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Macrofossils (mostly leaves) and sporomorphs (pollen and spores)
preserve conflicting records of plant biodiversity during the end-
Permian (P-Tr), Triassic-Jurassic (Tr-J), and end-Cretaceous (K-T)
mass extinctions. Estimates of diversity loss based on macrofossils
are typically much higher than estimates of diversity loss based on
sporomorphs. Macrofossils from the Tr-J of East Greenland indicate
that standing species richness declined by as much as 85% in the
Late Triassic, whereas sporomorph records from the same region,
and from elsewhere in Europe, reveal little evidence of such cata-
strophic diversity loss. To understand this major discrepancy,
we have used a new high-resolution dataset of sporomorph assem-
blages from Astarteklgft, East Greenland, to directly compare the
macrofossil and sporomorph records of Tr-J plant biodiversity. Our
results show that sporomorph assemblages from the Tr-J boundary
interval are 10-12% less taxonomically diverse than sporomorph
assemblages from the Late Triassic, and that vegetation composi-
tion changed rapidly in the boundary interval as a result of emigra-
tion and/or extirpation of taxa rather than immigration and/or
origination of taxa. An analysis of the representation of different
plant groups in the macrofossil and sporomorph records at Astar-
tekloft reveals that reproductively specialized plants, including cy-
cads, bennettites and the seed-fern Lepidopteris are almost absent
from the sporomorph record. These results provide a means of
reconciling the macrofossil and sporomorph records of Tr-J vegeta-
tion change, and may help to understand vegetation change dur-
ing the P-Tr and K-T mass extinctions and around the Paleocene-
Eocene Thermal Maximum.
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Compilations of stratigraphic ranges of land plants through
geological time do not show abrupt declines in taxonomic
diversity (1-3). This contrasts sharply with the history of animal
life, which is marked by five geologically rapid decreases in global
taxonomic diversity, known as mass extinctions (4, 5). This fun-
damental difference between the evolutionary histories of plants
and animals may be due to the persistence of higher plant taxa,
and has led to the suggestion that plants are more resistant to
mass extinction than animals (1, 6-9). Despite this, studies of fos-
sil plants during times of faunal mass extinction have revealed
extensive ecological disruption and decreased plant genus/species
diversity on local and regional scales (8, 9), suggesting that plants
are not immune to the myriad environmental changes accompa-
nying mass extinctions.

However, plant fossils preserve conflicting records of diversity
loss during these critical intervals in Earth history. Estimates of
diversity loss based on macrofossils (mostly leaves) are typically
much higher than estimates of diversity loss based on sporo-
morphs (pollen and spores). The end-Permian mass extinction
[P-Tr; ~251 millionyears ago (Ma)] in Australia saw a 97% regio-
nal diversity loss of macrofossils but a 19% loss of sporomorph
diversity (8, 10), and the end-Cretaceous mass extinction (K-T;
~65 Ma) in North America resulted in a 70-90% diversity loss
of macrofossils but a 25-30% loss of sporomorph diversity (11,
12). These discrepancies present a barrier to understanding floral
change during episodes of faunal mass extinction. This hampers
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efforts to decipher the causes of mass extinctions and also ques-
tions the extent to which plants are more persistent than animals
in the face of global change. Additionally, these observations
raise doubts about the potential of the fossil record to provide
accurate and consistent data on the response of terrestrial vege-
tation to episodes of major environmental change, which raises
doubts about the utility of the fossil record as a source of infor-
mation from which we can augment our understanding and man-
agement of the current climate and biodiversity crises. To explore
this issue, we have investigated the macrofossil and sporomorph
records of vegetation change during the Triassic-Jurassic mass
extinction (Tr-J; ~200 Ma).

