
Proteomic Changes Resulting from Gene Copy Number
Variations in Cancer Cells
Tamar Geiger, Juergen Cox, Matthias Mann*

Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Martinsried, Germany

Abstract

Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications,
and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene
expression—the level of proteins—is generally unknown. Here we use large-scale and high-resolution proteomics
combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a
proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of
6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on
the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that
many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified
oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and
survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of
general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this
approach helps to interpret the data from large-scale cancer genomics efforts.
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Introduction

Chromosomal aberrations are a hallmark of cancer cells.

During transformation cells lose cell-cycle control and fidelity of

DNA replication causing multiple changes in DNA copy numbers

[1,2]. Although chromosomal aberrations are associated with

transformation, changes in DNA copy number can cause growth

defects rather than cell growth [3,4]. Therefore transformation

requires specific genomic changes that enable tolerance to

genomic instability and promote growth and survival. The identity

of these specific altered genes that enable transformation is still

unknown, and great efforts are made to achieve a better

understanding of these gene changes and their effects. Techno-

logical developments in recent years have allowed high resolution

genomic analysis using SNP arrays, and large scale projects have

mapped the gene copy number changes in thousands of tumor

samples [5,6]. Another major step necessary for the interpretation

of the biological significance of such studies that is missing so far is

the analysis of the consequences of these alterations: to what extent

they affect protein expression. This in turn would allow

investigation and interpretation of potential biological function.

Several studies have shown high correlation between the

amplifications and deletions and changes in mRNA levels and

were therefore able to predict amplifications and deletions based

on global transcript measurements [7–11]. Still, only a few

amplifications were associated with oncogenes, and some deletions

with tumor suppressors, while the majority of these alterations

could not be associated with known tumor promoting activities

[5,6]. Furthermore, the effects of co-amplifications and deletions of

genes in the same regions as known tumor-related genes, are yet to

be discovered. A priori it would be possible that proteins encoded

in a given amplicon are uniformly overexpressed in accordance

with genome copy number or alternatively, that the expression

levels only of selected or none of the proteins changes. These

different scenarios have very different implications when trying to

assess potential biological and oncological effects of a given

amplicon detected in a somatic cancer genome.

For better understanding of the general output of chromosomal

changes, the protein level therefore has to be globally examined.

Such knowledge can be crucial as it can suggest novel potential

drivers of transformation and, as already shown in specific cases in

the past, help determine treatment modalities and prognosis

[12,13]. To compare proteomic to genomic alterations in a

system-wide manner deep coverage of the proteome is essential as

it maximizes the chance to detect and accurately quantify the

proteins expressed from amplified or deleted regions. Stable

Isotope Labeling by Amino Acids in Cell Culture (SILAC) is an

accurate method for quantitative mass-spectrometry based pro-

teomics [14,15]. Recent advances in SILAC-based proteomics

using high resolution mass spectrometry [16,17] enabled accurate

proteome coverage of the complete yeast proteome [18] and large

proportions of the mammalian proteome [19]. Based on these

developments, we could now compare cancer cell lines containing

multiple chromosomal alterations and normal diploid epithelial
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cells, and further compare these changes to genomic alterations

detected by SNP arrays. This accurate analysis enabled us to find

the output of thousands of genes with varying gene dosage, and

thereby estimate their regulation and their potential impact.

Results/Discussion

In-depth proteomic analysis of breast cancer cells and
comparison to SNP array copy number data

