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Abstract
The diversity of characterized protein functions found amongst experimentally interrogated
proteins suggests that a vast array of unknown functions remains undiscovered. These protein
functions are imparted by specific geometric distributions of amino acid residue chemical
moieties, each contributing a functional interaction. We hypothesize that individual residue
function contributions are predictable through sequence analytic knowledge based algorithms, and
that they can be recombined to understand composite protein function by predicting spatial
relation in tertiary structure. We assess the former by training a meta-functional signature
algorithm to specifically predict calcium ion binding residues from protein sequence. We estimate
the latter by testing for match between predictive contribution of positions in predicted secondary
structures and patterns of side chain proximity forced by secondary structure moieties. Specific
training for calcium binding results in 83% area under the receiver operator characteristic curve
added value over random (AUCoR) and p<10−300 significance as measured by Kendall’s τ in ten
fold cross validation for parallel sets of 811 residues in 336 proteins and 696 residues in 299
proteins. Training for generalized function results in 63% AUCoR and p≅10−221 for the same
tests. Including inference of side chain proximity improves predictive ability by 2% AUCoR
consistently. The results demonstrate that protein meta-functional signatures can be trained to
predict specific protein functions by considering amino acid identity and structural features
accessible from sequence, laying the groundwork for composite sequence based function site
prediction.
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1. Introduction
The increasing abundance of genomic data calls for accurate and informative automated
sequence analysis algorithms to understand biologic function. Millions of genes across 1,129
fully sequenced genomes have not been experimentally characterized beyond sequence [1].
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The astronomical number of experiments necessary to characterize the organisms encoded
by these genomes to match the contemporary data for Saccharomyces cerevisiae or
Escherichia coli would be an unreasonable use of resources. Rather, these data demand
dramatic improvements in the informatic modeling of gene function to guide bench
exploration [2].

We previously demonstrated that available data describing protein function can be
transferred as annotations to protein gene products without the limitations of homology
mapping and in the absence of tertiary structure [3]. We use the concept of a meta-functional
signature (MFS) to combine incongruent measures of functional information encoded in the
protein sequence into an estimate of functional importance for each amino acid residue.
Here we extend MFS to include physicochemical conservation and conservation of residues
predicted to be nearby in the functional conformation, to supplement amino acid type,
sequence and evolutionary conservation. Philosophically distinct conservation measures
have been shown to be synergistic in predictive ability [46,3]. Thus we anticipate that
physicochemical, entropic, and evolutionary conservation would be complementary. We
train the combination of algorithms that estimate these parameters by logistic regression for
the specific protein function of calcium binding to demonstrate specificity imparted by
amino acid type and structural inferences (figure 1).

1.1. Sequence based structural inferences of function
Protein substrate specificity is governed by geometric distribution of polarity, charge, and
hydrophobicity. The spatial pattern of substrate electron density is complementarily
mirrored by the protein to thermodynamically favor binding [4,5]. Differences in residue
identity within an otherwise similar binding site and protein scaffold facilitate metabolite
preferences and variation of enzymatic reaction [6,7]. Meanwhile, since it is the variation in
these sites which enables specificity, differences in residue conservation for the position are
minimal, assuaging accessibility for automated algorithms to predict specific functions.
Thus it is not surprising that incorporation of predicted tertiary structure improves
identification of functional sites [8].

1.2. Sequence based metal ion binding prediction
In the recent international blinded community wide experiment on the critical assessment of
techniques for protein structure prediction (CASP8), we applied MFS as a predictive
algorithm for substrate binding with a simple distance threshold to nonlocal contacts from
our predicted tertiary structures. We submitted ten or less predicted residues for each protein
without knowing the identity of the substrate ligand, or whether one was present in the
crystal. These predictions matched the real metal ion binding sites with a Matthew’s
correlation coefficient (MCC) of 0.6, and coverage of 85% (true positive predictions divided
by all real function sites). The coverage for each protein correlated with the quality of the
related predicted structure (Pearson’s R = 0.52). We were the third best ranked in predicting
metal ion binding sites out of over one hundred participating groups from around the world
[8].

