism to promote survival of cancer cells with mito-
chondrial dysfunction (240). Normally, active PTEN is main-
tained in a reduced state by the NADPH/Trx system. Therefore,
a defect in mitochondrial respiration, which causes an increase
in NADH and a decrease in NADPH, can lead to oxidative in-
activation of PTEN and activation of the PI3K/Akt survival
pathway (240). Besides the lipid phosphatase, protein phos-
phatases such as PTP1B, SHP-2, and TC45 are targets of ROS-
mediated oxidation (179, 207). These phosphatases are nega-
tive regulators of receptor tyrosine kinases; therefore, their
oxidative inactivations result in sustained activation of the re-
ceptor-mediated PI3K/Akt signaling (328).

Besides redox regulation of phosphatases, protein kinases
such as PI3K and Akt can be modified by oxidation. In con-
trast to phosphatases, redox modification of the kinases results
in downregulation of PI3K/Akt signals and a decrease in sur-
vival capacity. In response to oxidative stress, a disulfide bridge
is formed between Cys297 and Cys311 in the kinase domain
of Akt (219). Interestingly, the oxidation of Akt does not di-
rectly affect the kinase activity in vitro. Instead, it promotes the
binding of Akt to protein phosphatase PP2A, leading to de-
phosphorylation and inactivation of Akt (219). The oxidative
inactivation of Akt was shown to be reversible by GRX, which
appears to exert its antiapoptotic effect through this mechanism

(219). Recently, Akt was also shown to be inhibited by S-ni-
trosylation (340). At the level of PI3K, the p85 subunit of PI3K
was shown to be a direct target for tyrosine nitration, leading
to inactivation of the Akt survival pathways (77).

It is worth noting that receptor-mediated activation of PI3K
can stimulate Rac-NAD(P)H oxidase (NOX), leading to in-
creased generation of ROS (330). Recent study demonstrated
that ROS produced by NOX may contribute to monocyte/mac-
rophage cell survival through activation of Akt and inhibition
of p38 MAPK pathways (328).

C. Redox regulation of cell survival at the 
cell death–execution level

The redox regulation of transcription factors and signal-trans-
duction pathways may affect cell survival through a series of
molecular processes to activate or inhibit the cell-death execu-
tion molecules. Under certain conditions, ROS stress may di-
rectly modulate the activity of these cell-death effectors. As
shown in Fig. 10, several apoptotic effectors, such as caspases,
Bcl-2, and cytochrome c, are redox-sensitive, and their func-
tions can be significantly affected by cellular ROS.

1. Caspases. Caspases are evolutionarily conserved as-
partate-specific, cysteine-dependent proteases. Caspases in-
clude large prodomain caspases such as caspase-1, -2, -4, -5, -
9, -8, -10, -11, and -12, and small prodomain caspases including
caspase-3, -6, -7, and -14. Activation of the large-domain cas-
pases (initiator caspases) occurs by forming multimeric com-
plexes [i.e., apoptosome for caspase-9 and death-inducing sig-
naling complex (DISC) for caspase-8]. Whereas the initiator
caspases can be activated through proximity-induced autoacti-
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FIG. 10. Redox regulation at
the execution level. Apoptosis
can be triggered through extrin-
sic or intrinsic pathways. Exter-
nal stimuli such as TNF-� or Fas
ligand binds to death receptor and
transduces the signal into activa-
tion of caspase-8, leading to ini-
tiation of the extrinsic pathway.
Intrinsic signals, such as DNA
damage and oxidative stress, can
transduce the death signal by
causing release of cytochrome c
from mitochondria to cytosol,
followed by activation of cas-
pase-9 through formation of
apoptosome (Apaf-1, cy-
tochrome c, pro-caspase 9, and
dATP). Active caspase 8 and cas-
pase 9 can further cleave procas-
pase-3, producing an active frag-
ment of caspase-3, which cleaves
its protein substrates such as
PARP, resulting in apoptosis. To

keep apoptosis in check, Bcl-2 family proteins play an important role in regulation of mitochondria membrane permeability and
cytochrome c release. Antiapoptotic proteins such as Bcl-2 prevent apoptosis through both direct interaction with proapoptotic
proteins such as Bax and indirect control of oxidative stress via maintenance of a reducing environment. Grey*, Potential sites
of redox regulation. Car, cardiolipin; Cyt c, cytochrome c; casp 3, caspase 3.



vation, effector caspases require proteolytic maturation (by the
large-prodomain caspases) to be activated (281).

a. Role of caspases in cell death and survival. A hallmark
of apoptosis is the activation of caspases, which requires se-
quential proteolysis of the initiator caspases and effector cas-
pases. Apoptotic stimuli can trigger caspase activation either
through the extrinsic (death receptor–mediated caspase-8 acti-
vation) or the intrinsic pathways (mitochondria-mediated cas-
pase-9 activation). Activation of the caspase cascade ultimately
leads to cleavage of a variety of substrates (e.g., PARP), DNA
fragmentation, loss of membrane integrity, and cell death. Be-
sides the critical role of caspases in apoptosis, emerging evi-
dence suggests non-apoptotic functions of caspases, which in-
cludes an opposing role in promoting cell survival (173). An
example is the requirement of caspase-8 and c-FLIP in NF-�B
activation (288). Although oxidative stress is known to regu-
late the apoptotic activity of caspases, it is still unclear whether
the prosurvival function of caspases can be regulated by redox
modifications.

b. Redox regulation of caspases. As described earlier, ox-
idative stress can activate or inhibit caspases through signal-
transduction pathways. Furthermore, the levels of oxidative
stress can regulate the expression of FasL, which binds to its
receptor and leads to caspase-8 activation (12). Increased en-
dogenous levels of ROS, especially in the mitochondria, can
stimulate the apoptotic machinery by promoting membrane per-
meabilization through mitochondrial permeability transition
(MPT). The permeabilization of mitochondria may lead to a re-
lease of cytochrome c and an activation of caspase-9 through
the formation of apoptosomes (6, 168, 177). In addition to the
stimulation of the apoptotic apparatus, ROS can also directly
affect the function of caspase proteins. The reduced state of Cys
at the active site is required for the catalytic activity of cas-
pases, and thus its function is redox sensitive. Caspases can be
activated or inhibited by redox system, depending on the de-
gree of the ROS stress (39). A study using various concentra-
tions of H2O2 demonstrated that a low dose of H2O2 can acti-
vate caspases and induce apoptosis, whereas a high dose can
cause oxidative inactivation of caspases, and the cells undergo
necrosis (112). Several lines of evidence suggest that reducing
environment is required for proper function of the Cys-con-
taining active sites of caspases. Oxidative modifications of cas-
pases, such as direct oxidation, glutathionylation, and S-nitro-
sylation, attenuated the proteolytic activities and inhibited
apoptosis (112, 115, 156). Besides the regulation of its catalytic
activity, a recent study with genetic silencing of Grx in endo-
thelial cells showed that activation of caspase 3 and TNF-�–
induced cell death can be suppressed by glutathionylation of
procaspase-3 (235). This is because the glutathionylated pro-
caspase 3 is less susceptible to cleavage by initiator caspase-8
(235). The important role of glutathione in modulating the ac-
tivity of effector caspases may provide an explanation for the
observation that the efflux of GSH is required for the execu-
tion of apoptosis (88, 95).

