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Abstract
When properly determined, spontaneous mutation rates are a more accurate and biologically
meaningful reflection of the underlying mutagenic mechanism than are mutation frequencies.
Because bacteria grow exponentially and mutations arise stochastically, methods to estimate
mutation rates depend on theoretical models that describe the distribution of mutant numbers among
parallel cultures, as in the original Luria-Delbrück fluctuation analysis. An accurate determination
of mutation rate depends on understanding the strengths and limitations of these methods, and how
to design fluctuation assays to optimize a given method. In this paper we describe a number of
methods to estimate mutation rates, give brief accounts of their derivations, and discuss how they
behave under various experimental conditions.

The purpose of this article is to provide experimental and mathematical methods for
determining spontaneous mutation rates in bacterial cultures. Mutations are heritable changes
in an organism's DNA (or RNA for RNA-based organisms). Spontaneous mutations are
mutations that occur in the absence of an exogenous DNA damaging agent. These include DNA
polymerase errors, mutations induced by endogenous agents, as well as deletions, duplications,
and insertions. It is generally assumed that most spontaneous mutations that occur during
growth are linked to DNA replication. Although we have not included mutations induced by
DNA damaging agents in this article, the methods discussed also can be applied to mutations
induced by DNA base analogues or by low, nonlethal doses of other mutagens.

We assume that our readers are interested in the mechanism of mutation, in mutation rates
among natural isolates of bacteria, and/or in the influence of genetic background or
environment on the mutational process. The alternative to determining a mutation rate is to
determine a mutant frequency, that is simply to average the fraction of mutant bacteria in a few
replicate cultures. There are two reasons for making the effort to determine a mutation rate
instead of a frequency.

First, when properly determined, the mutation rate is more accurate and reproducible than the
mutant frequency. This is, indeed, the fundamental fact that was exploited in the famous Luria
and Delbrück experiment (1). During exponential growth every cell has a low but nonzero
probability of sustaining a mutation during its lifetime, and this probability is what we call the
mutation rate. After a cell sustains a mutation it produces a clone of mutants, and the size of
this clone will depend on when during the growth of the population the mutation occurred.
Thus, even though the growth of the population may be deterministic, the final number of
mutants in the population reflects an underlying stochastic process. Because of the exponential
growth of mutants, low probability events occurring early during the growth of a population
have huge consequences. This makes mutant frequency, no matter how many cultures are
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averaged, inherently inaccurate. Furthermore, even if there were no element of chance and
mutations occurred on a strict schedule, the resulting distribution of the number of mutants
would not be normally distributed, and the mean would not be the best measure of the
underlying mutational process.

Second, the mutation rate gives more information about biological processes than does the
mutant frequency. Departures from the results expected from theory can be evaluated and their
causes experimentally determined. Some examples of such departures and their causes will be
discussed in this article.

There are two general methods for determining mutation rates. The first, mutant accumulation,
is potentially accurate but experimentally arduous. During exponential growth of a bacterial
culture, after the population reaches a size so that the mean probability of a mutation occurring
is unity, the proportion of the cells that are mutants increases linearly (assuming no difference
in growth rate between mutant and nonmutant). If the number of mutants, r, and the total
number of cells, N, are determined at various points during the growth of the culture, then the
mutation rate, μ, is simply the slope of the line of r versus the number of generations, assuming
synchronous growth. Alternatively, by Eq. 5–9 of reference (2):

Eq. [1]

However, to accurately determine mutation rate in this way requires a very large number of
cells and a very long period between N1 and N2. While serial dilutions potentially could solve
these problems, every dilution introduces a sampling error that may be large compared to the
mutation rate. The alternative is to grow the cells in continuous culture, but this not only
requires equipment and expertise unknown to most researchers, continuous cultures are
plagued by problems of periodic selection (3).

Therefore, we confine ourselves here to the second method, fluctuation analysis. A fluctuation
assay consists of determining the distribution of mutant numbers in parallel cultures; the
mutation rate is obtained from analyzing that distribution. We present and discuss below a
variety of methods to achieve this end. While they differ in their calculations, they are all ways
to estimate one parameter — the probable number of mutations per culture that gave rise to
the distribution of mutants observed. We call this important parameter m, and emphasize that
it is the number of mutations, not the number of mutants, per culture. The methods to calculate
m are traditionally called "estimators". m will, of course, depend not only on the mutation rate,
but also on the amount of cell growth (which will depend on the nature of the medium and the
volume of the culture), so this parameter is itself of no biological interest. However, m is, to
date, the only mathematically tractable parameter. As the mutation rate is the probability that
a cell will sustain a mutation during its lifetime, m can be converted to the mutation rate by
dividing it by some function of the number of cells at risk.

All methods to estimate m depend on the theoretical distribution of mutant clones, first partially
described by Luria and Delbrück (1), and called the Luria-Delbrück distribution in their honor.
The first method to calculate the distribution was provided by Lea and Coulson (4), and their
model is the basis of the methods discussed below. The assumptions about the mutation process
underlying this model are: (i) the probability of mutation is constant per cell-lifetime; (ii) the
probability of mutation per cell-lifetime does not vary during the growth of the culture; (iii)
the proportion of mutants is always small; (iv) the initial number of cells is negligible compared
to the final number of cells; (v) the growth rates of mutants and nonmutants are the same; (vi)
reverse mutations are negligible; (vii) death is negligible; (viii) all mutants are detected; and,
(ix) no mutants arise after selection is imposed. How departures from the Lea-Coulson model
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affect the mutant distribution has been addressed by various theoreticians over the years. In
general, a proper experimental protocol will meet most of the model's requirements, but some
departures arise from real biological circumstances. We discuss below some of these and how
to cope with them.

We are not mathematicians, and our approach has been to try to find the useful and biologically
relevant outcomes of the theoreticians' modeling. This effort has been aided by a few well-
written articles that present both theory and implications in a way understandable to the
nonmathematician. For those interested, we recommend references (5–13).

EXPERIMENTAL METHODS
We describe here a general experimental outline for fluctuation assays that experimenters can
adapt to their own systems. We assume that mutants will be selected on solid medium, but the
p0 method can be used in liquid medium as well.