1.3. Relevance of residue function prediction to tertiary structure
Accuracy of protein tertiary structure prediction without a template structure is sparse and
computationally cumbersome [9]. Contemporary bench structure assessment methods may
be limited to approximately 40% of proteins. For example 7,179 structures have been
successfully characterized by the structural genomics initiatives, but work on 28,090 targets
has ceased [10,11]. Analysis of protein binding reveals high entropy and enthalpy for
unbound states, while binding of the physiologic partner induces stability in a
thermodynamic tradeoff similar to that of folding [12,13]. The portions of metal ion binding
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sites that are dynamic when unbound are often observed in the difficult to model loop
regions. The electronegativity required to coordinate the positively charged metal ion would
be mutually repulsive for binding residues without the ion mediator, adding noise to the
structure prediction process which effects the quality of the entire model. For example,
specific consideration of the zinc binding loop in target T0476 led to the most highly
accurate model for target T0476 in CASP8 by the Baker group who filtered templates for
this region based on specific constraints allowing close proximity without disulfide bonds
for four cysteine side chains in the loop [14].

1.4. Spatial clustering of functional residues
Protein residues do not function in isolation. Mechanisms are most commonly specified by
the arrangement of spatially clustered side chains, with main chain contributions less
dependent on residue identity. Therefore if side chain proximity is known (e.g. nonlocal
contacts), accurate prediction for the functional contribution of one residue can be used to
improve function prediction for nearby residues. Thus sequence based methods to infer
structural parameters of function are desired [15,16]. We approach this goal by inferring side
chain proximity from geometric features of secondary structure motifs, and consider the
distribution of physicochemical properties for the same residue position in orthologs [17].
The relevance of structure to metal binding demonstrated by our predictions in the CASP8
experiment motivated us to consider a physiologically relevant specific type of metal ion
binding site.

1.5. Calcium ions
Calcium is the most abundant metal and fifth most abundant element in animals, and
essential for life. Protein calcium interactions mediate essential physiology including
cellular trafficking via vesicle fusion, fission, secretion, and uptake; electrical impulses for
cellular signaling via creation of solute gradients; biomineralization by inclusion with
negatively charged salts [18]; and metabolic control via hormone sequestration such as
osteocalcin binding to calcium atoms along the hydroxyaptite surface of bone [19]. Calcium
binding represents a unique protein function, completely separable from organic substrates
and interchangeable only with magnesium. Additionally, while the exact binding
mechanisms of most ligands remain elusive, the common addition of calcium salts into the
mother liquor of protein crystallization and the ease by which to identify this heavy atom in
the diffraction pattern gives detailed experimental characterization of nearly four thousand
protein calcium binding sites in the Protein Data Bank [20]. Filtering for nonspecific crystal
interactions and protein redundancy yields roughly three hundred proteins to use as one
benchmark set.

1.6. Previous protein calcium ion binding residue prediction methods
Previous approaches to computational prediction for mechanisms of protein function have
traditionally focused on mapping annotation by detection of similar structure or sequence
[8,21–25]. These methods are limited by the ability of the search engine to find a similar
protein about which more is known, and is also limited by the need for such a protein to
exist [26,27]. Other automated function prediction methods do not depend on mapping. Such
methods commonly exploit features derived from the protein structure such as deep pockets
[28], unstable side chains thermodynamically poised for metabolite binding [12], or spatial
clusters of oxygen atoms for metal ion binding [29,30]. Yet the need for an experimentally
derived structure limits the application of these methods tremendously.
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1.7. Sequence based protein calcium ion binding residue prediction
Sequence based approaches that measure conservation of the position amongst many similar
sequences are limited by the particular feature modeled in the estimation of residue
conservation, e.g. conservation throughout evolution, presence across contemporary
proteins, or physicochemical conservation. We overcome this limit by designing measures
different enough to be combined [3]. When using a single measure of conservation, the best
scoring residues are generally catalytic, and many methods have been designed to
specifically find these residues [32–33]. However, methods trained for a broad range of
functions achieve similar or better performance in detecting catalytic residues [3,34]. Thus
an open question is whether a sequence based method can derive better predictions for a
specific application such as calcium binding.

Therefore we designed a study to create an algorithm that determines calcium binding
residues in a protein sequence using regression to train the contribution of amino acid
identity, with sequence, evolutionary, physicochemical, and neighbor conservation for the
residues observed to bind calcium in a nonredundant set of proteins in the Protein Data Bank
[20] (figure 1).

2. Research Design and Methods
We predict functional contribution to calcium binding by amino acid type, functional
importance scores based on multiple sequence alignments, and the scores of residues
predicted to be nearby in 3D space. We then use backwards stepwise multiple regression to
remove score types that do not add weight to the prediction with statistical significance
(p>0.001) and at least 2% contribution to the score, i.e. include all scores, then remove one
at a time with cycles of training by logistic regression until they all add significant
improvement to the training set. We employ supervised learning only by forcing the
maintenance of all amino acid types, as a base from which to improve. All trained methods
are tested by ten fold cross validation, within the below logistic regression equation that
comprises MFSCa (figure 1).