2. Bcl-2. Bcl-2 is the prototype of antiapoptotic BCL-2
family members (11). It contains BH1-BH4 domains and at-
taches to the outer mitochondrial membrane. Extensive studies

highlight the importance of Bcl-2 in protecting cells against ox-
idative stress–induced apoptosis and its role in regulating re-
dox signaling. These are evidenced by the suppression of lipid
peroxidation and attenuated apoptosis observed in BCL-2–over-
expressed cells, and the similar phenotypes between Bcl-2
knockout mice and mice exposed to chronic oxidative stress
(122, 316). Furthermore, the increased amount of glutathione
was observed in BCL-2–overexpressing cells, suggesting a role
of BCL-2 in controlling the cellular redox status (79).

a. Role of Bcl-2 in cell survival. The antiapoptotic effects of
Bcl-2 are observed at multiple levels. Bcl-2 can prevent mito-
chondrial membrane permeabilization through direct interaction
with proapoptotic Bax/Bak or BH3-only proteins (6). Further-
more, Bcl-2 was shown to prevent ROS-induced mitochondr-
ial permeability transition pore opening in certain experimen-
tal models (167). Besides its direct antiapoptotic role, Bcl-2 also
functions to maintain redox homeostasis by regulating glu-
tathione and NADPH levels (324). Interestingly, because the
redox environment of the nucleus has an effect on the accessi-
bility of transcription factors to their targets, nuclear GSH com-
partmentalization controlled by Bcl-2 is thought to play a role
in regulating the transcription of genes encoding certain mito-
chondria proteins such as fatty acid–binding proteins (FABPs),
VDAC, and UCP (324). These proteins may directly or indi-
rectly modulate mitochondria-induced apoptosis. Interestingly,
recent work showed that conformational change of Bcl-2
through its binding with Nur77 can convert Bcl-2 to a proapop-
totic protein (185). 

b. Redox regulation of Bcl-2. The function of Bcl-2 can be
regulated through redox-sensitive signaling. Mild oxidative
stress is shown to induce the expression of Bcl-2 through acti-
vation of transcription factors such as NF-�B, as an adaptive
response to promote cell survival (42). In contrast, in response
to oxidative stress, JNK can phosphorylate and inhibit Bcl-2
function, allowing apoptotic processes to occur (11, 65). Be-
sides regulation at the signal-transduction level, recent evidence
suggests that Bcl2 can be directly affected by oxidative stress.
For example, oxidative carbonylation of Bcl-2 by NO has been
shown to be an important mechanism of NO-induced apopto-
sis in insulin-secreting cells (38). Furthermore, inactivation of
ERK1/2 was found to cause proteosomal degradation of Bcl-2
in a redox-dependent manner (32).

3. Cytochrome c. Cytochrome c is a small-molecular-
weight heme-containing protein, which participates in an elec-
tron transfer from complex III to complex IV in mitochondrial
electron-transport chain. Because of the nature of cytochrome
c as a reversible electron donor/acceptor, this protein is highly
redox-sensitive. Cytochrome c locates in inner mitochondria
membrane and interacts with the membrane phospholipid car-
diolipin (233). The release of cytochrome c is considered a hall-
mark of mitochondrial-mediated apoptosis (99).

a. Role of cytochrome c in cell survival. Under physiologic
conditions, cytochrome c plays an essential role in oxidative
phosphorylation and production of ATP, which is the major en-
ergy source for biologic reactions. Generation of superoxide in
mitochondria occurs mainly through electron leakage from
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complex I and complex III. Therefore, cytochrome c, which ac-
cepts an electron from complex III and donates it to cytochrome
c oxidase, also functions to prevent the electron outflow and
superoxide generation. Because of this function, cytochrome c
plays a critical role in keeping ROS generation at a low level,
optimal for cell survival (343). Apoptotic stimuli trigger mito-
chondrial membrane permeabilization and promote the release
of cytochrome c from mitochondria to cytosol, where it acts as
an apoptotic inducer. As shown in Fig. 10, the released cy-
tochrome c forms a complex (apoptosome) with procaspase-9,
Apaf-1, and ATP or dATP, leading to activation of caspase-9
and the downstream caspase cascade (168). Furthermore, the
loss of cytochrome c from the respiratory chain leads to elec-
tron leakage from complex III and increased mitochondrial gen-
eration of superoxide radicals (343). This may explain the in-
crease of ROS level observed during apoptosis, even when the
stimuli are not prooxidants. In addition to ROS generation from
the electron leakage, direct oxidation of cytochrome c by
p66Shc has recently been proposed as a novel mechanism of
mitochondrial ROS generation during apoptosis (97). On
proapoptotic signals, a mammalian adapter protein p66Shc can
be liberated from its putative inhibitory complex in mitochon-
dria. The active p66Shc then oxidizes cytochrome c and pro-
motes the formation of ROS (97). The ROS increase mediated
by cytochrome c may amplify the apoptotic signals and accel-
erate the death-execution process.

Besides its function as an electron carrier, cytochrome c may
act as a peroxidase (13). During the cell-death process, the re-
leased cytochrome c in the cytosol binds and exerts a peroxi-
dase activity on plasma membrane lipids, especially phos-
phatidyl serine, leading to lipid peroxidation (141). This
structural modification of the plasma membrane can lead to ex-
posure of the signals recognized by the macrophage to engulf
the cell corpse (13).

b. Redox regulation of cytochrome c. Cytochrome c is tightly
regulated by the redox system at multiple levels. In the mito-
chondria, the interaction between cytochrome c and cardiolipin
plays a critical role in maintaining cytochrome c in its proper
location and prevents its release to the cytosol (233). The pos-
sible role of cardiolipin in the release of cytochrome c from mi-
tochondria during apoptosis has recently been discussed (233).
Cardiolipin is sensitive to lipid peroxidation, and the oxidized
cardiolipin will lose its binding affinity to cytochrome c. There-
fore, under normal conditions, the cardiolipin–cytochrome c
complex is stabilized by the ROS-scavenging effect of the 
mitochondrial glutathione and mitochondrial membrane glu-
tathione peroxidase 4 (mtGPX4) (253). Interestingly, a novel
role of cytochrome c as a cardiolipin peroxidase has recently
been found (142). When ROS stress exceeds the capacity of the
glutathione system or when the mitochondrial GSH pool is de-
pleted, excessive ROS can activate the peroxidase activity of
cytochrome c, leading to cardiolipin peroxidation (142). Oxi-
dized cardiolipin loses its binding affinity to cytochrome c, al-
lowing cytochrome c to be dissociated and released to cytosol.
This interesting finding raises a novel concept that the redox
status of cytochrome c can autoregulate the localization of cy-
tochrome c. It is worth noting that the effect of ROS/RNS on
the cardiolipin peroxidase activity of cytochrome c is species
specific. For example, H2O2 is a very important cofactor for

the peroxidase reaction, whereas the physiologic concentration
of NO has been shown to effectively inhibit the peroxidase ac-
tivity of cytochrome c (323). 

The release of cytochrome c requires not only its dissocia-
tion from cardiolipin but also the permeabilization of the mi-
tochondrial membrane. This provides another level of its redox
regulation. The increased mitochondrial ROS and the disrup-
tion of the electron-transport chain can cause the collapse of
the mitochondrial transmembrane potential (�	m). This may
result in permeabilization of the mitochondrial membrane,
which allows cytochrome c to be released from the mitochon-
dria. The mechanism of membrane permeabilization has been
extensively reviewed (168). Although low levels of NO can in-
hibit the peroxidase activity of the cytochrome c/cardiolipin
complex, a recent study showed that a direct nitrosylation of
mitochondrial cytochrome c promotes its release to the cytosol
(271).