The Tr-J coincided with massive volcanism associated with the
opening of the Atlantic Ocean (13-15), which led to a four-fold
increase in atmospheric CO, levels (16) and a consequent rise in
global temperatures of between 3 and 6 °C (16-18). Compilations
of stratigraphic ranges of animal taxa indicate that 23% of marine
families (5), 63% of marine invertebrate genera (19), and 22% of
terrestrial families suffered extinction at this time (5). In contrast,
family-level compilations of plant diversity indicate that only the
Peltaspermaceae, a clade of seed-ferns, was lost from the Earth’s
biota at the Tr-J (e.g., ref. 9). Investigations of macrofossils in
Jameson Land, East Greenland, have shown a genus-level extinc-
tion rate of ~17% and have revealed that standing species rich-
ness across the region declined by ~85% at the Tr-J (20, 21).
Plants with specialized reproductive biology (insect pollinated)
were among those taxa at greatest risk of extinction or extirpation
(21), and relative abundance distributions of macrofossil genera
have shown that the pace of biodiversity loss in this region was
abrupt rather than gradual (22). The Tr-J in the Newark Basin,
North America, records a regional sporomorph diversity loss of
~60% (23), but existing sporomorph records spanning the Tr-J in
East Greenland, although qualitative, provide little evidence of
such catastrophic diversity loss (24, 25). There is also little evi-
dence for abrupt biodiversity loss in sporomorph records from
nearby sections in Europe (e.g., ref. 26), where the Tr-J is char-
acterized by compositional change (e.g., refs. 26 and 27).

Using a new high-resolution dataset of sporomorph assem-
blages from a Tr-J section at Astarteklgft, East Greenland, we
present a case study that offers broad insights into the tapho-
nomic processes causing discrepancies between the macrofossil
and sporomorph records of plants. Specifically, this study aims
to provide () quantitative estimates of Tr-J terrestrial plant diver-
sity at within- and among-sample scales; (if) an assessment of the
nature and timing of compositional change in the source vegeta-
tion; and (iii) an analysis of the agreement between the macro-
fossil and sporomorph records of the source vegetation. Our
results show that the sporomorph record does not preserve an
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abrupt loss of terrestrial plant biodiversity across the Tr-J in East
Greenland, and that the vegetation changed composition rapidly
in the boundary interval. Reproductively specialized plants, which
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Fig. 1. Schematic sedimentary log of the Astarteklgft section (adapted from
ref. 31). Box and whisker plot of rarefied within-sample sporomorph richness
at 301 counted sporomorphs, and Simpson's diversity index. Boxes show med-
ian and interquartile range. Whiskers represent maximum and minimum.
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values (KW =10.32¢;476934 p =0.1712) between plant
beds (Fig. 1).

Estimates of among-sample sporomorph richness using the
Chao2 and Jackknife2 metrics indicate that plant bed 5 is the
least taxonomically rich plant bed of Triassic age, and that plant
bed 7 is the most taxonomically rich plant bed at Astarteklgft
(Fig. 2). The Chao2 and Jackknife2 metrics estimate total species
richness (33), and the trends in sporomorph species richness
using these metrics are largely confirmed by Coleman rarefaction,
which estimates species richness for a subsample of the pooled
total species richness (33). This lends support to the trends in ex-
pected among-sample sporomorph richness through the section.
The Jackknife2 estimator presents the only discrepancy, calculat-
ing the same estimate of maximum richness for plant beds 5 and 6
(Fig. 2 and Table 1).

Ordination of “Wisconsin” standardized (34, 35) sporomorph
data using nonmetric multidimensional scaling (NMDS) shows
that samples from plant beds 1 to 4 overlap in empirical space,
indicating that there are no discernable differences in the com-
position of samples from these horizons (Fig. 3). Samples from
plant beds 5, 6, and 7 form discreet groups in the ordination
space, demonstrating that they are compositionally distinct both
from samples of Triassic age, and from each other (Fig. 3). The
differences in median NMDS Coordinate 1 and Coordinate 2
sample scores for these four sample groups are statistically
significant. Wisconsin standardized data: NMDS Coordinate 1
(KW = 23.0354934 p < 0.0001); NMDS Coordinate 2 (KW =
26.5934934p < 0.0001). These compositional differences are also
evident in relative abundance data (SI Zext and Fig. S1).

Comparison of Macrofossil and Sporomorph Records. Plant macrofos-
sils and sporomorphs are both used to track past vegetation
change, but the degree to which the two groups of fossils give
the same picture of the vegetation is often unclear (36). We have
investigated this issue at Astarteklgft by using scatter diagrams
and mean-difference plots (37) to compare the relative represen-
tation of three plant groups in the macrofossil and sporomorph

Chao2 Jackknife2
55 L 60 RN
% 50 | % 55 A
= =
s S 50
& &
T 45 3
g £+
& &
40 L
& 2y
35 — T T 35 — T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Number of Samples Number of Samples
Coleman
50 A
45 L
@
g
£ 40 -
2
-
= 351 3
2
153
:é.' 30 1 —a—ggg% I
<] —»—Bed 3
—a—Bed 4
25 1 —s—Bed5 |I
—+—Bed 6
—e—Bed 7
20 T