To study the effects of genomic alterations on the protein level,

we performed quantitative proteomic analysis of two aneuploid

breast cancer cell lines and normal diploid cells. We SILAC-

labeled the MCF7 breast cancer cell line with heavy lysine and

arginine to serve as internal standard for quantification. The lysate

of the labeled cells was combined with normal mammary epithelial

cells (HMEC) or with two breast cancer cell lines - HCC2218,

derived from a patient with Stage III ductal carcinoma and

HCC1143, derived from a patient with Stage II ductal carcinoma

(Figure 1). We analyzed each proteome mixture by enzymatic

digestion and isoelelectric focusing of the resulting peptides

followed by online liquid chromatography mass spectrometry on

hybrid linear ion trap Orbitrap mass spectrometers. In total we

identified and quantified 72,239 SILAC peptide pairs at 99%

confidence. Quantification of cancer cell lines against normal cells

was computed as the ‘ratio-of-ratios’ of each proteome against the

internal MCF7 SILAC standard, requiring at least two quantifi-

cation events per protein in each experiment. From biological

triplicates, we identified and quantified 6,735 proteins (an average

of more than 5,000 quantified proteins per cell line).

For the analysis of chromosomal aberrations, we mapped the

copy number changes in the genome of HCC2218, HCC1143

and HMEC with SNP arrays (Affymetrix- Genome-wide Human

SNP Array 6.0; Figure 1). Similar to the proteome analysis, we

calculated the ratios of the signal in the cancer cell lines

compared to the diploid control cells, then matched the

chromosomal position with the gene, and determined the change

in copy number as the median of the signals of all the probes

annotated to the same gene. We matched between the proteins

and the genomic data based on the gene name, enabling direct

comparison of the level of almost every identified protein and its

encoding gene.

A density plot of gene copy number of the HMEC indicates that

these cells are diploid and therefore can serve as a normal control

(Figure 2A). We normalized the proteomic and the genomic data

of HCC2218 and HCC1143 cells to the control cells. Overall

correlation between the change in gene copy number and the

change in protein level determined in this way was low (0.22 for

HCC2218 and 0.28 for HCC1143 cells). Only 4.8% and 7.8% of

the protein level changes were determined by the copy number

changes of the genes, significantly less than the percentage of

transcriptome changes explainable by genome differences

[9,10,20,21]. This suggests that there is a tighter coupling between

gene copy numbers and transcript changes than between gene

copy numbers and protein level changes. The remaining changes

of protein levels are presumably caused by other mechanisms of

regulation of protein expression.

Figure 1. Measuring proteome and genome changes in cancer
versus normal cells. For proteomic analysis lysates of each of the
non-labeled cells (HMEC, HCC1143 and HCC2218) were mixed with
lysate of SILAC-labeled MCF7 cells. Proteins were trypsin-digested and
analyzed by LC-MS using high resolution mass spectrometry. For
genomic analysis, genomic DNA was isolated from HMEC, HCC1143 and
HCC2218 cells and hybridized with a SNP arrays.
doi:10.1371/journal.pgen.1001090.g001

Author Summary

In the course of cancer development, cells lose regulation
of the cell cycle and quality control of DNA replication. As a
result, many genomic alterations accumulate, among them
amplifications and deletions of chromosomal regions of
varying sizes. Oncogenes that drive transformation often
reside in amplified regions, while tumor suppressors are
deleted, yet for thousands of genes the effect of altering
gene copy number is unknown. Since only genomic
alterations that ultimately affect protein levels can have
functional importance, a global proteomic approach that
directly measures such changes is desirable. Here, we
examined output of chromosomal alterations on the
proteins in a system-wide manner. We analyzed the global
protein expression of cancer cells compared to normal
cells using mass-spectrometry–based quantitative proteo-
mics and quantified a large part of the expressed
proteome. We compared the protein data to genomic
data and matched changes in gene copy number to
protein expression level changes for each gene. Overall,
gene copy number changes explain only a few percent of
observed protein expression changes. Knowledge of when
genomic and proteomic changes correlate may help in a
better understanding of regulatory mechanisms in tumor
development.

Global Proteomic Analysis of Genomic Alterations
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The plots of the gene copy number vs. the protein level show

that the genome is distributed around integer values corresponding

to 0, 1, 2, 3, 4 gene copies (Figure 2B and 2C). The distribution of

the proteins encompassed many higher fold changes and was

much less structured. Interestingly, many genes with higher than

diploid copy number nevertheless have reduced protein expression

and for many genes loss of one copy still resulted in increased

protein expression compared to normal cells (rectangles in

Figure 2B).