Once cytochrome c is released to the cytosol, it can induce
apoptosis only if it is in an oxidized form. Under physiologic
conditions, the presence of high levels of cytoplasmic GSH
keeps the released cytochrome c in an inactive (reduced) state,
thus functioning as a fail-safe mechanism if cytochrome c is re-
leased from mitochondria. If the redox status of the cell is dis-
turbed, however, perhaps in the presence of hydrogen peroxide
or depletion of GSH or both, the cellular redox status will be
shifted toward the oxidized state, and cytochrome c will be ac-
tive, allowing caspase activation and apoptosis to proceed (114).

D. Integration of redox-sensitive signaling
pathways in the regulation of cell survival

1. Crosstalk between signaling pathways. Redox
regulation of the key factors affecting cell death/survival is of-
ten bifurcated (i.e., the same protein can either be activated or
inhibited by redox alteration). Whether the consequence of ox-
idative stress will lead to cell survival or death is likely de-
pendent on the integration of those redox-sensitive signals. This
is exemplified by the crosstalk between the PI3K/Akt and
SAPK pathways. As shown in Fig. 11, both pathways can be
activated by oxidative stress. Activation of the PI3K/Akt path-
way can activate nuclear translocation of NF-�B mainly through
phosphorylation of the IKK or NF-�B subunit (314). Activated
NF-�B induces transcription of multiple genes to promote cell
survival (147). In contrast, activation of ASK1 may lead to
phosphorylation of JNK and JNK-induced cell death (297). Un-
der physiologic conditions, cell survival is a favorable process,
and survival mechanisms are activated to inhibit the cell-death
signals at multiple levels. For instance, Akt can phosphorylate
and inhibit the ASK1 cascades (154), whereas NF-�B inhibits
JNK-induced apoptosis through increasing the transcription of
JNK inhibitor (GADD45, XIAP) (61, 147). Studies using
knockout IKK or RelA cells showed that, in the absence of 
NF-�B activation, ROS stress induces JNK activation, leading
to cell death (91, 145). Severe oxidative stress inhibited 
NF-�B signaling, which allowed not only sustained JNK acti-
vation but also amplification of ROS stress due to decreased
transcription of antioxidants (35). These results suggest that the
crosstalk between NF-�B and JNK signaling is important in de-
termining the final cell fate in response to oxidative stress. In
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general, transient activation of JNK signaling by mild ROS
stress leads to predominant antiapoptotic signals and cell sur-
vival, whereas sustained activation of JNK by severe ROS stress
would be proapoptotic. The integration of NF-�B and JNK path-
ways in signaling apoptosis and cell survival in response to ox-
idative stress was recently reviewed (35, 224).

2. Role of p53. Besides the crosstalk between multiple
signaling pathways, certain factors such as p53, which is a re-
dox-sensitive molecule, can regulate cell survival at multiple
levels of signaling. Under normal physiologic conditions, p53
protein has a short half-life. It is maintained at a low level by
MDM2-mediated inactivation and ubiquitin/proteasome degra-
dation (116, 169, 198, 230). With certain stimuli, such as ox-
idative stress and DNA damage, p53 is stabilized by posttrans-
lational modification and translocates to the nucleus. p53 serves
as a master transcription factor to activate the expression of 
proteins involved in maintaining genomic stability and cellular
homeostasis. As a tumor suppressor, p53 exerts its genome
guardian effect by controlling various cell-cycle checkpoints
and regulating DNA-damage repair, senescence, and apoptotic
machineries (9). Recent studies suggested a novel function of
p53 in maintaining redox homeostasis through regulating en-
ergy metabolism, mitochondrial biogenesis, and the expression
of antioxidant enzymes (21). Loss of p53 function contributes
to the development of many types of human cancer (284). A
number of studies suggest that p53 plays an important role in
controlling cell fate through regulation of cellular ROS level
(28, 69, 300).

a. P53 serves as an antioxidant to maintain redox homeo-
stasis and normal cell survival. Recent study revealed that un-
der physiologic conditions or mild ROS stress, p53 is acti-
vated to induce transcriptions of multiple antioxidant
molecules such as SESN1 and SESN2 and GPX1, which func-
tion to decrease ROS level and to promote cell survival (263).
Suppression of p53 by siRNA caused an increase in cellular
ROS, which can be completely reversed by the use of anti-
oxidant N-acetylcysteine (NAC) (263). Splenocytes and thy-

mocytes of Trp53�/� mice also exhibited increased ROS com-
pared with that of the wild-type mice. Furthermore, a recent
report showed that the p53 tumor suppressor also affects cel-
lular redox homeostasis by inhibiting glycolysis and stimu-
lating mitochondrial bioenergetics through transcriptional ac-
tivation of TIGAR (TP53-induced glycolysis and apoptosis
regulator) and the SCO2 (synthesis of cytochrome c oxidase
2), respectively (20, 202). TIGAR, a homologue of fructose-
2,6-biphosphatase, functions to inhibit phospho-fructokinase
activity and reduce fructose-2,6-bisphosphate levels, resulting
in an inhibition of glycolysis. This causes a shift toward the
pentose phosphate pathway, leading to the production of
NADPH. The reducing equivalents of NADPH can be used to
regenerate major cellular antioxidant GSH, which in turn pro-
motes the scavenging of ROS, genomic stability, and preven-
tion of cancer. Thus, TIGAR seems to function as a check-
point to regulate glycolysis negatively (102). SCO2 is a
nuclear gene that encodes a copper-binding protein required
for the assembly of cytochrome c oxidase II (CO II) subunits
of complex IV in the respiratory chain. Disruption of the
SCO2 gene in wt-p53 cancer cells caused the metabolic switch
toward glycolysis, as exhibited in p53-deficient cells (202).
Interestingly, using new technology to increase an extra copy
of p53 and Arf genes, Matheu and colleagues also confirm the
redox modulating function of p53 in vivo (201) . They found
that the super Arf/p53 (s-Arf/p53) mice, which have higher
stimulated expression of p53, exhibited an increase in glu-
tathione and SESN1/SESN2 level, along with a decrease in
ROS, lipid peroxidation, and oxidative damage to protein and
DNA (201). Taken together, activation of p53 can decrease
ROS stress, maintain redox homeostasis, and promote cell sur-
vival through transcriptional regulation of antioxidant en-
zymes, TIGAR, and SCO2, which regulate activities of gly-
colysis and mitochondrial electron-transport chain.