Each component algorithm of MFSCa (HMMRE, SSR, AA, CloseSS, sMAPP, see below) is
assigned a coefficient (a, b, c, d, e) trained in the regression. Sub coefficients are
enumerated for each amino acid type (ci) and each of one to four positions separated in each
secondary structure type (di,j). ε denotes the error term.

MFS1Ca refers to retraining the regression with the same algorithms (HMMRE, SSR, AA)
as the original sequence based MFS, and MFS2ca refers to the regression that includes these
as well as the novel algorithms CloseSS and sMAPP.

2.1. Multiple sequence alignment analytic algorithms
We use the position specific iterative basic local alignment search tool (PSI-BLAST [35]) to
find similar protein sequences from the nonredundant database [36]. More sensitive and
specific methods have emerged, such as the HMM-HMM predictive comparison method
(HHpred [37]) and PSI-BLAST intermediate sequence search (ISS [38]), which are
reviewed by us in Horst and Samudrala, 2009 [16]. While PSI-BLAST results have inherent
limitations of sensitivity that would best be avoided, we do overcome the specificity
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problem in part by applying the multiple sequence comparison by log-expectation algorithm
(MUSCLE [39]) to the PSI-BLAST output, and filtering the top 250 nearest neighbors in the
resulting multiple sequence alignment (MSA). For each protein we use a single pass of PSI-
BLAST and MUSCLE calculations (each with internal iterations) to drive the entire
prediction pipeline, such that predictions for thousands of proteins can be made within a day
by our processor farm. Each of the following algorithms calculates functional importance in
a trivial amount of time, given this single MSA.

2.1.1. HMMRE—We train a hidden Markov model (HMM) from the MSA using the
Hmmer package [40], and compare emission frequency estimates from the model with the
amino acid background frequency in nature given by karlin.c of the BLAST program
package [35] to produce the HMM relative entropy score for each amino acid position
[3,41]. Here we make a significant change by constraining the Markov chain to the
architecture of the protein sequence, rather than using the chain apparent from conservation
measured in the MSA, as we have done in the past.

2.1.2. SSR—We model the evolutionary context of each position by creating a maximum
parsimony phylogenetic tree for the surrounding sequence of each position using the
PHYLIP platform [42]. Each protein in the MSA is treated as a leaf in the tree, and the root
represents the theoretical ancestral sequence. We quantify the evolutionary divergence of the
position by taking the ratio of different amino acid states appearing at the particular position,
to the total number of step changes in the modeled evolution between the input and ancestral
protein within the phylogenetic tree, termed the state to step ratio (SSR) [3].

2.1.3. HMMRE vs. SSR—We previously designed these residue conservation measures to
separately compare the residue position and identity to all available modern proteins via
multiple sequence alignment column HMM relative entropy, and to the evolution of the
protein modeled by an evolutionary tree for each position [3]. Conservation along the
evolution of a protein is specific to the physiologic environment and use of the protein,
whereas similarity amongst other contemporary proteins assesses the role of residues in
similar functional sites in differing contexts. The methods were shown to be complementary
for generalized function prediction [3].

2.1.4. sMAPP—The multivariate analysis of protein polymorphisms algorithm (MAPP)
uses an MSA of protein sequence orthologs (the matching protein in another species) to
estimate a mean for each of six physicochemical values for each position (MSA column)
[17]. For each physicochemical value, deviation from the mean is calculated for all twenty
amino acids, and a single composite value is generated by a center of mass calculation on a
principal component transformation, wherein each physicochemical property is taken as a
coordinate axis. Then the Euclidean distance of each amino acid from this center of mass
composite value is taken to estimate the effect of a mutation at that position [17]. We
calculate the geometric spread for the MAPP scores of all possible mutations for each
residue position, as a novel improvement to predictive accuracy over the values given
directly by MAPP (see supplementary figure 1) with the equation below. sMAPP denotes
the spread of MAPP scores for a particular position, calculated as the root mean squared
difference of the MAPP score for each amino acid type (i) to the arithmetic mean of the
nineteen other amino acid types (j).
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2.1.5. CloseSS—Protein residues come close together in 3D space to form functional
sites. We created a method to consider the joint function of residues predicted to be close in
3D space by secondary structure prediction (close by secondary structure = CloseSS). We
hypothesize that the probability of concordant function for a residue one through four
positions away is related to the secondary structure predicted for the evaluated position. The
standard types of predictable secondary structure motifs bring residue side chains together in
3D space in somewhat predictable ways. When considering a residue in an alpha helix,
residues two positions away will not be as relevant to the functional site as if the residue
were in a beta sheet. Side chains in the n+2 position of an extended beta strand will tend to
be nearby the position, as will the side chains of n+3 and n+4 for an alpha helix (Figure 5).
Since the functional moieties of the residues will be near together, they may function
together in the same calcium binding site. PSIPRED version 2.61 was used for secondary
structure prediction [45]. We tried other freely available secondary structure prediction
methods for both calcium binding prediction and generalized function prediction, and
achieved similar results (data not shown).