A fluctuation assay begins with a number of parallel cultures, each inoculated with a small
number of identical cells (containing no mutants) that are then allowed to grow. At the end of
growth the number of mutants in each culture is determined by plating the entire culture on a
selective medium. The total number of cells is determined by plating an appropriate dilution
on nonselective medium. The mutation rate is determined from the distribution of the numbers
of mutants.

The first step in designing a fluctuation assay is to do some preliminary experiments to establish
the range of the numbers of mutants obtained when a given number of cells are plated. A
provisional m can be estimated from the median of these experiments (see Method 3 below).
With this knowledge, the next step is to choose a method based on the factors discussed in the
next sections. To minimize experimental manipulation and calculations, the obvious choices
are the p0 method for low mutation rates and the method of the median for intermediate
mutation rates. Although the calculations are more difficult, the MSS maximum-likelihood
method is superior to both of these for all mutation rates, and by far the best choice for high
mutation rates. If radically different mutation rates among strains or conditions are to be
compared, it is probably best to choose one method and adjust the experimental conditions
accordingly.

After deciding on a method, the first important parameter to consider is m, the expected number
of mutations per culture. m should not be below 0.3 (unless a large number of cultures are used,
see Figure 1A), and should be chosen to: (i) optimize the method being used, and, (ii) keep the
number of mutants per plate within a countable range. For the p0 method, m should be between
0.3 and 2.3; for the method of the median, m should be between 1 and 15, although the
performance of the median estimator is sub-optimal when m is below 4. Above m = 15, the
MSS-maximum-likelihood method should be used. The desired m is achieved by adjusting the
number of cells plated. We prefer to do this by limiting the carbon source during growth, but
it is not recommended to use other growth factors, such as amino acids or vitamins, to limit
growth (because the cell physiology may be distorted, and mutants that do not require the
growth factor will be selected). The alternatives are to adjust the volume of the culture, or to
plate aliquots of the cultures (although this introduces an error —see below). However, in all
cases the initial number of cells, No, must be negligible compared to the final number of cells
in the culture, Nt.

We let cultures grow to saturation before selecting for mutants. In some situations it may be
desirable to use exponentially growing cells instead. However, it is extremely important that,
when mutants are selected, Nt is the same in all the parallel cultures. Thus, before mutant
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selection, cell numbers should be monitored by optical density or counting (e.g. with a Petroff-
Hausser chamber) and their numbers confirmed by plating dilutions on nonselective medium.

The second parameter to consider is the number of parallel cultures, C, to use. The precision
of estimates of m is a function of both m and 1/√C, so more cultures is always better, but not
always significantly so. Taking a precision level of 20% as acceptable for the estimate of m,
the required number of cultures to achieve this level for the p0 (Method 1), median (Method
3), and MSS-maximum-likelihood (Method 8) methods are given in Figure 1. [For these
calculation we used formulae for variances given in references (4) and (12); for another
approach see reference (11)]. Note that precision is a measure of the reproducibility of an
estimator, not a measure of its accuracy. Accuracy is how well an estimator estimates the actual
m under the conditions of the experiment, and will be a function of the assumptions used in its
derivation.

The third parameter to consider is the initial inoculum, No. The inoculum must not contain any
preexisting mutants and must be negligible compared to Nt. At least for m ≤ 10, a 1/1000 ratio
is sufficient (10) (although it is possible to adjust for the effect of larger inocula, the calculations
are tedious). However, the smaller the inoculum, the longer it will take for the culture to grow,
plus very small inocula often have poor viability. A good rule of thumb is that the inoculum
should be about mNt/104 (this means the total number of cells inoculated, no matter what the
volume of the culture into which they are inoculated).

It is common to inoculate each of the parallel cultures with a single colony of the strain being
tested. However, this is not good practice because No will then vary among the cultures. In
addition, a colony is equivalent to one tube in a fluctuation assay, so there is variation in the
numbers of mutants among colonies. We recommend growing one culture, diluting it
appropriately into fresh medium, and distributing this into the individual culture tubes.

After nonselective growth, it is best to plate the entirety of each culture on the selective medium
so that all the mutants in each culture can be counted. Because of the nature of the Luria-
Delbrück distribution, sampling introduces errors in the estimation of m. Sampling, or low
plating efficiency, narrows the mutant number distribution, increasing the influence of small
numbers and decreasing the influence of large numbers (8,14). However, one often wants to
assay for several mutant phenotypes, and these might have different mutation rates, making
sampling required. Corrections can be applied if the p0 or the Jones methods are used (Methods
1 and 5) (see EVALUATION OF THE METHODS). Alternatively, one can divide the
observed values by the fraction plated, and use these adjusted numbers to calculate m. Although
this is not recommended, it is more accurate than using the observed values and then dividing
the resulting m by the fraction plated.

If any mutations occur after plating on selective medium, the estimated m will be increased.
This can be a problem with nonlethal selections involving, for example, reversion of an
auxotrophy or mutation to utilize a carbon source. There are two possible sources of post-
selection mutations: (i) the nonmutant cells can grow enough on the selective medium to
produce mutations; and (ii) mutations occur in the absence of growth (adaptive mutations)
(15). In the first case, the cells may grow because of contaminants in the medium or because
they have a partial phenotype (i.e. their allele is "leaky"). This is detected as a lack of correlation
between the number of cells plated and the number of mutants observed. One solution is to
add to the plates an excess of scavenger cells that cannot mutate to the selected phenotype
(e.g., because they are deleted for the relevant allele) (16). This will not prevent growth of
"leaky" strains, however, in which case the only solution is to determine how long it takes a
mutant to form a colony, and to count colonies at the earliest possible time after plating. The
case of adaptive mutations will be addressed below.
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CALCULATIONS
There are a number of different methods for estimating the mutation rate from the number of
mutants per culture in a fluctuation assay. Although a closed, analytical solution of the Luria-
Delbrück distribution does not yet exist (9), the observed distribution can be used to estimate
the mean or the most likely number of mutations per culture, m. m is then used to calculate the
mutation rate, μ. The methods to estimate m have improved with time, although with an increase
in computational complexity. These methods are explained below with example calculations.
The estimation of μ from m is discussed last. Comments about the uses and abuses of each
method are presented briefly here and detailed in EVALUATION OF THE METHODS.