b. Role of p53 in cell death. P53 controls cell fate through
several mechanisms, depending on the magnitude of the stress.
High levels of ROS cause phosphorylation and stabilization of
p53 protein, which often exhibits proapoptotic function under
such conditions. Whereas a low level of stress induces p53 to
upregulate the expression of genes encoding ROS-scavenging
enzymes, high level of stress induces p53 to upregulate genes
encoding prooxidant such as PIG3, p66Shc, and proline oxidase
(97, 261, 263). Furthermore, p53 is also known to increase gene
expression of proapoptotic proteins such as BAX, BBC3
(Puma) and decrease gene expression of antiapoptotic proteins
such as Bcl-2 (45). As illustrated in Fig. 12, these observations
suggest that the very same p53 protein can control ROS levels
and cell fate by transcriptional regulation of different sets of
genes in response to different intensities of stress. Interestingly,
when cells are under severe stress, activated p53 can also di-
rectly interact with ARE-containing promoters and suppress
Nrf2-dependent transcription of antioxidant response genes
such as x-CT, NQO1, and GST-�1, resulting in an elevation of
ROS and apoptosis (84). Reactivation of p53 in p53-deficient
tumors can cause complete tumor regression, suggesting a
proapoptotic role of p53 (336). Thus, p53 exerts antioxidant
function in cells under moderate (physiologically relevant) lev-
els of ROS stress, but exhibits prooxidant function in the se-
verely damaged cells (263). Besides transcriptional regulation,
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FIG. 11. Integration of redox
signaling. An increase of reactive
oxygen species (ROS) can result in
either cell survival or cell death, de-
pending on the integration of the
proapoptotic and antiapoptotic sig-
nals. The levels and durations of
ROS stress determine the activation
or inhibition of each signal-trans-
duction pathway. The crosstalk be-
tween PI3K/Akt and stress-respon-
sive MAPK pathway (SAPK)
serves as an example. A low level
or transient increase of ROS can ac-
tivate PI3K/Akt, leading to cell sur-

vival through NF-�B. The predominant survival signals of the
Akt and NF-�B pathways prevent cell death by inhibiting ASK1
and JNK, respectively. However, a high level of ROS causes a
sustained activation of the ASK1-JNK cascade and inactivation
of PI3K/Akt and NF-�B due to protein oxidation, leading to
cell death.



p53 also modulates cell-survival pathways through direct in-
teraction and inhibition of antiapoptotic protein Bcl-2 (299).

c. Redox regulation of p53. Although p53 functions as a tran-
scription factor to control the expression of several redox-reg-
ulating molecules, p53 itself is redox sensitive. p53 is a zinc-
binding protein containing 10 cysteine residues susceptible to
ROS oxidation. The mechanisms that regulate the redox status
of p53 remain to be fully elucidated, but much evidence sug-
gests that p53-DNA–binding ability can be strongly inhibited
by oxidation and nitrosylation. In vitro experiments revealed
that only the reduced form of p53 can specifically bind to the
target DNA, whereas direct oxidation or S-glutathionylation of
Cys can block its binding to DNA and transactivation activity
(63, 110, 317). Further study suggested that the redox status of
p53 can be controlled by redox-sensitive thioredoxin, thiore-
doxin reductase, and redox factor-1 (Ref-1) (111). Besides thiol
oxidations, p53 protein can be oxidatively modified and inac-
tivated through protein nitration by ONOO� in human glioblas-
toma cells (51, 52). The redox-sensitive nature of p53 protein
suggests that this molecule may act as a redox sensor in mam-
malian cells, as OxyR in bacterial system. Therefore, it is pos-
sible that a loss of p53 function, as observed in many types of
cancer cells, may disable this important redox homeostasis
mechanism and allow cancer cells to escape senescence and cell
death. It is worth noting that not only the redox system can reg-
ulate the function of p53 through direct oxidative modifications,
but the indirect activation of p53 through its interacting part-
ners such as ATM or MDM-2 also provides another layer of
redox regulation of p53 (44, 120).

III. ROLE OF REDOX REGULATION 
OF CELL SURVIVAL IN PATHOGENESIS

OF DISEASES

As described in previous sections, the redox system plays a
crucial role in regulating cell survival. Disruption of redox ho-
meostasis will result in a deregulation of apoptosis associated
with various diseases, including cancer, degenerative diseases,
and aging. Increased oxidative stress can either promote cell
survival or induce cell death, depending on the cellular context.
Genetically unstable cells can adapt to live with the stress by
adjusting the level of ROS to the extent that promotes cell sur-
vival, leading to development of cancer. In contrast, normal or
aging cells that failed to maintain redox balance are prone to
oxidative stress–induced cell death. This may act as a patho-
genic mechanism of degenerative diseases. Figure 13 shows the
overall roles of redox regulation in cell survival and the patho-
logic process of diseases.

A. Aberrant prolonged cell survival leads 
to cancer

Cancer cells often exhibit increased generation of ROS
compared with normal cells (294). Although the exact mech-
anisms responsible for the intrinsic ROS stress in cancer cells
remain unclear, several lines of evidence suggest that ROS
production is induced after the expression of genes associ-
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FIG. 12. Regulation of cell fate by p53. Different levels of
ROS stress activate p53, leading to various outcomes. Activa-
tion of p53 by a low level of ROS stress promotes cell survival,
whereas severe ROS stress activates p53 and causes cell death.
It is possible that the activated p53 might interact with differ-
ent factors (indicated as “X” and “Y”) under different levels of
ROS stress, leading to activation of distinct sets of target genes
(see text for details).

FIG. 13. Disturbance of redox homeostasis and patho-
genesis of diseases. Alterations in redox homeostasis by ex-
ogenous stimuli or endogenous stress or both can result in in-
creased oxidative stress with elevated cellular ROS. The ability
to adapt to such ROS stress determines the overall fates of the
cells. A successful adaptation to increased survival signals in
combination with further ROS-mediated mutations and loss of
critical regulatory mechanisms lead to defective cell death and
aberrant proliferation. These may contribute to development of
cancer. A failure in adaptation to the ROS stress while the cells
accumulate oxidative DNA, protein, and lipid damage product
may result in excessive cell death, leading to degenerative dis-
orders and aging.



ated with tumor transformation, such as Ras, Bcr-Abl, and 
c-Myc (16). Not only ROS production seems to be increased
in cancer cells, but the levels of antioxidants also were shown
to be profoundly altered in the malignant cells (228). These
suggest that redox balance is impaired in cancer cells. The
intrinsic oxidative stress in cancer cells is thought to play an
important role not only in cell proliferation (125) and genetic
instability (250), but also in evasion of cell death. Increased
ROS stress in cancer cells may activate survival pathways
(130), disrupt cell-death signaling (242), and evade senes-
cence (47). Because high levels of oxidative stress can kill
cells, the cells that are equipped with flexible machinery have
a higher possibility of adapting and surviving the ROS stress.
Genomic instability is likely the key mechanism that cancer
cells use for that purpose. The loss of functional p53 is
thought to play a pivotal role in the adaptation process. Pro-
longed cell survival, together with increased proliferation,
metastasis, and angiogenesis, are known to be required for
development of cancer (113). As illustrated in Fig. 14, onco-
gene activation, dysfunction of redox signaling, and loss of
p53 can all lead to disruption of redox homeostasis, result-
ing in increased cell proliferation and survival, and can con-
tribute to the development of cancer.

1. Oncogene activation

a. Ras. Ras is a guanine nucleotide triphosphatase (GTPase)
that functions as a molecular switch in a large network of in-
tracellular signaling pathways. Constitutive activation of Ras,
either by overexpression or by mutation, is very common in
various human cancers. Although sharing a high degree of se-
quence identity, the active mutation rates of three different Ras
genes (H-Ras, K-Ras, and N-Ras) are tissue- and tumor-type
specific. It has been shown that Ras expression promotes ROS
production. In the H-Rasv12-transformed NIH3T3 fibroblasts
cells; large amounts of superoxide were generated through path-
ways involving flavoprotein and Rac1, which activated NADPH
oxidase–mediated ROS generation (130). Further study by con-
ditional deletion of Rac1 confirmed that Rac1 function is re-
quired for Ras-mediated tumorigenesis, and loss of Rac1 causes
a substantial reduction in cell proliferation (157). Besides the
direct activation of ROS-production machinery, a recent study
showed that Ras oncogenic signal also induced repression of
the antioxidant gene SESN1 (165), resulting in a shift of redox
balance toward increased ROS levels. Certain regulators of cell
survival, such as PI3K/Akt, NF-kB, and c-Jun/AP-1, were
shown to be influenced by the Ras oncogenic signal, which
plays a major role in the transformation process (335). Although
the increase in ROS production induced by Ras can transform
some immortalized nontumorigenic cells to malignant cells, Ras
transformation also provoked premature senescence in primary
cells in the Em-N-Ras transgenic mouse model (275). These
observations suggest that the increased ROS triggered by Ras
can induce either cellular senescence or malignant transforma-
tion, depending on the cellular context. A study using doxycy-
cline-inducible Ras transgenic mice showed that long-term low-
level induction of K-Ras resulted in tumor formation after
evasion of the senescence checkpoint, whereas high-levels of
K-Ras activation led to upregulation of tumor suppressors and
cellular senescence (267).