0 2 4 6 8 10
Number of Samples
Fig. 2. Chao2 and Jackknife2 richness estimates and Coleman rarefaction

curves for plant beds 1-7 (excluding plant bed 1.5). Curves show mean num-
ber of expected taxa (y-axis) for a given number of pooled samples (x-axis).
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Fig. 3. Nonmetric multidimensional scaling plot of Wisconsin standardized
data. Samples from plant bed 5 represented by open squares and enclosed
within an unshaded envelope. Samples from plant bed 6 represented by ver-
tical crosses and enclosed within a pale gray envelope, and samples from
plant bed 7 represented by closed circles and enclosed within a dark gray
envelope.

records. These groups are as follows: Ferns (1); Conifers and
Corystosperms (2); Monosulcate Producers (comprising cycads,
bennettites, ginkgos and the seed-fern Lepidopteris) (Fig. 4).
See SI Text and Tables S1, S2, and S3 for details of all plant groups
at Astarteklgft).

Ferns. The scatter diagram indicates that this group of plants is
generally a greater component of the sporomorph record than
the macrofossil record and the mean difference between the
macrofossil and sporomorph records of this plant group is
—22.33% (Fig. 4). The difference between fossil groups does
not tend to get larger or smaller as the mean increases (Fig. 4).

Conifers and Corystosperms. The scatter diagram indicates that this
plant group generally constitutes less than ~25% of the total plant
assemblage in both the macrofossil and sporomorph records
(Fig. 4). There is evidence of a major disagreement between
the two fossil groups in plant beds 3 and 5, where the relative
abundance of this plant group increases dramatically in the
macrofossil record, but not in the sporomorph record (Fig. 4).
The mean difference between the macrofossil and sporomorph
records of this plant group is 11.69% (Fig. 4). The agreement be-
tween the two fossil groups improves as mean values approach
~25%, but then worsens as the mean increases further (Fig. 4).
The disagreement in plant bed 3 is caused by high abundance of
the broad-leaved conifer Podozamites and in plant bed 5 by high
abundances of Podozamites and the “swamp conifer” Stachyo-
taxus (see Dataset 1).

Monosulcate Producers. The scatter diagram indicates that this
group of plants is almost entirely absent from the sporomorph
record at Astarteklgft, but is a major component of the macro-
fossil record (Fig. 4). The mean difference between the macro-
fossil and sporomorph records of this plant group is 49.25%
(Fig. 4). The difference between the macrofossil and sporomorph
records of this plant group increases as the mean increases and
that there is reasonable agreement between the two fossil groups
only when relative abundance is very low (<10%). These data
indicate that reproductively specialized plants such as cycads
(28), bennettites (29, 30), and Lepidopteris (21) are effectively
silent in the sporomorph record at Astarteklgft.

Taphonomic Selection and Taxonomic Resolution. Macrofossils and

sporomorphs record different parts of the source vegetation at
Astarteklgft. Macrofossil assemblages are weighted toward
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Fig. 4. Scatter diagrams and mean-difference plots illustrating the agree-
ment between the macrofossil and sporomorph records of the Astartekloft
vegetation. Each plant bed represented by a single data point (n = 8).
Closed black circles = plant beds 1-5 (overbank deposits), open circle =
plant bed 6 (poorly developed coal swamp) and closed grey circle =
plant bed 7 (abandoned channel). Scatter diagrams: solid diagonal line of
equality, error bars represent 95% binomial confidence intervals. Mean-
difference plots: solid horizontal line of equality, dashed horizontal line
showing mean difference between macrofossil and sporomorph records.

woody taxa such as conifers, cycads, bennettites and ginkgos,
whereas sporomorph assemblages are weighted to ferns and
other spore-producing plants such as lycopods (Fig. 4 and
Table S1). This pattern is consistent with the observation that
woody plants are dominant in leaf litter and fossil leaf accumula-
tions (38-40), and is congruent with the notion that fern spores
have high preservation potential in fluvial/deltaic systems (41).
The sporomorph morphotypes at Astarteklgft are likely to have
been produced by a number of different parent plants. This im-
poses taxonomic smoothing onto the sporomorph record and this
effect is distributed unevenly across plant clades. For example,
the monosulcate pollen grain Cycadopites was produced by at
least four orders of plants in three classes (Table S3), whereas
the trilete spore Baculatisporites was produced by ferns of the
Osmundaceae family (42). Both macrofossils and sporomorphs
fail to accurately census certain plant groups at Astarteklgft,
and therefore likely underestimate the diversity of the source
vegetation.
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Discussion