We have standardize the terms used in the equations below and our definitions are given in
Table 1. The equations referred to below are given in Table 2. Many of these equations have
been rearranged so that they are expressed in terms of r, the number of mutants observed, and
m. Our m is other authors' μN. All the example calculations use the sample data given in Table
3 (although not all the methods are valid for this experiment). It is hoped that no one will be
intimidated by the calculations, and that our examples will help people understand the details.
The data in Table 3 are from a 52-culture fluctuation assay of strain FC40, a strain that can not
utilize lactose but that reverts to lactose utilization (16). This is Exp. 2 in Table 4 and was also
used in reference (13).

Method 1: The p0 Method
This method was first given by Luria and Delbrück [Eq. 5 in reference (1)], and is by far the
simplest to calculate. Because the number of mutations (not mutants) per culture is Poissonally
distributed, p0, the proportion of cultures without mutants, is the zero-term of this Poisson
distribution, as given by Eq. [2] in Table 2. The p0 method should only be used when p0 is
between 0.1 and 0.7 (m is between 2.3 and 0.3). Rearrangement of the terms gives the easily
solvable Eq. [3] in Table 2.

From the sample data in Table 3, 11 of the 52 cultures had no mutants; thus, the p0 for this
experiment is 11/52 = 0.212. From Eq. [3] in Table 2, m = −ln(0.212) = 1.55.

Method 2: Luria-Delbrück's Method of the Mean
The method of the mean, Eq. [4] in Table 2, was first presented by Luria and Delbrück [Eq. 8
in reference (1)]. The skewed distribution of mutant numbers often results in an elevated
mutation rate calculated by this method, and thus this method is not recommended. Eq. [4] can
be rearranged to Eq. [5] in Table 2, and solved by iteration, changing the value of m until Eq.
[5] approaches zero. This is easily be accomplished on a spreadsheet as shown in Fig. 2A.

The mean of the sample data in Table 3 is 1.923. This value and the number of cultures
substituted into Eq. [5] in Table 2 gives m × ln(m × 52) − 1.923 = 0. Using the spreadsheet
illustrated Fig. 2A, an initial entry of m = 0.5 gave a value of − 0.29. Entering m = 0.6 gave a
value of 0.14. After establishing this range, values of m were entered in 0.01 increments until
a minimum value of 0.008 was found when m = 0.57.

Method 3: Lea-Coulson's Method of the Median
To avoid the overestimation of the method of the mean, the method of the median was
introduced by Lea and Coulson (4). They observed that for m from 4 to 15, the distribution of
the function [r/m – ln(m)] has a skewed distribution about a median of 1.24, as given by Eq.
[6] in Table 2 [Eq. 37 in reference (4)]. Eq. [6] can be rearranged to Eq. [7] in Table 2 and
solved for m by iteration on a spreadsheet, as illustrated in Fig. 2B.
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The median of the data in Table 3 is 1 (with 52 values, the median is the 26th value of r when
the r's are ranked). With r̃ = 1, Eq. [7] in Table 2 was solved by iteration as illustrated in the
example above. A value of − 0.002 was obtained when m = 0.89.

Method 4: The Drake Formula using the median
The Drake formula has proved useful for comparing data from different sources; however, it
introduces a serious bias in the calculation of m. Drake's equation using the median (17) has
been rearranged to give Eq. [8] in Table 2, which can be solved by iteration as discussed above.
Using the sample data in Table 3, with r̃ =1, Eq. [8] gave −0.006 when m = 1.77.

Method 5: The Jones Median Estimator
The Jones median estimator [Eq. 6 in reference (11)] is a newcomer in the field. Within our
limited experience we have found it reliable. It has the advantage that the equation to calculate
m, Eq. [9] in Table 2, is explicit. Using the sample data in Table 3, r̃ =1, and Eq. [9] is m = {1
− ln(2)}/{ln(1) − ln [ln(2)]} or (1 − 0.693)/[0 − (− 0.367)] = 0.836

Method 6: The Quartiles method
Determination of m by quartiles was first presented by Armitage (18) and expanded by Koch
(6). This method calculates m1, m2 and m3, the mean number of mutations to give the observed
r’s at the 25th, 50th and 75th position of the distribution by Eq. [10–12] in Table 2 [Eqs. 3–5 in
reference (6)]. The equations are valid over the range 2 ≤ m ≤ 14. Observed r’s, are ranked,
and the number of mutants at the 25%, 50% and 75% points are determined. If (C + 1) is not
exactly divisible by 4, then the two adjacent values are averaged to give the value at the quartile.
These values are inserted into Eq. [10–12] in Table 2 to give m1, m2 and m3. If all three m’s
are similar, then m has been determined. However, if the 3 values of m do not agree, this may
indicate departures from the assumptions underlying the theoretical Luria-Delbrück
distribution.

The experiment in Table 3 had 52 cultures, giving 13th, 26th, and 39th cultures as the 3 quartiles.
From Table 3, Q1, Q2, and Q3 are 1, 1, and 2, respectively. Inserting Q1 into Eq [10] gave
m1 = 1.7335 + (0.4474 × 1) − [0.002755 × (1)2 ] = 2.18; inserting Q2 into Eq [11] gave m2 =
1.43; and, inserting Q3 into Eq. [12] gave m3 = 0.96. [Note that for this experiment, m1 and
m2 are larger than m3. The strain used has a high rate of post-selection "adaptive" mutations
(16); because the pre-selection mutation rate is low, post-selection mutations increase the
values of r falling in the lower quartiles.]