Besides the extent of ROS production induced by the onco-
genic signal, the adaptation process for cell survival seems to
be influenced by the ROS-scavenging systems. As shown in a
genetically defined human ovarian cancer H-Rasv12 model, Ras-
transformed cells, which had increased O2

� and H2O2 levels,
were shown to have an upregulation of multiple antioxidants
such as SOD2 and peroxiredoxin 3, compared with their non-
tumorigenic parental cells (341). This study also suggested that
the enhanced antioxidant capability serves as an important
mechanism to evade apoptosis induced by ROS stress. This was
evidenced by the increased resistance to H2O2 induced cell
death observed in the Ras-transformed cells (341). Furthermore,
a recent study demonstrated that the Ras-transformed cells were
more sensitive to depletion of glutathione, leading to massive
ROS accumulation and preferential cell death (302). These sug-
gested a critical role of antioxidants in cell survival. It is con-
ceivable that maintaining redox homeostasis in a high dynamic
state (active ROS scavenging to counteract increased ROS gen-
eration) may be an adaptation mechanism used by cancer cells
to survive under Ras oncogenic stress.

b. c-Myc. Myc is a helix-loop-helix leucine zipper tran-
scription factor that regulates the expression of many genes in-
volved in normal cell growth, proliferation, apoptosis, and me-
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FIG. 14. Redox alterations and cancer development. Dis-
turbance of redox homeostasis by an increase in ROS produc-
tion (due to oncogenic stimulation, mitochondrial dysfunction,
etc.) or a decrease in ROS elimination (due to a deficit or dys-
function of the antioxidant system) can lead to elevated ROS.
The increased ROS stress can induce DNA mutations and ge-
netic instability, including a loss of tumor-suppressor genes
such as p53. The loss of p53 function can in turn further con-
tribute to mitochondrial dysfunction, ROS generation, and ge-
nomic instability, forming a vicious cycle. ROS stress may also
induce the expression of prosurvival factors and certain ROS-
scavenging proteins, which would enable the cells to adapt and
survive under oxidative stress. The ROS-induced mutations and
genetic instability further enhance the chance for selection of
cells with malignant phenotypes (an increase in proliferation,
survival capacity, cell motility, and angiogenesis), leading to
development of cancer.



tabolism. Abnormal expression of the c-Myc protooncogene can
lead to aberrant activation of its downstream pathways and
deregulation of the chromatin state, subsequently causing ge-
nomic instability. Thus, it has been implicated in a wide spec-
trum of human cancers. Significant increases in H2O2 and dou-
ble-strand breaks of DNA were detected after c-Myc activation
(85, 308). Such ROS stress is reversible by antioxidant NAC
(308) and vitamin C (139). The role of c-Myc in cell survival
is rather complicated. Downregulation of c-Myc has been shown
to sensitize cancer cells to cisplatin or radiation-induced apop-
tosis (24, 36), suggesting a prosurvival role of c-Myc against
oxidative stress. In contrast, overexpression of c-Myc was
shown to enhance serum-deprivation–induced apoptosis (296).
This occurred through excessive accumulation of ROS, which
inhibited NF-�B–mediated transactivation of SOD2 (296).
Based on these observations, it is likely that the life/death de-
cision under c-Myc expression is mediated through a differen-
tial dose effect of ROS. Studies using inducible c-Myc in mel-
anoma cells revealed that apoptosis induced by downregulation
of c-Myc was associated with cellular depletion of GSH. The
change of GSH level after altered c-Myc expression occurred
through the transcriptional control of the glutathione-synthesis
enzyme (19). This indicates that the survival effect of c-Myc
may be regulated by redox homeostasis. The upregulation of
the glutathione antioxidant synthesis by c-Myc may represent
an adaptive mechanism to survival under oxidative stress.

c. Bcr-Abl. Philadelphia (Ph)-positive leukemia cells contain
a chromosomal translocation (t9/22) that results in a fusion of
Bcr and c-Abl genes. The chimeric BCR-ABL tyrosine kinase
is oncogenic and is responsible for the development of chronic
myelogenous leukemia (CML), a relatively common adult leu-
kemia. In experimental systems, the expression of Bcr-Abl com-
pletely abrogated growth factor dependence and transformed
primary hematopoietic cells (58). Further study revealed that
BCR-ABL exerts its antiapoptotic effects by activating multi-
ple pathways, including RAS, PI3K/Akt, NF-�B, and STAT,
leading to activation of antiapoptotic factors such as Bcl-xL
(86). Compared with quiescent, nontransformed hematopoietic
cells, Bcr-Abl transformed cells also have increased intracellu-
lar levels of ROS and decreased protein-tyrosine phosphatases
(PTPases) (268). Treatment of Bcr-Abl–expressing cells with
reducing agents such as NAC or PDTC decreased the ROS level
and attenuated protein tyrosine phosphorylation, likely through
activation of PTPases. This suggests a positive-feedback regu-
lation between ROS generation and BCR-ABL activation (268).
Furthermore, Bcr-Abl–induced ROS stress may induce DNA
double-strand breaks. An inadequate repair of the damaged
DNA may cause mutations and genetic instability, thus pro-
moting the progression of CML (227).

2. Loss of functional p53. An activation of onco-
genes and a defect in antioxidant systems can increase oxida-
tive stress, which may contribute to tumorigenesis. However,
the transformation process might not occur if the redox sensor
p53 is still capable of maintaining redox homeostasis and pro-
tecting genome integrity. The role of p53 as a tumor suppres-
sor and how oxidative stress modulates its function and con-
tributes to tumor development were recently discussed (124).

Cells and mice with defective p53 exhibited increased ROS
stress, high mutagenesis, and increased tumor growth rate,
which can be delayed by antioxidant NAC. Reactivation of p53
in p53-deficient tumors can cause a complete tumor regression
(7). Furthermore, recent work demonstrated that s-Arf/s-p53
mice (which have increased levels of Arf and p53) show de-
creased ROS levels and reduced oxidative DNA damage (201).
These mice seemed resistant to H-RasV12 and E1A oncogenic
transformation (201). The incidences of both sporadic cancer
and carcinogen-induced cancer (fibrosarcomas and papillomas)
were significantly decreased in the s-Arf/s-p53 mice (201).
Taken together, this evidence suggests that p53 plays a key role
as tumor suppressor, and that its functions to maintain redox
homeostasis and genomic stability plays an important role in
suppressing tumor formation.