Prediction of chromosomal aberration based on
proteomic data

Many chromosomal changes can be inferred from mRNA data

[7–9]. Given the depth and accuracy of our proteome measure-

ment, we wanted to see whether despite the low overall

correlation, gene amplifications and deletions can also be directly

inferred from proteomic data and to find region-related proteomic

changes. We developed a genome profiling algorithm that

examines the correlation between the expression levels of proteins

that are adjacent in a given chromosomal location. This algorithm

orders proteins on each chromosome and checks for significant

regional deviations of their log ratios from zero. For that purpose

windows encompassing various numbers of adjacent proteins are

moved along the chromosome, and the deviation of the window

mean from zero is tested by one-sample t-test. A p-value is

determined for each window size ranging from 3 proteins to the

whole chromosome. The final amplification or deletion profile is

then calculated from the window medians of all windows in which

the average value differs significantly from zero. At each position

each intersecting significant window is considered and among

those the value that deviates most from zero is chosen. This value

is reported in the amplification/deletion profile at this position.

After genome profiling, the correlation between the calculated

change in protein amounts at each genome position and the

corresponding change in gene copy number was greatly increased

(0.64 and 0.59 for HCC2218 and HCC1143, respectively). We

plotted the calculated proteomic values against their chromosomal

location to visualize amplifications and deletions along the

chromosomes (Figure 3A and 3C). The genome profiling

algorithm predicted and localized numerous aberrations. In

HCC2218 cells we found very high level amplification in

chromosomes 1 and 17, and lower amplifications in chromosomes

5, 7, 8, 14, 16, 19, 20, 21. We found only two small deletions in

chromosomes 1 and 3. In HCC1143 cells we predicted

amplifications in chromosomes 1, 6, 8, 10, 19, 20, 21 and 22,

and deletions in chromosomes 4, 5, 8, 12, 16 and 17.

To examine whether our predictions were correct despite the

low correlation between genome and proteome, we performed a

similar alignment of the genomic data. We plotted the smoothed

data of the SNP array (normalized to the control cells) directly

according to the genomic location. Although not all aberrations

had a detected proteomic output; remarkably, in each of the

predicted locations, we indeed found a matching change in the

SNP array data (Figure 3B and 3D). Thus accurate proteome

measurements can indeed detect genome copy number changes,

via the regional effects on protein expression level changes.

Furthermore, these predicted changes agree with well known

breast cancer genomic alterations, such as gains in chromosome

1q, 8q, 16p, 17q, 20q and losses in chromosomes 4q, 8p [22,23].

Figure 2. Comparison of gene copy number change to protein
change. (A) Density plot of Affymetrix smooth signal in the HMEC
control cells. A small peak at zero was removed, which was caused by
probes for the Y-chromosome, which was absent in this female cell line.
(B,C). Scatter plot of gene copy number in HCC2218 cells (B) or
HCC1143 cells (C) normalized to the copy number of genes in HMEC vs.
the ratio of the proteins in HCC1143 or HCC2218 cells relative to HMEC.
The rectangle in the upper left part of (B) encloses genes with increased

gene copy compared to control cells but decreased protein expression.
The rectangle in the lower right contains single copy genes with
increased protein expression compared to control cells.
doi:10.1371/journal.pgen.1001090.g002

Global Proteomic Analysis of Genomic Alterations
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Functionality of genomic alterations
While the correlation between the gene copy number and the