Method 7: Lea-Coulson's Maximal Likelihood Method
Maximum likelihood methods calculate the most probable m that would give the observed
distribution of r. The Lea-Coulson method given here is for large values of r [Eqs. 48–50 of
reference (4)]. The calculations are broken into 3 sections. First, using an estimate of m (e.g.
from the median), x is calculated using Eq. [13] in Table 2 for each observed value of r. Second,
the same value of m is then to used to calculate d by Eq. [14] in Table 2. Third, the values of
x and d are put into Eq. [15] in Table 2 and summed for each value of x (from each r). The sum
of Eq. [15] is evaluated, and adjacent values of m are then used to repeat the calculations until
Eq. [15] approaches zero. Again, we do this on a spreadsheet.

The method of the median (see above) gave an estimate of m = 0.89 for the sample data in
Table 3. Inserting this m into Eq. [13], x's were calculated for each value of r observed (the
values of a, b and c are listed in Table 1). For example, for r = 0, xr=0 = {11.6/[(0/0.89) – ln
(0.89) + 4.5]} − 2.02 = 0.49; for r = 1, xr=1 = {11.6/[(1/0.89) − ln(0.89) + 4.5]} − 2.02= 0.0009,
etc. to r = 9. From Eq. [14], m = 0.89 gave d = [1 – 4.5 + ln(0.89)]/11.6 = − 0.312. Putting this
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d and all the values of the xr 's into Eq. [15] gave 0.819. This process was repeated with different
values of m until Eq. [15] gave − 0.015 at m = 0.866.

Method 8: The MSS-Maximum-Likelihood Method
The MSS algorithm, Eq. [16] in Table 2 [Eq. 4 in reference (10)], is a recursive equation that
efficiently computes the Luria-Delbrück distribution based on the Lea-Coulson generating
function. To obtain a maximum likelihood estimation of m,Eq. [16] in Table 2 is used to
calculate the probability, pr, of observing each of the experimental values of r for a given m.
The likelihood function, Eq. [17] in Table 2, is the product of these pr's, [Eq. 7 in reference
(13)]. As before, the first m evaluated is usually m estimated by the method of the median, then
adjacent m's are used to recalculate the pr's until an m is identified that maximizes Eq. [17].

To obtain the pr's we use a spreadsheet that calculates all the pr's for r= 0 to 150 for a given
m. As long as m ≤ 15, values of r greater than 150 contribute such a small proportion to the
distribution that they can be lumped into the r = 150 value (13). Using this method, the r's that
are not observed enter into the recursive calculation, i.e., a pr value must be calculated for each
r in the series of possible observations of r, even if no actual values of a give r were observed.
With a given m, p0 is calculated as in Eq. [3] in Table 2. Then, from Eq. [16], p1 = m/1 ×
(p0/2); p2 = m/2 × (p1/2 + p0/3); etc.

Using the sample data in Table 3 and starting with m = 0.89 as before, p0 = e(−0.89) = 0.411;
p1 = 0.89/1 × (0.411/2) = 0.183; p2 = 0.89/2 × (0.183/2 + 0.89/3) = 0.102; etc, to p9. Eq [17]
was evaluated as (p0)11 × (p1)17 × (P2)12 × (p3)3 × (p4)4 × (p5)1 × (p6)1 × (p7)2 × (p8)0 ×
(p9)1 = 4.29 × 10−47. [Note that p8 did not have to appear in this equation, but entering every
pr facilitates the design of the spreadsheet.] This value and m = 0.89 were entered into a linear
plot of m vs the value of Eq. [17]. Adjacent values of m's were used to recalculated the pr''s,
which were entered into Eq. [17], and each value of m and Eq. [17] were entered into the plot.
The value of the likelihood function vs m gives a smooth curve from which the maximum value
is easily determined. For the sample data in Table 3, the maximum of the likelihood function
was 11.8 × 10−47 when m = 1.11. [There are better ways to maximize the likelihood function
than the one we have devised, but we present it here to show that it can be done with a
spreadsheet on a personal computer.]

CALCULATING THE MUTATION RATE
The mutation rate is the probability of a cell sustaining a mutation during its lifetime, and is
calculated by dividing m, the mean or most likely number of mutations per culture, by some
measure of the number of cell-lifetimes at risk during the growth of the culture. There are three
methods in common use, reflecting different assumptions about the mutational process. Luria
and Delbrück (1) assumed that the probability of mutation is distributed evenly over a cell's
division cycle. Because Nt bacteria will have arisen from Nt-1 divisions, they calculated the
mutation rate per cell per generation as m/(Nt-1) ≈ m/Nt. This rate was also used by Lea and
Coulson (4), and has been retained by most theoreticians.

However, bacterial growth is not synchronized and at any given time cells will be at various
points in their division cycles. According to Armitage (18), because the mean generation time
of an asynchronized population is ln(2)/(the growth rate), the number of generations that a
population has undergone is Nt/ln(2). Thus, the mutation rate per cell per generation should be
m × [ln(2)/Nt]. = m/(1.44 × Nt). Although the ln(2) correction depends on the assumption that
the probability of mutation is evenly distributed over the division cycle, it was declared de
rigor by Hayes (19) and has passed into common usage.
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But, Armitage (18) went on to consider that mutations might occur only at the beginning or
only at the end of the division cycle. In the first case the number of "at risk" points is the same
as the total number of cells that ever existed in the culture, which is 2Nt. (This is because Nt
cells had Nt/2 parents and Nt/4 grandparents, etc., and the sum of this series is 2Nt). This gives
the mutation rate as m/2Nt (which is also called the mutation rate per cell per generation). In
the second case, the number of "at risk points" is equal to the number of divisions that occurred,
which is Nt, giving the mutation rate as m/Nt, the original Luria-Delbrück mutation rate, called
the mutation rate per cell per division.

For the same m, the mutation rates calculated by these three methods will differ by 1:0.69:0.5.
These differences are not trivial, but they are constant. So, the best procedure is to choose the
method that you think best describes reality, and stick to it. And, most importantly, report what
method you have used. Then your mutation rates can always be compared with mutation rates
calculated by a different method. Note that, however calculated, the accuracy of a mutation
rate is dependent on the accuracy of the estimate of Nt; thus, Nt should be determined to as
high a level of accuracy as possible.