A Catastrophic Diversity Decline? Our results indicate that sporo-
morph diversity within-samples, as measured by species richness
and D, did not decline catastrophically across the Tr-J at Astar-
teklgft. Sporomorph richness among-samples is slightly lower in
plant bed 5 according to both richness estimators and Coleman
rarefaction (Fig. 2). Depending on the estimator, expected rich-
ness in plant bed 5 is 10% (Chao2) or 12% (Jackknife2) lower
than mean richness from a preboundary bin comprising plant
beds 1-4 (Table 1), and we interpret this as a result of detrimental
environmental change at the Tr-J. This richness decline is less
pronounced than that recorded in the Newark Basin, North
America (~60%) (23) and agrees with previous work on Tr-J
sporomorph records in East Greenland (24, 25) and elsewhere
in Europe (26), which also provide little evidence of catastrophic
richness loss.

The shapes of the expected richness curves indicate that plant
bed 5 is fully sampled whereas all other plant beds are under-
sampled (Fig. 2 and ref. 43). In the case of undersampling “a ris-
ing Chao estimator can [be] regarded as a valid estimator of
minimum richness, given the available data” (p. 692 in ref. 44).
Consequently, differences in maximum estimated richness be-
tween plant bed 5 and plant beds with higher richness (Table 1)
should be viewed as minimum differences. Plant bed 5 saturates
more quickly than other plant beds of Triassic age because it is
less rich taxonomically and because of the distribution of species
within the sample set. Both Chao2 and Jackknife2 provide in-
creasingly high richness estimates as the number of taxa that oc-
cur in only one sample and exactly two samples increases (45).
This indicates that there are more such rare taxa in plant beds
1-4, and fewer in plant bed 5 (43, 46), in agreement with the trend
in macrofossil relative abundance distributions at Astarteklgft,
which increase in slope up-section as a result of the loss of rare
taxa (22).

Vegetation Heterogeneity. We have examined Tr-J vegetation het-
erogeneity at Astarteklgft through additive partitioning of species
richness and D values into alpha (within-sample) and beta
(among-sample) components of diversity (47, 48). Beta diversity
is thought to increase in heterogeneous landscapes with patchy
vegetation where few species are shared by samples, and will de-
crease in homogeneous landscapes where the species composi-
tion of each sampling unit is identical (45). Neither the beta
component of richness, nor the beta component of D, show a
sharp increase or decrease in any plant bed, and nowhere does
beta diversity exceed alpha diversity (Table 1). This pattern is con-
sistent in both the macrofossil and sporomorph records, and sup-
ports the idea that vegetation heterogeneity did not change
dramatically across the Tr-J at Astarteklgft (21). These results
also suggest that vegetation heterogeneity was similar in the three
depositional environments present at Astarteklgft (Table 1). It
should be noted, however, that sporomorph samples were col-
lected vertically within each plant bed and therefore do not con-
tain an explicitly spatial component, whereas macrofossils were
collected from small quarries spaced laterally along each plant
bed (ref. 21 and S7 Text) and therefore do contain a spatial com-
ponent.

Compositional Change. Ten sporomorph taxa are absent from every
sample in bed 5 but present in samples from plant beds 1-4
(Lycopodiumsporites semimuris, Cingulizonates rhaeticus, Conca-
visporites A, Triancoraesporites ancorae, Nevesisporites limatulus,
Alisporites sp., Classopollis 2zwolinskai, Eucommiidites troedssonii,
Ovalipollis ovalis, and O. breviformis), whereas just three sporo-
morph taxa have their first appearance in plant bed 5 (Trachyspor-
ites asper, Lycopodiacites rugulatus, and Cerebropollenites
thiergartii) (Fig. S2). This suggests that local emigration and/or
extirpation of plants played a greater role in changing the com-
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position of the standing vegetation in plant bed 5 than immigra-
tion and/or origination (Fig. 3, cf. ref. 49). A similar pattern is
recorded in the macrofossil record, where recovery of the vegeta-
tion in the Jurassic was achieved by recruitment of new dominant
plants from within the Jameson Land region, rather than by ori-
gination or significant immigration of exotic taxa (21). The dis-
creet groups formed by samples from beds 6 and 7 in the
ordination space indicate that the vegetation did not return to
a Triassic composition once it had changed in plant bed 5 (Fig. 3).
Because plant beds 6 and 7 represent environments that were not
present during the Triassic at Astarteklgft (21) this may reflect
the influence of depositional environment on sample composi-
tion. Nevertheless, this observation strongly suggests permanent
compositional change in the East Greenland vegetation across
the Tr-J, in common with the macrofossil record (21).