proteins was very low, it was still possible that the altered genes

would globally affect specific pathways and processes, to confer a

growth advantage to the aneuploid cells. We comprehensively

analyzed each process to determine to what extent it is regulated

on the protein level or on the genomic level. We developed a two-

dimensional annotation distribution analysis tool (see Materials

and Methods), to determine protein categories with significant co-

regulation in the combined space of gene copy number and

protein changes. We examined gene-ontology (GO) categories,

KEGG pathways, protein complexes annotated in the CORUM

database and distribution of genes to chromosomes (Figure 4). The

only categories changing at the genome level were the chromo-

Figure 3. Genome profiling of genomic and proteomic data. Protein ratios were averaged according to their localization using the genome
profiling algorithm (Materials and Methods). Calculated ratios of proteins in HCC2218 (A) or HCC1143 (C) versus HMEC are plotted against their
chromosomal location. Smoothed data of gene copy number in HCC2218 (B) or HCC1143 (D) normalized to the control cells are plotted against their
chromosomal location. Each color represents a different chromosome.
doi:10.1371/journal.pgen.1001090.g003

Global Proteomic Analysis of Genomic Alterations
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somes themselves and, as shown above, they only have a small

overall effect on the proteome level. Almost all other statistically

significant categories, including GO, KEGG and CORUM are

distributed horizontally along the proteome direction, indicating

that they cannot be directly attributed to broad changes in gene

dosage (Table S1). As an example, Figure S1 illustrates the

changes in oxidative phosphorylation genes and proteins in

HCC2218. There was a clear increase in the abundance of

proteins involved in this process, while most of the corresponding

gene copy numbers were constant (Figure S1). Moreover, there

were genes whose copy number changed, but the encoded proteins

did not change accordingly. For example NDUFB9, ATP6V1H

and ATP1C1, were amplified, and a single copy of ATP6V1B2

was deleted, but the protein levels stayed constant. In this case,

clearly the copy number of genes belonging to this process had no

effect on its functionality.

Stable protein complexes maintain constant protein
expression despite changed gene copy number and
mRNA expression

Our two-dimensional annotation analysis further highlighted a

number of protein complexes, such as the proteasome, ribosome,

spliceosome and NADH dehydrogenase complex. We found that

the proteins of these complexes always maintain equal protein

ratios, despite variation in the gene copy number of their subunits

(Figure 5A and Figure S2). Interestingly, this is strictly true for the

core complexes components, but to a lesser degree for peripheral

proteins, which can also be involved in other processes. The 20S

proteasome, which includes seven alpha and seven beta subunits,

is completely insensitive to gene dosage while the levels of the

proteins from the whole 26S proteasome vary slightly (Figure 5A

and 5B). Similarly, we found much higher variation in the

spliceosome complex than in the 17S U2 snRNP subcomplex

(Figure S2B). We further examined whether the determination of

the exact ratios of the proteins in a core complex is due to

regulation already at the level of mRNA and can be attributed to

regulation of transcription or mRNA stability, or on the protein

level and could be related to protein translation or degradation.

We measured the mRNA levels of the proteasome core complex

(seven alpha subunits and seven beta subunits) by real-time-PCR

in HCC2218 cells. In contrast to the equal protein amounts, we

found large variability in the mRNA levels of the subunits

(Figure 5C). The correlation between mRNA and genes was 0.6,

while the correlation between proteins and their corresponding

genes was 20.1. Therefore, the main regulation of the protein

amounts for this complex occurs at the protein level, rather than at

the mRNA level. In accordance with these results, it has been

shown that ribosomal subunits are synthesized in excess and those

subunits that do not assemble into the complex are degraded [24].

Our results suggest that this mechanism occurs in many molecular

complexes. For these complexes the abundance of the subunits is

regulated by the amount of the whole complex, and this regulation

is done only on the protein level.