EVALUATION OF THE METHODS
Method 1

The p0 method, Eqs. [2] & [3] in Table 2. The p0 method is simple and reliable when properly
used. Obviously, the absolute limits of its range are 1 > p0 > 0, but the precision of m estimated
from p0 varies over this range (see Fig. 1). As no estimator of m is much good if m < 0.3 (unless
a very large number of cultures are used), the useful range of the method is when p0 is between
0.7 and 0.1 (0.3 ≤ m ≤ 2.3). Like all the estimators, the precision of m estimated from p0 is a
function of √C and therefore increases as C increases. But, compared to the median and
maximum likelihood estimators, the p0 estimator becomes inefficient (i.e. requires more
cultures for the same precision) when p0 < 0.3 (m ≥ 1.2) (20) (see Fig. 1A).

Because the p0 estimator does not depend on any experimental values other than zero, it is
insensitive to certain deviations from the Lea-Coulson assumptions. For example, it is not
affected if mutants grow more slowly than nonmutants as long as at least one member of every
mutant clone produces a colony after selection. But, the p0 estimator is extremely sensitive to
factors that increase p0, namely phenotypic lag, decreased plating efficiency, sampling, and
post-plating mutations.

Phenotypic lag occurs when a mutant phenotype is not expressed until generations after the
mutation occurs. As a result, mutations that occur in the last few generations of growth will
produce no mutant cells, and the p0 will be inflated. Whether phenotypic lag is important in a
given experiment can be evaluated with other estimators, as will be discussed below.

If mutants have a plating efficiency less that 100%, if only a portion of the culture is plated,
or if mutants have a non-negligible death rate, then a fraction of every mutant clone will be
lost. The p0 estimator is affected rather more than are other estimators because small clones
will have a greater probability of being completely lost. If the fraction of mutants detected, z,
is known (e.g. when z = the dilution factor or fraction plated), then the actual m can be estimated
from the observed m by Eq. 41 in reference (8):

Eq. [18]
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Because of the simplicity and reliability of the p0 method, researchers may wish to design their
fluctuation assays so that 10 to 70% of the cultures have no mutants. As discussed above, this
is best accomplished by limiting the growth of the cells or the volume of the culture. However,
if required, the p0 can be adjusted by plating only a sample of each culture and using Eq. [18]
to calculate that actual m. The Nt used to obtain μ would then be the Nt of the undiluted culture.

Method 2
The Method of the Mean, Eqs. [4] & [5] in Table 2. Mean estimators are based on the fact that
when a population reaches a size large enough so that the probable number of mutations is
unity, each generation will thereafter contribute μNt mutants to the final number (1). The
required population size is 1/μ, and we will call the time after 1/μ is reached the "Luria-Delbrück
period". The final mean number of mutants accumulated during the Luria-Delbrück period is
r ̄ = μNt log2(μNt), or r ̄ = μ ln(μNt) if a continuous function is assumed (17). Taking μNt = m,
this simplifies to r ̄ = m ln(m). Luria and Delbrück (1) preferred to use the period after the
population size of the whole experiment (i.e. all the cells in all the cultures) reaches the 1/μ
point, and so their equation is r ̄ = m ln(mC) (Eq. [4] in Table 2). Using Lea and Coulson's result
that the median satisfies the relationship r̃ = m ln(m)+1.24, Armitage (18) corrected the Luria-
Delbrück formula to r ̄ = m ln(mC)+1.24, although the improvement is marginal (5).

Obviously, mean estimators cannot be used when Nt ≤ 1/μ (i.e. when m ≤ 1). In addition, these
estimators require that mutations occur only during the Luria-Delbrück period, i.e. there are
no jackpots. This is a false assumption in most experimental situations, particularly if the Luria-
Delbrück period is only a small proportion of the total number of generations of the population.
Thus, all mean estimators are subject to distortion by jackpots and will frequently overestimate
mutation rates. The arbitrary use of the median instead of the mean improves their
reproducibility (2), but not necessarily their accuracy. Note, however, that if a population could
be purged of mutants at the start of the Luria-Delbrück period [e.g. with penicillin selection,
or by techniques given in reference (21)], then these estimators would be more reliable.

Method 3
The Lea-Coulson Method of the Median, Eqs. [6] & Eq. [7] in Table 2. Lea and Coulson (4)
found that, for r≫ 1, Pr, the probability that a culture has r or more mutants, is approximated
by:

Eq. [19]

where F is some unknown function [Eq. 25 in reference (4)]. This is why we have rearranged
equations into this format in Table 2. With values of m from 4 to 15, Lea and Coulson (4)
showed that a plot of Pr vs [r/m − ln(m)] gives a smooth curve with a median [i.e. where Pr =
50%] = 1.24. Thus, their estimator is a good approximation for m over this range. And, indeed,
Lea and Coulson's median estimator has been shown to be remarkably accurate in comparative
tests using computer simulations (12,13), which is borne out by experimental data (see Table
4). Although the method should not be pushed much beyond the limits for which it was devised,
namely 4 ≤ m ≤ 15, (i.e. 10 ≤ r̃ ≤ 60), within these limits it is the method of choice baring
maximum-likelihood methods. It is sensitive to deviations from the Lea-Coulson assumptions,
although in a well designed experiment the r̃ should be large enough to be relatively unaffected
by phenotypic lag. It's other major drawback is that little of the information from the fluctuation
assay is used.
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Method 4
Drake's formula, Eq. [8] in Table 2. Drake's formula (17) is an easy way to calculate mutation
rates from frequencies, namely μ = f/ln(Ntμ), where f is the final mutant frequency. The
derivation of this equation is the same as discussed above for the mean, i.e. mutations are
assumed to occur only during the Luria-Delbrück period. Thus, taking f = r ̄/Nt, and Ntμ = m,
gives mln(m) = r̄, as above. However, to minimize the impact of jackpots, Drake uses the median
f instead of the mean f, and thus the formula becomes Eq. [8] in Table 2. In this format it can
be compared to the Lea-Coulson formula, making it obvious that Drake's method will often
yield higher mutation rates. If m < 4, Drake's formula gives significantly higher estimates of
m than the Lea-Coulson median or the maximum likelihood methods. Above m = 4, the m's
from Drake's formula asymptotically approach those obtained with these other methods. For
example, over the range r̃ = 10 to 60 (m = 4 to 15), Drake's formula yields m's 1.5 to 1.3 times
that of the Lea-Coulson method of the median.