2.1.6. AA type—Binary dummy variables are added to represent all amino acid types
except one. Identity of the corresponding amino acid results in a score of one. Alanine is
represented by zero values for all amino acid variables. We force the inclusion of all
nineteen variables in the reverse stepwise logistic regression model, as a foundation from
which to improve. Coefficients for the amino acid type variables are trained in logistic
regression.

2.1.7. MFS—We apply the meta-functional signature method exactly as described in our
previous work [3]. The HMMRE, SSR, and amino acid type scores were combined with a
logistic regression model trained on catalytic and ligand binding sites.

2.2. Data sets
We developed two parallel datasets of 336 (set “0”) and 299 (set “1”) independent protein
chains with <35% sequence identity for which Xray crystal diffraction structures
demonstrate direct calcium ion binding. These datasets were generated by starting with two
random high resolution (<2.1 Å) proteins from the set of 3976 calcium binding chains in the
Protein Data Bank (PDB [18,43]), and progressively adding proteins to maximize diversity
and maintain <60% sequence identity (independence) between the two sets. Higher
resolution was favored when considering addition of two similar proteins. The resulting set
of calcium ions are kinetically stable, as described by B factors less than 40 Å2, where 60 Å2

is widely regarded as unstable. Binding residues were defined as those with at least one side
chain atom within half an Ångström plus the van der Waals radii to a calcium ion in the
crystal Xray diffraction structure. While many carbonyl oxygen atoms contribute to binding,
only side chains were considered for specific binding interactions. Protein chains in the sets
range in length from 45 to 1332 residues. Set 0 contains 811 binding residues and 71,724
nonbinding residues in 336 proteins, and set 1 contains 696 binding residues and 62,893
residues in 299 proteins. The distribution of calcium ion binders represents roughly one
binding residue for every 90 residues in these proteins.

2.3. Evaluation analysis
2.3.1. Ten fold cross validation—A knowledge based (informatic) algorithm
assessment protocol wherein the training set is used for testing. The training set is divided
randomly into ten roughly equivalent subsets, each of ten versions of the algorithm is trained
on the remaining 90% subset and assessed for accuracy based on predictions for the 10%
subset. Here, for each benchmark set we distribute all residues randomly across ten
nonoverlapping test sets of similar size. The remaining residues (~90%) for each set are used
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to train the regression model, which is then tested on the respective test set. Since no residue
is tested more than once, each test is independent and so analyses can be performed and
graphed together. We also performed bootstrapped cross validation with 10 maximally
different sets separating roughly half the proteins into each training or test set, but analyses
of these tests cannot be graphed together and thus are described but not shown.

2.3.2. ROC—The receiver operator characteristic (ROC) displays the balance of specificity
and sensitivity across the range of possible score thresholds. This plot is valuable to enable
critical assessment of the weaknesses of a method, demonstrating where accuracy is
separable between methods, and in informing selection of a cutoff threshold appropriate to
the particular application.

2.3.3. AUCoR—Accuracy across the range of thresholds is summarized by measuring the
area under the ROC curve (AUC), for which 50% is random and 100% is perfect. The AUC
estimates the probability of concordance between prediction and reality. We employ the
term “AUCoR” as any contribution over random prediction, a fraction of perfect prediction:
twice the difference between AUC and random. This AUCoR value gives a more
representative estimation of added value by the algorithm than the ROC.

2.3.4. Precision recall curve—This plot compares the rate of true positives amongst all
positive predictions (precision) to the amount of true positive cases retrieved (recall). This
analysis informs users of the proportion of positive instances retrievable at a particular
precision, and vice versa.