3. Aberrant expression of antioxidant enzymes.
Maintaining redox homeostasis is essential for cell survival. Al-
terations in the antioxidant system could induce redox imbal-
ance and promote the development of cancer. Most evidence
linking a deficit in antioxidant capacity to cancer development
came mainly from animal studies in which antioxidant mole-
cules were either knocked out or overexpressed. Then, the tu-
mor incidence in the genetically altered animals was compared
with those in the wild-type animals.

a. Superoxide dismutase (SOD). More than 30% of
SOD1�/� mice developed liver tumors, and 
70% of the mice
developed tumor nodules (78). Further study showed that the
mutation frequency of the SOD1-deficient mice was signifi-
cantly increased. The mutation types of the mice were mainly
GC to AT transversions and GC to AT transitions, which was
consistent with mutations induced by oxidative stress (37). Het-
erozygous SOD2�/� mice, which exhibited a 50% reduction in
SOD levels, appeared normal but had mitochondrial oxidative
damage and decreased mitochondrial membrane potential
(312). Furthermore, significantly elevated levels of 8-oxo-2-de-
oxyguanosine (8-oxo-dG) in nuclear and mitochondrial DNA
and premature induction of apoptosis were observed (164). Tu-
mor incidence, particularly for lymphoma and pituitary ade-
noma, increased 100% in old SOD�/� mice compared with 
the wild-type mice. Interestingly, transgenic mice (SOD3TG)
with skin-specific overexpression of SOD3 exhibited a decrease 
in DNA damage and a 50% reduction in skin tumor formation
in a chemically induced carcinogenesis model treated with
DMBA/TPA.

b. Glutathione peroxidase (GPX) and peroxiredoxin (Prx).
Transgenic mice overexpressing GPX-1 or coexpressing 
GPX-1 and SOD1 were found to have an increased incidence
of tumorigenesis in a DMBA/TPA two-stage skin carcinogen-
esis model (195). This suggests that a precise redox homeosta-
sis is essential and that overexpression of GPX-1 might disturb
the redox balance and contribute to cancer development. Prx1
knock-out mice revealed higher levels of ROS and an increased
predisposition to cancer (217). Furthermore, Prx1 seems to ab-
rogate c-Myc–mediated transformation through interaction with
its transcriptional regulatory domain (217), suggesting the po-
tential role of Prx1 as a tumor suppressor.
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B. Diseases with excessive cell death: aging and
degenerative disorders

One characteristic of aging is the loss of cellularity and the
gradual decline of tissue function (304). This may be caused
by progressive senescence of postmitotic tissues, likely due to
chronic damage by ROS (218). Multiple evidence suggests the
involvement of redox imbalance in the aging process. For ex-
ample, increased NO level and nitrosative stress were shown to
induce protein misfolding and neuronal cell death, which may
play a role in development of brain aging and neurodegenera-
tive conditions (223). Mutations of the antioxidant gene SOD1
were linked to 20% of cases of the familial amyotrophic lateral
sclerosis (ALS), an age-dependent degenerative disorder of mo-
tor neurons in cortex, brainstem, and spinal cord (64, 262). Fur-
thermore, mice lacking SOD1 exhibited premature aging and
neuromuscular dysfunction. The aged mice have elevated ox-
idative damage to lipid, protein, and DNA, which are associ-
ated with increased apoptosis and reduced life span (78). In 
addition to the increase of ROS associated with aging, impair-
ments in antioxidant capacity were often observed. For instance,
the level of glutathione and the expression of glutathione-syn-
thesis enzymes were shown to be decreased in aged mice and
rats (188, 255). Recent study suggested that this phenomenon
may be caused by attenuation of Nrf2/ARE transcriptional ac-
tivity (289). Studies of normal aging, of genetic mutations that
cause disease, and of environmental factors that affect disease
risk have revealed multiple mechanisms underlying how ex-
cessive oxidative stress can cause neuronal cell death. For ex-
ample, accumulation of oxidative DNA, protein, and lipid prod-
ucts; accumulation of self-aggregating proteins such as amyloid
�-peptide, tau, �-synuclein, and huntingtin; oxidative pertur-
bation of lipid metabolism and disruption of calcium homeo-
stasis were shown to induce mitochondria-mediated apoptosis
of neurons in several neurodegenerative disorders [for review,
see (205)]. Furthermore, ROS-mediated activation of insulin-
receptor signaling is known to cause impairment in autophagy,
which has been associated with altered life span and decline in
cognitive functions (75).

As mitochondria play a role in ROS production and apopto-
sis, the role of mitochondrial ROS in aging has been exten-
sively investigated (192). In a study of transgenic mice with
catalase targeted to peroxisome, nucleus, or mitochondria, the
catalase transgene targeting mitochondria was designed by re-
moving the peroxisomal localization signal along with the ini-
tial methionine and the addition of the mitochondrial localiza-
tion signal to the amino terminal to target catalase expression
to the mitochondria. Similarly, a nuclear-localization sequence
was added to the amino terminus of peroxisomal catalase for
nuclear expression. Only the mice overexpressing mitochon-
dria-targeted catalase exhibited a 5-month increase in life span.
These mice also exhibited a decrease in H2O2 level and in
mtDNA damage (273). This study suggested the important 
role of mitochondrial H2O2 in aging. Another study found that
the activity of aconitase, a redox-sensitive mitochondrial en-
zyme, was severely inhibited by excess superoxide and hy-
droxyl radicals in aging cells (339). Mice lacking p66Shc, an
adapter protein that promotes ROS generation in mitochondria,
were shown to have longer life span. This work supported the

causative role of mitochondrial ROS in aging (209). In addi-
tion to ROS, mitochondrial dysfunction may also lead to de-
velopment of aging in a redox-independent manner. In a study
using homozygous mutation in mitochondrial DNA replication
enzyme (DNA polymerase-�), the mutator mice had a reduced
life span of �46 weeks on average (303). The mice developed
premature onset of the aging-related phenotypes, which in-
cluded weight loss, reduced subcutaneous fat, alopecia, kypho-
sis, osteoporosis, reduced fertility, and heart enlargement (303).
Nevertheless, accumulation of mtDNA mutations seemed not
to be associated with increased oxidative stress in this model
(170).

Surprisingly, a recent report showed that although an 11-fold
increase in mitochondrial point mutations has been observed
with age, a mitochondrial mutator mouse was able to sustain a
500-fold higher mutation burden than normal mice, without ob-
vious features of accelerated aging (320). The author concluded,
based on this work, that the mitochondrial mutations do not
limit the life span of the mice. Apparently, further studies are
needed in this area.

Recent evidence suggests a crucial role of p53 in prevention
of aging. As described earlier, s-Arf/p53 mice not only showed
a decrease in ROS level and increased resistance to oxidative
DNA damage, but also showed a 9-month delay in aging. How-
ever, mice harboring s-Arf or s-p53 alone did not show an in-
crease in life span. These observations suggest that p53 may
require Arf to be stabilized and to exert its antiaging effect.

In another study, p53�/� mice lacking exon 1 to 6 of the p53
gene were generated through an aberrant gene-targeting event
in embryonic stem cells (307). Despite only having one wild-
type allele, the mice showed a premature aging phenotype, but
seemed not prone to cancer development (307). It would be in-
teresting to examine the cellular redox status in these mice.