Method 5
The Jones Median Estimator, Eq. [9] in Table 2. As mentioned above, the Jones estimator is
rather new. It has an interesting derivation. Jones et al. (11) calculated the hypothetical dilution
that would be necessary to convert an observed distribution with a median of r̃ into a distribution
with a median of 0.5, (i.e., a p0 of 0.5). Then, they used Eq. [18] above to calculate the mact
from the observed r̃ and the hypothetical dilution factor, giving Eq. [9] in Table 2. For interested
readers, we have attempted to put Eq. [9] into the format of Eq. [19], obtaining:

Eq. [20]

The Jones estimator has two great advantages. First, the equation for m is explicit. Second,
because of its derivation, it readily accommodates dilutions [Eq. 5 of reference (11)]:

Eq. [21]

where z = the dilution factor. (This equation is the same as Eq. [9] in Table 2 if z = 1). mact is
then divided by the real Nt to obtain the mutation rate. In a subsequent paper, Crane et al.
(14) proposed that better estimations of m can be obtained if fewer cultures are grown to larger
volumes, and then dilutions of these plated for mutants with m calculated by Eq. [21]. Part of
the gain in precision from this procedure is artificial, i.e. the variance of mutant numbers will
always be lower if there are fewer mutants. However, the real advantage of the procedure is
that, with larger numbers of generations, more of these will be in the Luria-Delbrück period,
increasing the contribution of the deterministic accumulation of mutants to the final distribution
of mutant numbers.

Method 6
Koch's Quartiles method, Eqs. [10–12] in Table 2. Although the mean of the Luria-Delbrück
distribution is almost useless, the quartiles of the distribution are fairly well behaved. The
median quartile appears in the methods discussed above, but more of the results of an
experiment can be used if the lower and upper quartiles also contribute to the estimation of
m. Koch provided a graphical method and explicit equations to estimate m's from the values
of r at the three quartiles. Eqs. [10–12] in Table 2 are based on the regressions of m vs the
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theoretical values at the quartiles for 2 ≤ m ≤ 14, whereas the graphs extend to m = 120(6).
These are very useful because certain deviations from the Lea-Coulson assumptions will result
in a lack of correspondence among the three m's, as discussed below.

Method 7
Lea-Coulson's maximal likelihood method, Eq. [13–15] in Table 2. Maximum likelihood
methods use all the data from an experiment to estimate the m most likely to have produced
the observed distribution. Thus, they are the gold-standard for estimating m. We have given
Lea-Coulson's method for large values of r because it is somewhat computationally simpler
than the MSS method (Method 8) (whereas Lea-Coulson's method for small values of r is more
difficult than Method 8). Lea-Coulson's method depends on x, Eq. [13] in Table 2, being a
normal deviate (i.e. having a mean of 0 and a standard deviation of 1), which is a reasonable
assumption for 4 ≤ m ≤ 15 (4). [Note, Lea-Coulson's maximal likelihood method is not the
same as the "Lea-Coulson estimator", which we have not included because it is seldom used
today.]

Method 8
The MSS-maximum likelihood method, Eq. [16–17] in Table 2. As mentioned above, the MSS
algorithm, Eq. [16] in Table 2, is a computationally efficient method to generate the Luria-
Delbrück distribution from a given m (10). The MSS-maximum-likelihood method to estimate
m consists essentially of working the algorithm backwards, i.e. using estimated m's to generate
a provisional distribution, comparing that to the experimental values using the likelihood
function, Eq. [17] in Table 2, and repeating until the best m is found. In addition to the advantage
of using all the data, the m determined from the MSS-maximum likelihood method can be
evaluated with more powerful statistics than m's obtained from other methods (see below).
However, the MSS algorithm depends on the Lea-Coulson model, and is thus sensitive to
deviations from the assumptions of this model.

The Behavior of the Estimators with Real Data
Most of our information about the behavior of the estimators is based on simulated data, e.g.
see references (12,13). However, readers may be interested in how these estimators behave
with real data. Six fluctuations assays covering a range of mutation rates are given in Table 4
with the m's estimated by several of the methods discussed above. 95% confidence levels for
some of these were obtained with the statistical methods discussed below. Jackpots are values
that were clear outliers, but were not identified by any rigorous test. Exp.1 in Table 4 is an
example of poor design combined with bad luck — too many cultures had no mutants and there
were two jackpots, one with 30 and one with > 1000 mutants. The rest of the experiments are
valid, although another large jackpot with ~ 1000 mutants occurred in Exp. 4. Exps. 5 and 6
were done with the same strain and the same Nt, and are included to show how reproducible
fluctuation assays usually are. In the last entry they have been combined, as discussed below
(see STATISTICAL EVALUATION OF MUTATION RATES)

COPING WITH DEPARTURES FROM THE LEA-COULSON ASSUMPTIONS
Interest in fluctuation analysis has recently been revived by the controversy surrounding the
phenomenon known as "directed" or "adaptive" mutation (7). Part, but not all, of the evidence
for post-selection mutation is that in a fluctuation assay the distribution of the numbers of
mutants deviates from the Luria-Delbrück toward the Poisson. This has inspired new models
describing the distribution of mutant numbers when one or another of the Lea-Coulson
assumptions are not met (7,8). We discuss a few of the more biologically relevant deviations
here.
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Phenotypic lag has the affect of shifting the time axis to a previous generation (corresponding
to the duration of the lag) while increasing the variance of the final distribution of mutant
numbers (6,18). This affects the lower end of the distribution to a greater extent than the upper
end, which can be detected with the quartiles method (Method 6) as lower values of m1, or
m1 and m2, than m3. If phenotypic lag is suspected, Koch suggests estimating the duration of
the lag in generations, n, and then calculating the three m's using the values of r obtained when
the quartiles are set 2n-fold lower than actually observed. Different n's are tried until the three
m's obtained are similar. The true m is the estimated m times (2n − 1).