Oncogenes are found as amplified genes encoding
overexpressed proteins

We showed above that cellular processes and molecular

machines do not obey gene dosage changes. But as primary

events in transformation, amplification of deletion of key

regulatory genes may impact the functionality of the whole

process. Indeed, oncogenes and tumor suppressors are often

amplified or deleted in the genome [5]. For such aberrations to

affect transformation, the gene copy number change must

positively correlate with a protein level change. For example,

HCC2218 cells have a known amplification of the ERBB2 gene,

and indeed our data show that the protein is .50 fold increased

compared to HMEC. We searched whether more of the amplified

or deleted genes with correlative protein level changes have known

oncogenic or tumor suppressor activities by comparing our data to

the Sanger institute ‘cancer gene census’ [25]. Among this list of

Figure 4. 2D annotation distribution. Scatter plot of normalized annotation changes on the genome level against the protein level. Calculation
of significance is detailed in the Materials and Methods section. The annotations analyzed were: chromosomes (red), Corum complex database
(orange), gene ontology cellular component (GOCC; green), gene ontology biological processes (GOBP; blue), gene ontology molecular function
(GOMF; black) and KEGG pathways (purple).
doi:10.1371/journal.pgen.1001090.g004

Global Proteomic Analysis of Genomic Alterations
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genes that were amplified, deleted, mutated or translocated in

various cancers, we selected those in which changes in genome

copy number positively correlated with our measured proteome

changes (Table S2). For instance, among the amplified genes we

found AKT1 and CCND1 in HCC1143 cells and we found

CDH1 to be deleted in HCC2218 cells.

We zoomed-in on the small amplicons encompassing ERBB2,

CCND1 and AKT1 to examine the effects of these amplifications

on the expression levels of adjacent genes (Figure 6). The ERBB2

amplicon is very well studied [26] and includes five genes; of these

we quantified three proteins: ErbB2, C17orf37 and Grb7, all of

which were highly over-expressed (Figure 6A). The significance of

ErbB2 and the effects of its inhibition are well known [27,28]. Its

amplification is examined routinely in the clinic and predicts

responsiveness to treatment with trastuzumab. Over-expression of

Grb7, a mediator of receptor tyrosine kinase and integrin

signaling, was also shown to correlate with tumor aggressiveness

[29]. The function of the gene-product of C17orf37 is still

unknown, but its protein overexpression along with ErbB2 and

Grb7 makes it an interesting candidate for functional studies in

breast cancer.

The amplicon surrounding CCND1 gene includes five genes –

of them we quantified four (Figure 6B). CCND1 encodes the cell-

cycle regulator Cyclin D1, whose overexpression is known to

enhance tumor growth in multiple cancer types [30–32]. The

same amplification event induced overexpression of Liprina1 and

Cortactin. Overexpression of Liprina1 may promote cell migra-

tion [33], and Cortactin overexpression was reported to be

associated with increased tumor aggressiveness [34]. In contrast,

expression of Fas-Associated protein with Death Domain, FADD,

was much lower than expected from the gene amplification.

FADD is an adaptor protein that mediates signals from death

receptors to caspase 8 during apoptosis [35]. Possibly, amplifica-

tion-induced protein overexpression has deleterious results for

cancer cells, which therefore control its overexpression.

The amplicon surrounding AKT1, an oncoprotein that

mediates cell growth and survival [36], is located at the end of

chromosome 14, and includes 11 genes. These contain NUDT14

and MTA1, which show even higher fold overexpression. MTA

(metastasis-associated protein) is involved in chromatin remodel-

ing, and its overexpression has been associated with a more

aggressive phenotype of some tumors [37]. NUDT14 is a

minimally characterized protein implicated in the regulation of

carbohydrate metabolism [38]. The high expression of these genes

suggests investigation of possible tumor-promoting role in these

cells. In contrast, four other amplified genes were not overex-

pressed as proteins and some of them were even down-regulated.

Crip2 and INF2 are actin binding proteins, suggesting a potential

role in cell adhesion and migration [39,40]. In agreement with the

opposing changes of Crip2 gene and protein levels, the promoter

of Crip2 was shown to be methylated in cancer cell lines and

animal models [41], offering a possible mechanism to eliminate

the effect of the amplification. The functions of AHNAK2 and

KIAA0284 are still unknown. Downregulation of proteins encoded

by amplified genes suggests that overexpression of these proteins

may have negative effects on the cells.

Extrapolating from the proteins with a known role in the

etiology of cancer, we created a list of potential novel regulators of

transformation. We listed the overexpressed proteins encoded by

amplified genes in HCC2218 and in HCC1143 cells (Table S3).