IV. THERAPEUTIC STRATEGIES BASED
ON REDOX REGULATION OF 

CELL SURVIVAL 

Alterations in redox homeostasis can promote cell death or
cell survival, depending on the magnitude of the stimuli. Be-
cause the redox alteration may contribute to development of
diseases, the dose-dependent effects of ROS may provide an
opportunity for potential clinical applications in therapeutics
and prevention of diseases. As described previously, the final
outcomes of cell fates (survival or death) under oxidative stress
depend largely on the levels and types of ROS. Also, the func-
tional status of cellular antioxidant systems and the redox-sen-
sitive survival-signaling pathways can significantly influence
the cell-fate decision. Therefore, the redox-based therapeu-
tic/preventive strategies should include manipulations of redox
homeostasis and modulations of the redox-sensitive factors that
regulate cell survival and apoptosis.

A. Manipulating redox homeostasis

The principle of redox homeostasis and the strategies to mod-
ulate redox dynamics are illustrated in Fig. 15. Under physio-
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logic conditions, normal cells maintain redox homeostasis by
controlling the proper balance between ROS generation and
elimination. ROS are a double-edge sword. A moderate increase
of ROS may promote cell proliferation and survival. However,
when the increase of ROS reaches a certain level (the thresh-
old), it may overwhelm the cellular antioxidant capacity and
trigger the cell-death process. Therefore, cells with higher ba-
sal ROS generation (as in the case of cancer cells) would be
more dependent on the antioxidant system and more vulnera-
ble to further oxidative stress–inducing agents. A further in-
crease of ROS stress by using exogenous ROS-generating
agents or drugs that disable the endogenous antioxidant system
may preferentially increase ROS above the threshold level in
cancer cells, leading to cell death. In contrast, normal cells may
be able to tolerate better such exogenous ROS stress because
of their low basal ROS outputs and normal metabolic regula-
tions. Prolonged accumulation of ROS-induced damage in neu-
rons and other normal cells may result in cell death, leading to
aging or degenerative disorders. Reducing ROS levels with
proper antioxidants may be a useful strategy to prevent or de-
lay these pathologic processes.

1. Pro-oxidants as a therapeutic strategy for 
cancer. A defect in apoptosis plays a major role in devel-
opment of most cancers. A moderate increase of ROS is known
to activate survival pathways and inhibit apoptosis in cancer
cells. Thus, increased ROS in cancer have been viewed as an
adverse event. However, because severe increases of ROS can
cause lethal damage and kill the cells, it is possible to use ROS-

generating agents or compounds that abrogate the antioxidant
system to further increase ROS in cancer cells to a level that
triggers cell death (for review see refs. 89 and 239). Such ROS-
mediated therapeutic strategies have been tested in various ex-
perimental systems with promising results (128). Because toxic
side effects in normal tissue is a major problem in clinical treat-
ment of cancer by using cytotoxic drugs, new agents with high
therapeutic selectivity are urgently needed. Because cancer cells
exhibit increased ROS compared with normal cells, this redox
difference provides a biochemical basis for development of new
therapeutics with high selectivity. In the Ras-transformed ovar-
ian cancer model, it was recently shown that the oncogenic
transformed cells exhibited increased ROS stress and were more
dependent on the glutathione antioxidant system to maintain
homeostasis and survive. Disruption of glutathione by a natural
compound, �-phenylethyl isothiocyanate (PEITC), was shown
to preferentially increase ROS stress and selectively kill the ma-
lignant cells in vitro with minimal toxicity to their nontumori-
genic parental cells (302). In vivo, treatment with PEITC pro-
longed survival of mice bearing Ras-transformed ovarian cancer
(302). These results demonstrated the critical role of redox ho-
meostasis in regulation of cancer cell survival and cell death
and suggest that it is possible to kill cancer cells preferentially
through ROS-mediated mechanism. Because ROS stress is
prevalent in cancer cells, the ROS-based approach may have
broad therapeutic applications.

Defective apoptosis in cancer not only promotes disease pro-
gression but also confers resistance to many therapeutic agents
(138). Because alterations of multiple redox regulators such as
Trx, GST, GPX1, and Prx were observed in drug-resistant can-
cer cells (241), it was speculated that an altered redox homeo-
stasis may play a role in the drug-resistance mechanism, and
that manipulation of the redox system may be a useful strategy
to overcome the problem of apoptosis resistance in tumor cells
(242). Recent work showed that a compound known as TDZD-
8 (4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione) can in-
duce depletion of thiols and rapid accumulation of ROS and se-
lectively kill leukemic cells expressing stem-cell marker, with
minimal toxicity to normal hematopoietic stem cells (106). Be-
cause tumor stem cells are thought to be the subpopulation of
cells highly resistant to chemotherapy and play a critical role
in disease relapse after treatment, the potency of the prooxida-
tive compound in removing those cells underscores a key role
of the redox system in regulating survival of stem cells and
highlights the promising therapeutic potential of using redox-
based strategy in cancer treatment.

2. Antioxidants for prevention of degenerative
diseases. Because accumulation of ROS was known to pro-
mote excessive or premature cell death, leading to aging and
neural degenerative diseases, the use of antioxidants in pre-
vention of aging has been established for decades. This involves
the use of both supplementation of natural ROS scavengers and
treatment with exogenous antioxidants [for review see (75)].
For example, cysteine supplementation in addition to the nor-
mal protein diet has shown significant beneficial effects on sev-
eral parameters relevant to aging, including skeletal muscle
functions (74). N-acetylcysteine (NAC), a glutathione precur-
sor, has been shown to protect against oxidative stress–induced
neuronal death and thus might delay neurogenerative diseases
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FIG. 15. Redox homeostasis and strategies to modulate re-
dox dynamics for potential therapeutic applications. Under
physiologic conditions, normal cells maintain redox homeosta-
sis by controlling the proper balance between ROS generation
and elimination. The redox dynamics may fluctuate within a
tolerable range. An increase of ROS may promote cell prolif-
eration and survival, as in the case of many cancer cells. How-
ever, when the increase of ROS reaches a critical level (the
threshold), it may overwhelm the cellular antioxidant capacity
and trigger the cell-death process. Chronic ROS stress may
cause accumulation of damage to a level that induces cell death.
This is thought to be a mechanism contributing to neural de-
generative diseases and aging. For therapeutic purposes, it is
possible to use agents that promote ROS generation or inhibit
the cellular antioxidant system to trigger cancer cell death by
pushing the ROS above the threshold level. In contrast, an-
tioxidants may be used to prevent cells from oxidative damage
and delay aging and the neurodegenerative process.



(5). Melatonin, a physiologic hormone and antioxidant, seems
to have a protective effect against neurodegenerative diseases,
especially Alzheimer’s disease (245). Phenolic compounds such
as resveratrol are potent antioxidants and have been reported to
be protective against neuronal apoptosis associated with the
pathogenesis of Alzheimer’s disease (72). Experimental and
clinical studies showed that ebselen (PZ51), a GPX mimetic
that can inhibit lipid peroxidation and decrease iNOS expres-
sion, was shown to suppress cell death of cortical neurons and
prevent cerebral ischemia (stroke) in clinical trials (290, 337). 
Mitochondria-targeted antioxidants such as MitoQ and Mi-
toVitamin E were developed as pharmaceutical products for
prevention of stroke and cardiovascular disease (321). GSNO,
a physiologic metabolite of glutathione (GSH) and NO, was
shown to be several-fold more potent than GSH in protecting
cells against oxidative stress caused by peroxynitrite. In rats,
GSNO therapy was proven to be neuroprotective in cerebral
ischemia (254).

In addition to the pharmacologic interventions, epidemio-
logic studies have shown that regular consumption of diets rich
in antioxidants and antiinflammatory agents, such as those
found in fruits and vegetables, may reduce the risk of devel-
oping age-related neurodegenerative diseases such as Parkin-
son’s disease and Alzheimer’s disease (176). These suggest that
maintaining redox homeostasis may prevent degenerative dis-
eases.