Macrofossil and Sporomorph Records of Tr-J Plant Diversity in East
Greenland. The macrofossil record indicates a complete regional
turnover of dominant taxa and an 85% decline in species richness
at the Tr-J in East Greenland (20, 21). A midcanopy habit was
also eliminated at the Tr-J in this region (21). At Astarteklgft,
a ~35% loss in macrofossil generic richness is recorded prior
to the Tr-J boundary in plant beds 3 and 4 (21), and a decline
in evenness is recorded in plant beds 3, 4, and 5 (ref. 12; see also
D values in Table 1). None of these aspects of Tr-J vegetation
change are clearly expressed in the sporomorph record at Astar-
tekloft.

The analysis of the agreement between the macrofossil and
sporomorph records at Astarteklgft may help to explain this dis-
crepancy (Fig. 4). Changes in the relative abundance of bennet-
tites and cycads are a major factor in Tr-J vegetation change in
East Greenland (21). For example, among bennettites Pterophyl-
lum declines from 20% in the Triassic to 1.3% in the Jurassic and
Anomozamites declines from 17% to 0.1% (12), and among cy-
cads four form genera (Doratophyllum, Ctenis, Pseudoctenis, and
Nilssonia) are present in Triassic rocks at Astarteklgft, but are
absent from Jurassic strata (21). It is clear that the sporomorph
record fails to adequately sample the group of plants containing
these taxa at Astarteklgft (Fig. 4) and consequently, changes in
their relative abundance in the source flora will be masked in the
sporomorph record. Additionally, the only family level extinction
among plants during the Tr-J, that of the Peltaspermaceae (9), is
also obscured in the sporomorph record because the pollen grains
produced by this family (Cycadopites, ref. 50) were also produced
by several other plant groups (Table S3).

Reworking of sporomorphs at Astarteklgft may also obscure
changes in vegetation diversity and ecology that are expressed
in the macrofossil record. The presence of channelized sandstone
bodies laid down from river channels several meters deep (21, 51)
suggest that reworking is possible. Although previous work at
Astarteklgft did not highlight pervasive reworking (24), certain
sporomorph taxa occur in very low abundance in strata younger
than their accepted stratigraphic range. Sporomorphs that are
likely to have been reworked include single specimens of Rhae-
tipollis germanicus in plant bed 6 and 7, one specimen of Limbos-
porites lundbladii in a single sample from plant bed 7, and two
specimens of Lunatisporites sp. and three specimens of Ovalipollis
ovalis in a single sample from plant bed 7 (Dataset 2 and Fig. S2).
Macrofossils with discontinuous stratigraphic ranges may be as-
sociated with sporomorphs with continuous ranges. One example
is the macrofossil Cladophlebis, a fern of the Osmundaceae fa-
mily, and the spore Baculatisporites comaumensis (ref. 42 and
Fig. S2). Whether this is due to reworking or other factors re-
mains unclear, and further work is required to understand the
impact of reworking on the reconstruction of vegetation diversity
and ecology using sporomorphs.
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Conclusions