These proteins were upregulated as a result of gene amplification,

and their overexpression may have given a growth advantage to

these cells. In contrast, reduced expression of amplified proteins

may point to a negative effect on tumor growth. We performed

Figure 5. Distribution of proteasomal genes, proteins and
mRNA. (A) Scatter plot of global ratio distribution of genes vs. proteins
in HCC2218. The core 20S proteasome components are highlighted in
red. (B) Scatter plot with the 26S proteasome highlighted in red. (C)
Stacked plot of protein, gene and mRNA level of 14 proteasomal
subunits, normalized to the level in HMEC.
doi:10.1371/journal.pgen.1001090.g005

Global Proteomic Analysis of Genomic Alterations
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similar analyses for the deleted regions, and listed the downreg-

ulated proteins, which may function as tumor suppressors, and the

upregulated protein, which may be important proteins for cell

growth. Functional research targeted towards these proteins could

lead to identification of novel drivers of transformation and crucial

regulatory proteins.

Figure 6. ERBB2, CCND1, and AKT1 amplicons. Zoom-in on the small amplicons surrounding ERBB2 in HCC2218 cells (A) CCND1 in HCC1143
cells (B) and AKT1 in HCC1143 (C). Fold changes in gene copy number compared to HMEC are marked with red rectangles; the fold changes in protein
level are marked with blue diamonds.
doi:10.1371/journal.pgen.1001090.g006

Global Proteomic Analysis of Genomic Alterations
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Conclusions
We conclude that with high coverage of the proteome and high

quantification accuracy, multiple chromosomal aberrations can be

predicted directly from the proteomic data. Furthermore, proteo-

mics can determine which genes in an amplified region are expressed

at all and which are changing at the endpoint of the gene expression

cascade – the level of the proteins. As expected, the expression of

some oncogenes and tumor suppressors is affected by gene copy

number. However, our data clearly show that in the majority of

cases, there is no direct correspondence between the gene copy

number change and the corresponding protein change. We suggest

that proteomics is a useful complement to widely employed gene

copy number analysis. It can determine if genome amplifications or

deletions have a downstream effect on the level of the protein - a

precondition for a potential impact on the transformation process.

Materials and Methods

Cell culture and SILAC labeling
Human mammary epithelial cells (HMEC) were obtained from

Lonza and cultured in mammary epithelial cell growth medium

(ECACC- Health Protection Agency). HCC1143 and HCC2218

cells were obtained from the American Type Culture Collection

(ATCC), and grown in RPMI containing 10% FBS. MCF7 cells were

obtained from the German Collection of Microorganisms and Cell

Cultures (DSMZ). MCF7 cells were SILAC labeled by culturing

them in DMEM where the natural lysine and arginine were replaced

by heavy isotope labeled amino acids, L-13C6
15N4-arginine (Arg10)

and L-13C6
15N2-lysine (Lys8). Labeled amino acids were purchased

from Cambridge Isotope Laboratories, Inc, USA. The medium was

supplemented with 10% dialyzed serum. Cells were cultured for

approximately 8 doublings in the SILAC medium to reach complete

labeling. For proteomic analysis each of the cell lines was analyzed in

biological triplicates. The first two replicates were lysed with modified

RIPA buffer (50 mM Tris HCl pH 7.4, 150 mM NaCl, 1 mM

EDTA, 1% NP40, 0.25% sodium deoxycholate and protease

inhibitors) at 4uC. Following lysis, lysates were centrifuged at

14,000 rpm at 4uC. Proteins were then precipitated over-night with

acetone, and resuspended in 8 M urea (6 M urea, 2 M thiourea).

Cells of the third replicate were lysed with a buffer containing 4%

SDS, 100 mM Tris-HCl pH 7.6 and 100 mM DTT. Lysates were

incubated at 95uC for 5 min, and then briefly sonicated.