2.3.5. MCC—Matthew’s correlation coefficient (MCC), or the Φ (phi) coefficient,
estimates the similarity between two data sets. Here the MCC is the resulting value of
applying an equation to compare a set of binary predictions (e.g. functional or not) to the
real values. The true positive (TP), false positive (FP), true negative (TN), and false negative
(FN) rates are combined by the following equation (note the relation to χ2 test value):

2.3.6. MCC distribution—We plot the Matthew’s correlation coefficient for each
prediction score threshold. This analysis depicts the predictive value across all thresholds for
each method. Complexity of the predictive distribution communicates applicability of non-
linear learning methods such as decision trees and support vector machines. A Gaussian
distribution would imply simple scaling of performance by threshold score. Skewness and
multiple local extrema (maxima and minima) suggest complex features which might be lost
to the simple regression we apply here. The threshold score with the highest correlative
value is found as the highest point in the curve. We find this depiction to be more rigorous
and informative than the ROC.

2.3.7. Kendall’s τ (tau)—This nonparametric statistical rank sum test is more efficient for
large and non-normal distributions than the Student’s t-test. The probabilistic prediction
methods used in this experiment produce roughly normal distributions, but others such as
amino acid type result in entirely non-normal score distributions. As well, the many residues
tested comprise quite large sets. The resulting probability values confer a measure of
stability for respective AUC values. This test is equivalent to the Mann-Whitley U test when
one variable is binary, as is the case for the binder versus nonbinder residues here.
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3. Results
3.1. Calcium binding residue predictions by each algorithm

The best single predictor of calcium binding is the amino acid type (figures 2 and 3). This
comes as no surprise, as we only consider side chain contacts and ignore coordination by
main chain carbonyls as nonspecific. Aspartic acid (29% contribution to the set 0 logistic
regression model, 27% contribution to the set 1 logistic regression model), glutamic acid
(21%, 20%), and asparagine (21%, 16%) are the principal amino acid types that contribute
heavily to the prediction score for both data sets. The next largest contributions demonstrate
separable function for the previously mentioned amino acids: glutamine gives 4.4%
contribution to the set 1 logistic regression model but only 1.0% for the set 0 model, and
threonine contributes 2.4% for set 0 but <2% for set 1 and therefore is removed.

Other significant contributors include the HMMRE sequence conservation score, the SSR
evolutionary conservation score, the sMAPP physicochemical spread score, all three
possible predicted secondary structures (α helix, β strand, random coil), and the CloseSS
neighbor conservation scores (figures 2 and 3). There are substantial differences between the
performance of all algorithms, except that between HMMRE and SSR for which the
correlations with respect to each other are 0.36 (Pearson’s R) for set 0 and 0.32 for set 1
(figure 4). The differences in performance can be seen between the CloseSS, SSR, and
HMMRE methods in the MCC distribution analysis (figure 3) which is not visible in the
ROC or precision recall analysis (figure 2). This informs use of optimal threshold cutoffs.

3.2. Secondary structure as a predictor of functional specificity
Significant contributions from the CloseSS method arise from the third and fourth positions
in α helices, the second position in β strands, and the third position in random coils (figure
5). Meanwhile, the only consistently positive contributions are the fourth positions in α
helices and the second position in β strands, which were predicted to make the most
significant contribution to active sites by side chain proximities in idealized or average
secondary structure geometries. The pattern of selectivity for secondary structure positions
of calcium binders are separable from those for the general function benchmark set used in
the MFS publication [3]. The first position in an α helix is more likely to contribute to
function in the MFS set, and the second position of a random coil becomes prominent for
calcium binders (figure 5). While the other component algorithms are limited to predict
importance to function, these structural features denote specificity.

The CloseSS method is the least significant contributor on its own (figures 3 and 4), but is
predictive of calcium binding function (24.8% AUCoR for set 0, 27.4% for set 1),
significant at the p<10−34 level for both data sets (Kendall’s τ). When added to the logistic
regression compilation (difference between MFS1Ca and MFS2Ca), CloseSS improves the
accuracy of MFS2Ca with a consistent increase of 1.6% AUCoR for each set.

3.3. The combination of multiple algorithms outperforms any single method
Training the algorithm for specific rather than generalized function improves by 16.4%
AUCoR for set 0 and 19.2% for set 1 (figure 2). Application of MFS2Ca trained on one data
set to the other displays near equivalent profiles of accuracy to the applied data set (see
supplementary figure 1). A ten fold bootstrap test for which we train on 50% of the
benchmark set proteins and test on the remainder maintains consistent ROC AUC values:
the mean AUCoR score for set 1 applied to set 0 is 82.2% with a standard deviation of 2.2%,
and that for the reverse is 84.1% ± 1.9%. These analyses together demonstrate stability for
the predictive ability of the method, indicate saturation of the regression models, and an
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absence of overtraining. Thus we achieve significant improvement for a specific modality of
protein function.