Quantitative analyses of sporomorph diversity do not support a
catastrophic decline of terrestrial plant biodiversity in East
Greenland. The Tr-J boundary interval is characterized by a mod-
est decline in richness among-samples (Fig. 2) and rapid compo-
sitional change that was apparently driven by emigration and/or
extirpation rather than immigration and/or origination of taxa
(Fig. 3). This is in contrast to the macrofossil record of Tr-J ve-
getation in the same area, which preserves evidence of abrupt bio-
diversity loss and changes in forest structure (21, 22). This
discrepancy may be explained by the poor representation of cer-
tain plant groups in the sporomorph record (Fig. 4). The clearest
example is the effective absence of reproductively specialized
plants that produced monosulcate pollen grains of the Monosul-
cites/Cycadopites and Chasmatosporites morphotypes [cycads (28),
bennettites (29, 30) and Lepidopteris (21)] in the sporomorph
record at Astarteklgft (Fig. 4). This pattern apparently extends
to Mesozoic sediments worldwide (52), and if Late Triassic diver-
sity loss among reproductively specialized plants is characteristic
of the Tr-J in a wider geographic area, this may explain why
sporomorph records across the Tr-J in Europe also preserve little
evidence of diversity loss (e.g., refs. 26, 27).

This Tr-J case study provides broader insights into the nature
of the fossil plant record as it raises the possibility that the floral
composition of a biome may affect the quality of its representa-
tion in the sporomorph record. Using the relationships shown in
Fig. 4, biomes apparently rich in cycads, bennettites and ginkgos,
such as the warm temperate biome (Fig. S3 and refs. 53 and 54),
may be poorly reflected in Tr-J sporomorph assemblages. Those
biomes with a lower proportion of these plants, and perhaps a
higher proportion of conifers, which have the smallest mean
difference between the macrofossil and sporomorph records at
Astarteklgft (Fig. 4), may be more accurately reflected in spor-
omorph assemblages. One example might be the summerwet tro-
pical biome in which cycads were rare and ginkgos were absent
(Fig. S3 and refs. 53 and 54). This suggestion may factor in to an
explanation of the high regional extinction rates among sporo-
morphs in the Newark Basin (14), which was situated between
16-25° North during the Tr-J (55) and close to, or within, the
summerwet tropical biome (53, 54).

The P-Tr, Tr-J, and K-T faunal mass extinctions were accompa-
nied by diversity losses, ecological changes, and extinctions
among plants that were locally/regionally severe and also selec-
tive (8, 9). Our results demonstrate that these local/regional pat-
terns will be strongly influenced by the choice of fossil group used
to study the vegetation. Our results provide a means of reconcil-
ing the contradictory macrofossil and sporomorph records of Tr-J
vegetation change in East Greenland, and highlight a mechanism
by which similar discrepancies at the P-Tr and K-T mass extinc-
tions may be understood. Additionally, by demonstrating that
changes in the diversity and ecology of reproductively specialized
plants are not recorded faithfully by sporomorphs at the Tr-J, our
results provide support for the idea that the ~20% extinction
among sporomorphs following the Paleocene—Eocene Thermal
Maximum (PETM) in the paratropical Gulf Coast of North
America is likely to be a considerable underestimate, and there-
fore may represent a major Cenozoic plant extinction event (43).
The magnitude of regional sporomorph diversity loss following
the PETM, which is not recognized as an episode of faunal mass
extinction (4, 5), was apparently greater than sporomorph diver-
sity loss at the Tr-J in East Greenland (e.g., Fig. 2).

Materials and Methods

Lithology and Palynological Processing. Samples from plant bed 6 consist of
coaly mudstone. Samples from all other plant beds consist of dark gray mud-
stone and siltstone. 15-20 g of each sample was washed and crushed, then
dried for 24 h at 60 °C. Each sample was treated twice alternately with cold
HCI (30%) and cold HF (38%). Residues were then sieved with 250 um and
15 um mesh. Organic and inorganic residues were separated using ZnCl,.
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At least 350 sporomorphs were counted per slide, but where one morpho-
type dominated the assemblage, counts were increased until at least 150
sporomorphs of the nondominant type were recorded.

Floral Diversity and Composition. Within-sample richness was estimated using
individual-based rarefaction using the program PAST (56). These analyses cal-
culate expected richness at lower sample sizes, allowing richness in samples
of different sizes to be compared. Simpson’s diversity index (D) calculations
were performed using the R package Stratigraph (57, 58). D is weighted
toward the most abundant species in a sample and is thus responsive to
dominance (45). Among-sample richness was estimated using the Chao2
and Jackknife2 metrics (randomized 10,000 times), and Coleman rarefaction
(without sample replacement) was used to compensate for differences in
sampling intensity between plant beds (43, 45). These analyses were under-
taken using the program EstimateS Version 8.2 (33). Additive diversity parti-
tioning analyses were performed using the R package Stratigraph (results
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