Although it is usually a good assumption that mutants are not at a disadvantage during
nonselective growth, this is not always true, especially in the case of certain antibiotic
resistances. In particular, streptomycin-resistant mutants are usually enfeebled. If mutants grow
more slowly than nonmutants during nonselected growth, the effect is the opposite from that
of phenotypic lag — the upper end of the distribution is affected to a greater extent than the
lower end, and the variance of the distribution is decreased (8). If selection against mutants is
suspected, experimental results can be fit to the graphs of the values at the quartiles vs m that
are given for a few relative growth rates in reference (6).

There are no other simple approaches to the problem of estimating m when there are deviations
from the Luria-Delbrück distribution, and the next step is curve-fitting. The classical way of
presenting the results of a fluctuation assay is to plot log(Pr) vs log(r), where Pr = the proportion
of cultures that contain r or more mutants. As discussed above, during the Luria-Delbrück
period mutants accumulate at a constant rate, giving Eq. 2 of reference (22):

Eq. [22]

With a perfect Luria-Delbrück distribution, a plot of log(Pr) vs log(r) (leaving out r = 0) yields
a straight line with a slope of − 1. [The intercept of this curve at log(r) = 0 is log(2m); thus,
this plot is a way of estimating m graphically.] Deviations from the Luria-Delbrück distribution
can be detected as distortions of this curve. For example, post-selection mutations have a
Poisson distribution, and so if mutations occur both during nonselective growth and after
selection, the plot of log(Pr) vs log(r) will be a combination of the Luria-Delbrück and Poisson
curves (7). Likewise, other factors, such as selection against mutants and low plating efficiency,
will yield nonstandard distributions (8). The methods for modeling these distributions are
beyond this article, but can be found in the references [but note that the MSS algorithm has
supplanted older methods for generating the Luria-Delbrück distribution]. Fitting experimental
data to the curves generated by these models provides a first test of whether observed deviations
from the Luria-Delbrück distribution were caused by the factors modeled. Unfortunately, many
of the modeled situations yield rather similar curves, so further experiments would have to be
done to confirm that a given factor is distorting the distribution.

STATISTICAL EVALUATION OF MUTATION RATES
To compare mutation rates among different bacterial stains or conditions, one needs some idea
of what confidence should be placed in the experimental determination of a mutation rate.
Unfortunately, this is more difficult than it seems because normal statistics (that is, statistics
based on a "normal" distribution) are not appropriate. It is obvious that the numbers of mutants
per culture are not distributed normally. Less obvious is that estimates of m or of μ, whether
determined from one or many experiments, also are not distributed normally. In addition, most
of the estimators of m are biased; that is, no matter how many individual estimates of m are
made, the mean of these will not approach the actual value of m under the given conditions
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(12). Therefore, it is statistically invalid to average such estimates or to use normal statistics
to determine confidence limits for m or μ.

Statistical methods depend on knowledge of the variance and the shape of a distribution. The
variance of a distribution is a measure of its dispersion, and can be calculated from any set of
experimental values as Σ(yi−ȳ)2/n, where ȳ is the mean, yi is each value, and n is the number
of values. The standard deviation (σ) is simply the square root of the variance. However, the
variance does not reveal anything about the shape of the distribution. It may very well be
outrageously skewed, and, indeed, the Luria-Delbrück distribution is, leaving us without a way
to determine how the values are grouped. What is needed is the range in which some percentage
(usually 95%) of the experimental values will fall, and a method to use this to establish
confidence limits (CLs) for m. Below are described two general approaches, with examples,
to approximating CLs for m.

If the distribution of the parameter used to calculate m can be defined, then this can be used to
establish CLs for that parameter. [Note that it is the parameter, not m, that is assumed to have
a defined distribution.] p0 can be considered a binomial parameter (4). If the number of cultures,
C, is at least 10, 95% CLs for p0 can be calculated from the binomial distribution using standard
statistical methods (23). Two new m's calculated from the 95% CLs for p0 are estimates of the
95% CLs for m determined by the po method (Method 1). When using the median to estimate
m (Method 3), CLs for r̃ can also be obtained using standard methods if the number of cultures
is 6 or greater (23). The 95% Cls for r̃ are then used to calculate two new m's, which are estimates
of the 95% CLs for m (24). Because there is no defined distribution that describes the
distribution of the mean, this method is not applicable when m is determined from r ̄.

The second approach to setting CLs for m is to find a transforming function for m that gives
an approximately normal distribution. The first of these was discovered by Lea and Coulson,
(4), namely that x, as defined by Eq. [13] in Table 2, is approximately normally distributed
about a mean of 0 with an σ = 1 for values of m from 4 to 15. For a normal distribution, 95%
of the values lie within ±1.96σ of the mean. Thus, Eq. [13] could be used to calculate m at x =
±1.96, using the experimental values of r at these x's. However, in our experience this range
exceeds the entire range of experimental values. A more useful transformation was given by
Stewart (12) who observed that for estimates of m determined by the MSS-maximum likelihood
method (Methods 9), the ln(m)'s are approximately normally distributed about their mean with
a σ given by Eq. 1 in reference (12):

Eq. [23]

Thus, the 95% CLs for ln(m) can be estimated as ln(m) ± 1.96σ. However, the σ, m, and ln
(m) to be used here are not the ones estimated from an experiment, but the unknown actual σ,
m, and ln(m) of the population. Stewart (12) gives both transcendental equations and a graphical
method to estimate the CLs. However, we have found that the CLs are closely approximated
by using the estimated σ, m, and ln(m) in the following two equations

Eq. [24]

Eq. [25]
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where σ is given by Eq. [23]. These approximations are based on the fact that the real and the
estimated CLs differ by factors approximately equal to (e1.96σ)±0.315. 95% CLs for ln(m) can
also be calculated using the t distribution as ln(m) ± to, where σ is the estimated σ, and the
critical value of t is obtained at α(2) = 0.05 and (C-1) degrees of freedom. This is a conservative
approach, as the CLs will be somewhat larger than those given by Stewart (12) or by Eqs. [24–
25].