The ROC plots illustrate improvement in calcium binding prediction specificity by logistic
regression combination over amino acid type across nearly all sensitivity levels. At 20%
sensitivity we improve upon amino acid type specificity by 7.2% (which only considers
aspartic acids below 50% sensitivity), reaching a nearly perfect 99.6% specificity. The
specificity values of the ROC analysis are particularly relevant for biochemical analysis, as
these data suggest that experiments (or further computational analyses) designed to
interrogate residues scoring in this range will be prescriptive of outcome. The logistic
regression combination for both data sets reach a specificity and sensitivity combination of
87% (figure 2). By interrogating the MCC distribution, we readily observe the threshold
score cutoff giving the most information, roughly 0.25 MCC at 15 of 100 for both data sets
(figure 3).

3.4. Example prediction on a protein with physiologically significant calcium binding
We applied the MFS2Ca logistic regression to the 165 residues of calmodulin in a recently
characterized structure (PDB id 3ewt). The method was retrained after removing the
calmodulin homolog from the training set (figure 6). Calmodulin specifically binds four
calcium ions in loops flanked by alpha helices. Calcium binding alters the relative stability
of extended conformations, allowing greater flexibility in the central region, thereby
enabling calmodulin to bind a wide variety of protein substrates effecting physiologic
processes including inflammation, metabolism, apoptosis, muscle contraction, intracellular
movement, memory, nerve growth and immune response [44].

The top 10% of MFS2Ca predictions include three of the four calcium binding residues for
each site, excluding nearly as many nonbinding aspartic acids (figure 6). The top 20%
scoring residues include all binders, again enriching over amino acid type. Comparison to
the generalized function prediction method of MFS demonstrates the utility of training a
functional signature for a specific protein function (figure 6).

4. Discussion
For a given protein sequence, the residues and their degree of functional importance can be
thought of as a signature representing the function of the protein. We previously developed a
combination of knowledge- and biophysics-based function prediction approaches to
elucidate the relationships between the structural and functional roles of individual protein
residues. Such a meta-functional signature (MFS) may be used to study proteins of known
function in greater detail and to aid experimental characterization of proteins of unknown
function [3].

In the year since publishing the MFS method, our server has been used over a thousand
times by hundreds of different users. MFS was applied with an automated filter for high
scoring residues close in the tertiary structure, on ligand binding sites in the blinded CASP8
function prediction experiment. The approach performed as one of the top algorithms
generally and the third best for metal binding prediction. We were surprised to observe that
training MFS on a set of organic ligand binders did not perform as well as when training
MFS on a diverse combination of function types. Upon closer examination, we learned that
the chemical moeities for which we failed to predict binding were not in the training set.
Meanwhile we predicted nearly all catalytic and most metal ion binding residues. Therefore
we set out to test the ability of MFS to be trained for a highly specific function type, such as
a particular moiety or metal ion, here embodied as calcium for its physiologic relevance
(figure 1). We also attempt to recover the gain from modeling the complete protein structure
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by abstracting geometric patterns in secondary structure and physicochemical conservation
across orthologs.

Training for a specific type of function improves predictions by 16–19% AUCoR, with
p<10−20 MCC profile significance (figures 2 and 3). We use a p<0.0001 and 2%
contribution filter for nonsignificant contributions of components in the logistic regression,
applied in backwards stepwise multiple regression. This approach removes data that could
lead to overtraining, and indicates the most consistently informative algorithms. Application
to two parallel benchmark sets shows stability of accuracy for the method (figures 2, 3, and
supplementary figure 1). We present an illustrative example of improvement over the
general protein function MFS method for the physiologically ubiquitous protein calmodulin,
for which we recover 3/4 of the binding site residues in the top 10% and all in the 20%
(figure 6).

We attempt to design tools to replace the requirement for tertiary structure with sequence
based methods. Separable patterns of amino acid type and predicted secondary structures
emerge (figure 5). The CloseSS analysis matches our prediction that informative patterns of
side chain proximity are carried in secondary structure. For example the fourth position in an
α helix, the second position in a β strand, and the second position in a loop contribute the
most predictive value for calcium binding. Comparison of selected positions for each
predicted secondary structure type to those for a large set of metabolite binding and catalytic
residues (described in [3]) demonstrate structural features of these functions (figure 5). For
example, the predictive ability of other residues in random coils (right column) diminishes
with sequence distance for the general function set, while calcium ions are often bound by
every other residue in a loop. The analysis suggests that these trends present separable
predictions imparting specificity for function prediction. Protein meta-functional signature
algorithms can specify particular functions using structural features to build upon separation
by amino acid type.