It is worth noting that, although accumulation of ROS is
thought to play a role in development of cancer, the benefit of
using antioxidants as cancer chemopreventive agents is some-
what controversial. An early study showed that certain antiox-
idants may enhance the therapeutic efficacy of chemotherapy
in a colorectal cancer model (49). Antioxidants may also miti-
gate the adverse effects of radiation therapy (214). However,
compounds such as carotenoids, tocopherols, and ascorbate de-
rivatives may act as antioxidants or prooxidants, depending on
doses (274). The use of �-carotene and vitamin A in lung-can-
cer prevention trials showed no chemopreventive effect and
might even increase the risk of lung cancer incidence and mor-
tality in smokers (231, 232). Recent evidence suggests that an-
tioxidants such as NAC may blunt the therapeutic activity of
chemotherapeutic agents, including cisplatin and paclitaxel,
against tumor cells (2, 67). Because ROS stress can either pro-
mote cell survival or induce cell death, depending on dosage
and duration, cautions should be exercised in using antioxidants
and prooxidants to modulate cellular redox, with full consider-
ation given to the time- and dose-dependent nature of such mod-
ulations.

B. Modulating redox-sensitive 
signaling molecules

Besides manipulating ROS level by using prooxidants or an-
tioxidants, cell death and survival can also be modulated by tar-
geting redox-sensitive signaling molecules at the signal-trans-
duction, transcription, or death-execution levels (241). For
example, at the level of signal transduction, JNK activation was
found to be associated with ROS-induced neuronal death in
Parkinson’s and Alzheimer’s disease (25). Chemical inhibitors
of this signaling pathway have proven to be effective in vivo to
reduce brain damage and some of the symptoms of arthritis in

animal models (25). At the level of execution, proapoptotic or
antiapoptotic factors, such as caspases and Bcl-2, are attractive
targets for cancer therapies. Pharmacologic inhibitors, mimet-
ics, activators, and anti-sense oligonucleotides targeting these
molecules are of potential therapeutic utility (87). Because mo-
lecular pathways of apoptosis are excessively activated in ag-
ing and neurodegenerative disorders, pharmacologic/genetic in-
hibitions of apoptotic players such as Fas, caspases, and p53
are emerging strategies to prevent or retard the degenerative
diseases (322). At the level of transcription, redox-sensitive
transcription factors regulating expression of multiple antioxi-
dants, such as NF-�B and Nrf2, are of particular interest. Since
activation of the prosurvival NF-�B pathway was shown to play
a role in cancer development induced by carcinogens and onco-
genic viruses, a variety of NF-�B inhibitors such as curcumin
have been under clinical evaluation for use in cancer preven-
tion and treatment. New agents targeting the proteasome, IKK,
and other upstream molecules involved in NF-�B activation
seem to show anticancer activity in clinical or preclinical stud-
ies (313). The fact that Nrf2 can be activated not only by ox-
idative stress, but also by electrophilic compounds such as isoth-
iocyanates, provides therapeutic and preventive opportunities.
For example, increased Nrf2 transactivation is considered a ma-
jor mechanism for the cancer chemopreventive effects of isoth-
iocyanates (136). Furthermore, a recent study suggests the es-
sential roles of PI3K and PKC signaling in the activation of the
Nrf2/ARE in the absence of general oxidative stress (190). Be-
cause ARE-targeted genes were known to play a protective role
against apoptosis in cortical neuron (66), compounds activat-
ing Nrf2 via PI3K and PKC signaling would likely prevent neu-
ronal cell death. This may provide a new basis for development
of chemopreventive agents for degenerative diseases. 

V. CONCLUDING REMARKS

Cellular redox systems control the functions of multiple sig-
naling proteins affecting cell survival at the levels of signal
transduction, transcriptional regulation, and cell-death execu-
tion. Oxidative stress can either enhance cell survival or pro-
mote cell death, depending on the magnitude and duration of
the stress and the genetic background and redox states of the
cells. Oxidative stress not only serves as a type of stimulus to
trigger stress-response signal-transduction pathways but also
can modulate cell death/survival through direct oxidative mod-
ifications of the execution molecules. Under physiologic con-
ditions, the balance between production and elimination of ROS
ensures the proper maintenance of cellular metabolism and
other functions. The final decision, whether the cells will sur-
vive or die, is the overall outcome of the integration of signals
from redox-sensitive factors and other regulatory mechanisms.
However, when the redox homeostasis is disturbed by either
oncogenic activation, mitochondrial dysfunction, or accumula-
tion of oxidative stress, cells that acquire genetic instability may
adapt to survive under the stress by acquiring mutations to at-
tenuate programmed cell death. The defective cell death in con-
junction with increased cell proliferation, angiogenesis, and
metastatic potentials can promote the development of cancer.
Conversely, accumulation of oxidative-damage products and

REDOX REGULATION OF CELL SURVIVAL 1365



failure to adapt to ROS stress may result in excessive cell death,
leading to degenerative disorders and aging. Strategies to mod-
ulate cellular redox status, either by prooxidants and antioxi-
dants or by affecting redox-sensitive signaling pathways, may
have significant clinical applications in disease treatment and
prevention. Logical combinations of ROS-modulating agents
and compounds that affect redox-sensitive signaling pathways
may further enhance therapeutic activity and selectivity. A com-
prehensive understanding of the redox biology underlying the
disease processes and the mechanisms of action of pro-oxidants
and antioxidants is essential for developing effective therapeu-
tic strategies.
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ABBREVIATIONS

ARE, antioxidant responsive element; ASK1, apoptosis-reg-
ulating signal kinase 1; EpRE, electrophile responsive element;
ER, endoplasmic reticulum; ERK, extracellular regulated ki-
nase; GPX, glutathione peroxidase; GRX, glutaredoxin; GSH,
reduced glutathione; GSSG, oxidized glutathione; GST, glu-
tathione-S-transferase; HAT, histone acetylase; HDAC, histone
deacetylase; HIF, hypoxia-inducible factor; HNE, 4-hydroxy-
2-nonenal; HO�, hydroxyl radical; H2O2, hydrogen peroxide;
Hsp, heat-shock protein; I�B, inhibitor of NF-�B; JNK, c-Jun-
N-terminal kinase; Keap1, Kelch-like ECH-associating protein
1; MAPK, mitogen-activated protein kinase; MDA, malondi-
aldehyde; MPT, mitochondrial permeability transition; NAC,
N-acetylcysteine; NADPH, nicotinamide adenine dinucleotide
phosphate (reduced); NF-�B, nuclear factor kappa B; NO�, ni-
tric oxide; NOS, nitric oxide synthase; NOX, NAD(P)H oxi-
dase; Nrf2, NF-E2–related factor 2; O2

� , superoxide; ONOO�,
peroxynitrite; Prx, peroxyredoxins; PTEN, phosphatase and
tensin homologue; PTK, phosphotyrosine kinase; PTPase, pro-
tein tyrosine phosphatase; RNS, reactive nitrogen species; ROS,
reactive oxygen species; SAPK, stress-activated protein ki-
nases; SCO2, synthesis of cytochrome c oxidase 2; SOD, su-
peroxide dismutase; TIGAR, TP53-induced glycolysis and
apoptosis regulator; TRX, thioredoxin; ub, ubiquitin; XO, xan-
thine oxidase.
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