The methods described above give confidence limits for m. The simplest method to obtain the
confidence limits for μ, the mutation rate, is to divide the m's at the CLs by Nt (or 2Nt, or Nt/
ln2). However, this procedure ignores the fact that estimates of Nt are themselves normally
distributed with a variance ≈ Nt. Given the inherent problems in determining m, it is probably
justifiable to ignore this source of variation at the moment as long as Nt is determined to a high
level of accuracy.

If fluctuation assays were done with the same Nt's, they can be statistically compared using
the approaches outlined above. For example, whether two p0's or two r̃'s are significantly
different can be tested using χ2 or the Fisher exact test. A more powerful alternative is the
Mann-Whitney test because it uses all the observed values of r (23). But, none of these
nonparametric procedures are as powerful as tests based on normal statistics. Stewart's
observation (8) implies that normal statistics can be used with the ln(m)'s determined by the
MSS-maximum-likelihood method. Thus, whether two ln(m)'s are significantly different could
be determined by a standard t-test:

Eq. [26]

If the results of two or more fluctuation assays are homogeneous, i.e., they give the same m's
and similar shaped distributions, they simply can be combined and a new m with new CL's
calculated from the combined data. This is what we have done in Table 4 for Exps. 5 & 6. If
the MSS-maximum likelihood method is used, the ln(m)'s can be averaged and the mean m is
the geometric mean of the individual m's, which is emean[ln(m)]. CLs for the mean ln(m) can be
obtained from the t distribution, using the combined σ and degrees of freedom as given in Eq.
[26]. A more powerful treatment based on Bayesian procedures has been developed by Asteris
and Sarkar (13).

Often one wishes to compare the results of fluctuation assays that did not use the same Nt's, or
to compare mutation rates themselves. Unfortunately, statistical methods to accomplish this
have not been developed. If the variance of Nt is ignored, then the methods discussed above
for statistical treatment of ln(m)'s determined by the MSS-maximum-likelihood method might
be applied to ln(μ)'s if they were also determined by the MSS-maximum-likelihood method.
However, whether this method is valid is beyond our statistical expertise.

CONCLUSIONS
Recently developed mathematical models and new methods of calculating the theoretical
Luria-Delbrück distribution have improved the estimation of mutation rates from fluctuation
assays. The MSS-maximum likelihood method is superior to other methods over all ranges of
mutation rates, but the p0 method and Lea-Coulson method of the median are adequate at low
and intermediate mutation rates, respectively. However, the accurate estimation of mutation
rates depends on designing fluctuation assays to optimize the validity of the estimator used. In
addition, departures from the assumptions that underlie the theoretical Luria-Delbrück
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distribution must be evaluated. Still needed are better methods to deal with such departures
and more robust statistical methods to evaluate mutation rates.
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Figure 1.
The number of cultures required to achieve a theoretical precision of 20% using various
estimators vs m, the number of mutations per culture. Precision is the coefficient of variation,
(σm /m) × 100%, where σ was calculated from Eq. 35 and 41 of reference (4) for the p0 method
and the Lea-Coulson method of the median, respectively, and from Eq. 1 of reference (12) for
the MSS-maximum-likelihood method. These equations were solved for C, the number of
cultures, by setting σm /m = 0.2

Rosche and Foster Page 17

Methods. Author manuscript; available in PMC 2010 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Examples of methods to solve transcendental equations by iteration using a spreadsheet.
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TABLE 1

Definition of Terms

Term Definition

m number of mutations per culture

μ mutation rate = probability of mutation per
cell per division or generation

r observed number of mutants in a culture

r ̄ mean number of mutants in a culture

r̃ median number of mutants in a culture

p0 proportion of cultures without mutants

pr proportion of cultures with r mutants

Pr proportion of cultures with r or more mutants

C number of cultures in experiment

N0 initial number of cells in a culture = the inoculum

Nt final number of cells in a culture

Q1 value of r at 25% of the ranked series of r

Q2 value of r at 50% of the ranked series of r = the median

Q3 value at of r at 75% of the ranked series of r

S sum in Eq. [11], Table 2

a 11.6 (in Lea–Coulson equations)

b 4.5 (in Lea–Coulson equations)

c 2.02 (in Lea–Coulson equations)

ln natural logarithm (to the base e)

f mutant fraction or frequency = r/N

z dilution factor or sample of a culture plated
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TABLE 2

Equations Used in the Calculation of m

Method Equation
Number

Equation

1. The p0 method [2]

p0 = e−m

[3]
m = − ln p0

2. The Luria-Delbrück
 method of the mean

[4]
r̄ = m ln(mC)

[5]
mln(mC) − r̄ = 0

3. The Lea-Coulson
 method of the median

[6]
r̃
m − ln(m) = 1.24

[7]
r̃
m − ln(m) − 1.24 = 0

4. The Drake formula [8]
r̃
m − ln(m) = 0

5. The Jones median
 estimator

[9]

m = r̃ − ln(2)
ln(r̃) − ln(ln(2))

6. Koch's Quartiles
 method

[10]

m1 = 1.7335 + 0.4474 Q1 − 0.002755(Q1)2

[11]

m2 = 1.1580 + 0.2730 Q2 − 0.000761(Q2)2

[12]

m3 = 0.6658 + 0.1497 Q3 − 0.0001387(Q3)2

7. The Lea-Coulson maximal
 likelihood method

[13]

x = a
r /m − lnm + b − c
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Method Equation
Number

Equation

[14]
d = (l − b + lnm) / a

[15]

S x(x + c)2d + x(x + c) − 2(x + c)d − 1 = 0

8. The MSS-maximum
 likelihood method

[16]

p0 = e−m; pr = m
r ∑

i=0

r−1 pi
(r − i + 1)

[17]

f (r | m) = ∏
i=1

C
f (ri | m)

where f(r|m)=pr from Eq. [16]
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TABLE 3

Sample Data

Number of Mutants
Observed (r)

Number of cultures
with r mutants

0 11

1 17

2 12

3 3

4 4

5 1

6 1

7 2

8 0

9 1

Total 52
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