We also present a novel analytic tool for displaying the performance of a predictive method
across an equally sized array of score thresholds (figures 3 and 5). The Matthew’s
correlation coefficients (MCC) distribution is similar to the precision recall curve (figure 3)
in realistic consideration of large negative sets, as is the case here: even in calcium binding
proteins the nonbinding residues outnumber the binding residues 89 to 1. However, the
MCC distribution also shows the cutoff which most enriches the information content of a
prediction method. The MCC distribution conveys complexity of predictive accuracy across
the range of score thresholds, which informs the applicability of complex machine learning
methods. The CloseSS method in particular displays a multiple local extrema, which
suggests the use of decision trees, neural networks, and support vector machines to this
problem. We will evaluate both the CloseSS and MCC distribution tools in more diverse
situations in the future.

While we would prefer to compare this method to others, there are no sequence based metal
ion binding servers nor software known to us. Previous annotation methods did not
thoroughly describe the benchmark sets. Thus we use conservation measures such as relative
entropy (HMMRE) as representatives of what is available in the field.

The stability of performance across a battery of tests suggests validity of the MFSCa method
and our analysis, but also a practical limit to the information assessed by the method. Amino
acid residues that mitigate specific protein functions are relatively easy to pick out when
many known examples are available, as we show here for calcium ion binders. The
difficulties in sequence analysis arise when attempting to identify compound functionalities
of residues working together, to select amongst multiple candidate functions for a residue or
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group of residues, to predict function in a protein de novo (without homology), and to derive
clinically useful information from this analysis. In future work we will address these
challenges by incorporating conservation and identity for spatially nearby residues identified
using methods from protein structure prediction, and tuning the analysis to generate and then
compare across MFS models of highly specific functions. In this work we show that protein
meta-functional signatures can be successfully trained for these specific functions by
considering amino acid identity and structural features accessible from sequence, and so lay
the groundwork for composite function site prediction.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagrammatic illustration of protein meta-functional signature components combined
specifically to predict calcium binding residues (MFSCa). The five components are each
comprised by an algorithm which analyzes the protein sequence for an element of protein
function, philosophically and informationally different enough to be complementary (see
subsequent figures). We train the MFSCa combination by logistic regression on a data set of
nonredundant protein structures to identify calcium binding residues.
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Figure 2.
Nonhomology sequence based prediction of calcium ion binding residues in proteins for
which crystal diffraction structures demonstrate calcium ion binding mechanisms. a) The
receiver operating characteristic (ROC) for prediction of calcium binding residues in a set of
334 proteins with <35% internal sequence identity, for which ten self cross validations train
on 90% of the set and test on the remaining 10%. These data demonstrate successful
prediction for training logistic regression on a specific protein function, MFS2Ca (blue, 83%
area under the ROC curve added value above random (AUCoR)). This prediction accuracy
for each algorithm and combination is validated by b) A parallel experiment for 300 proteins
with <35% internal sequence identity and <60% sequence identity with respect to the first
set. We verified the AUCoR values by training on the one complete set and testing on the
other (see supplementary figure 1), as well as 50%:50% bootstrapped cross validation
dividing across proteins rather than residues (data not shown). The strength of predictions
comes principally from amino acid identity (cyan, 78% AUCoR), where the terminal oxygen
atoms of aspartic acid, glutamic acid, asparagine, and glutamine most commonly bind
calcium, respectively. The logistic regression models also give large positive weights to the
HMMRE sequence conservation (purple, 32% AUCoR) [41] and SSR evolutionary
conservation scores (yellow, 29% AUCoR) [3], which comprise the added predictive ability
in MFS1Ca (green, 81% AUCoR). The CloseSS method (red, 26% AUCoR) considers the
HMMRE score at positions nearby the evaluated residue, subdivided by secondary structure.
Including the CloseSS nonlocal contact score along with the algorithms in MFS1Ca adds a
small but significant increase in predictive value for MFS2Ca (blue, 83% AUCoR). Training
the combination of algorithms to predict this specific type of protein function shows
significant improvement over the accuracy shown for the generalized function prediction
method MFS (brown, 63% AUCoR). This example of specific function prediction is useful
to understand the ubiquitous role of calcium ions in cellular signaling throughout the many
fully sequenced genomes, and suggests that protein meta-functional signatures will be
enhanced by training on specific canonical mechanisms of protein function.
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Figure 3.
Further analysis of calcium binding residue prediction accuracy in ten fold cross validation.
Experiments were performed as described in the Figure 2 caption and the Research design
and methods section. a,b) Distributions of Matthew’s correlation coefficients (MCC) across
a standardized range of threshold scores for prediction of binding versus nonbinding for set
0 (a) and set 1 (b). c,d) Precision recall curves: The plot depicts the precision of predictions
across the amount of binders retrieved for set 0 (c) and set 1 (d). These two analyses show a
less optimistic perspective of success than the ROC analysis. Both depictions require far
more accuracy than achieved here to reach values that appear to be near perfect prediction,
for example compared to the 83% AUCoR of MFS2Ca shown in Figure 2 only consistently
reaches 0.25 MCC and 40% precision. The precision recall curve clearly conveys the impact
of the many false positive predictions when looking for a few instances within many, a
needle in a haystack problem. In these instances the precision recall curve highlights the
utility of training for a specific function, by a large separation between the MFSCa
algorithms and the generalized MFS. Improvement over amino acid type is also highlighted
by these depictions. The MCC distribution displays the difficulty in handling the ~89 to 1
incidence of nonbinders in the benchmark sets. The MCC distribution also shows the
specific threshold score which gives the most additive value for predictions, as the
corresponding threshold to the highest MCC. Multiple local extrema rather than a simple
Gaussian distribution conveys nonlinear effects with respect to prediction score thresholds.
Nonlinear prediction effects are not captured by simple regression models, and therefore
motivate further study with more complex machine learning techniques such as neural
networks, decision trees, and support vector machines.
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Figure 4.
Predictive algorithms with low correlation can have additive value. The Pearson’s R
correlation coefficients between predictions of individual methods are relatively low, with
the maximum for HMMRE and SSR being 0.39. Predictions of the novel CloseSS and
sMAPP algorithm have low correlation to those of others, maximally correlated to HMMRE
as 0.12 and 0.21 absolute, respectively. At right: Statistical significance of prediction
concordance demonstrates predictive ability for an algorithm. Kendall’s τ is used to assess
the null hypothesis of nonconcordance between true positive calcium binders or nonbinders
and algorithm predictions (scores are considered without use of a threshold). All algorithms
considered here are significant at levels beyond p<10−30. The novel algorithms we propose
here are significant predictors of calcium binder versus nonbinder residues, and display low
correlation to existing algorithms. Thus the HMMRE, SSR, sMAPP, CloseSS, and amino
acid type scores might be synergistically combined into MFS2Ca, as verified in Figures 2
and 3.
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Figure 5.
Residues that mediate specific types of protein function are separable from other types by
considering structural features. We use predicted protein secondary structure to guide
selection of nearby residues that work together in functional sites. HMMRE sequence
conservation scores [41] of positions ±n (1,2,3,4) from the evaluated residue are used as
predictors. All threshold cutoffs (range 0 to 1 with 0.005 intervals; independent axis) are
evaluated with correlation to true functional residues (Matthew’s correlation coefficient;
dependent axis). The vertical intercept describes the predictive value for the predicted
secondary structure itself. Any MCC values above the intercept show enhancement. The
selection of residue position for each predicted secondary structure type demonstrates
characteristic structural features of a) calcium binding residues versus b) those rendering
catalytic and metabolic binding function. For example, the predictive ability of other
residues in random coils (right column) diminishes with sequence distance for the general
function set, while calciums are often bound by every other residue in a loop. Separable
features emerge, confirming the abstraction of active site side chain 3D proximity from
geometric patterns in secondary structure motifs. Protein functional signature algorithms can
specify particular functions using structural features to build upon separation by amino acid
type.
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Figure 6.
Prediction of calcium binding residues in calmodulin (PDB identity 3ewt). Scores are
mapped across a crystal diffraction structure for calmodulin, with calcium ions represented
as green spheres, binding residue side chains shown in ball and stick representation, and the
protein colored with heat map representing stronger predictions in red and weaker
predictions in blue. a) MFS prediction [3]; a method built with the same algorithms but
trained on a wide variety of functional residues only captures calcium binding residues in
two of the four sites. b) MFS2Ca prediction; twelve of the top sixteen residues predicted to
bind calcium (top 10%) comprise 3/4 of the calcium binding residues, distributed as three of
four residues in each of the four calcium binding sites. All sixteen binding residues are
recovered within the top 20% of predictions. Comparison of prediction performance for
calmodulin between MFS and MFSCa demonstrates the importance of the reference state for
function prediction, which is exploited by logistic regression weights for amino acid identity
and structure based predictions of CloseSS.
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