DNA isolation and SNP arrays
Genomic DNA was isolated from the cells using QIAmp DNA

Blood Maxi Kit. DNA was hybridized with the Affymetrix

Genome-Wide Human SNP Array 6.0 according to the

manufacturer’s instructions. SNP array analysis was done in the

Microarray DNA facility at the Max Planck Institute of Molecular

Cell Biology and Genetics, Dresden. Raw files were analyzed with

‘‘Copy Number and LOH analysis’’ algorithm from the

Affymetrix Genotyping console. We used the default settings with

the HapMap270 as reference, quality assessment and regional GC

correction configuration. The ‘SmoothSignal’ column from the

Affymetrix software output was used directly for the genome

profile in Figure 3. For the comparison with the proteomic data,

we determined the copy number of the gene as the median of the

smoothed signal of the probes annotated with the corresponding

gene name. These values were normalized to the gene copy

number in the control cells, which are always diploid (Figure 2A).

Trypsin digestion
Each of the non-labeled samples (HMEC, HCC1143 or

HCC2218) was mixed at a ratio 1:1 with labeled MCF7 cells.

Two methods were used for trypsin digest. In-solution digestion

was used for the first two replicates, where cells were lysed with

RIPA buffer. Filter Aided Sample Preparation (FASP) [42] was

used when lysis was done with SDS-based buffer. For in-solution

digest, proteins were reduced by incubation with 1 mM DTT for

30 min at room-temperature, followed by alkylation with 55 mM

iodoacetamide for 30 min at room-temperature in the dark. Next,

proteins were digested with Lysyl Endopeptidase (LysC) at a

concentration of 1:50 (w/w) for three hours. Proteins were then

diluted 4 fold in water, and digested with trypsin over-night at a

concentration of 1:50 (w/w). FASP digestion was performed as

previously described [42]. Briefly, proteins were loaded on

microcon-30 kDa filters. Following two washes with urea, proteins

were alkylated with 50 mM iodoacetamide. Filters were washed

twice with urea and twice with 40 mM ammonium bicarbonate,

and digested over-night with Trypsin (1:50; w/w) at 37uC.

Peptides were desalted on Milli-SPE C18 extraction cartridges

(Millipore).

RT–PCR
mRNA was isolated from HMEC, HCC1143 and HCC2218

using PrepEase RNA Spin Kit (USB). Two micrograms of each

mRNA were reverse-transcribed using First strand cDNA

Synthesis Kit (Fermentas) with oligo-dT primers. For real-time

PCR, we used IQ SYBR-green Supermix (Biorad) on a C1000

Thermal Cycler (Biorad). Method included 40 cycles of amplifi-

cation with annealing and elongation temperature of 54uC or

58uC. Primers for GAPDH were used for normalization. List of

primers is given below (59-39):

PSMA1:for CTGTTAAACAAGGTTCAGCCAC rev CCA-

AACACTCCTGACGCATA

PSMA2:for TGTTGGAATGGCAGTAGCAG rev TGCA-

GCCAAAAGGTCTAACA

PSMA3:for TGTTGGAATGGCAGTAGCAG rev TGCA-

GCCAAAAGGTCTAACA

PSMA4:for TCAATGAGGACATGGCTTGC rev AGGGA-

CGTTTTCCTCCAAAT

PSMA5:for GCTCACATAGGTTGTGCCATG rev CTG-

GGGTCCTTTCTCATCAA

PSMA6:for GGCTATGAGATTCCTGTGGAC rev GAAG-

CTGGTTGACTCAGTTTGTT

PSMA7:for CTTTTGAGAGTCGCGGCGGA rev CCGC-

ACTGTTCTTTCATCCTG

PSMB1:for AAGAAGGAAAGGGGGCTGTA rev TCTCT-

CTCAGCCGCAGAAAT

PSMB2:for GTGAGAGGGCAGTGGAACTC rev GTGA-

GAGGGCAGTGGAACTC

PSMB3:for CGGAATGTGTGAGTCCCTCT rev CTGGG-

AACAGGGTTAGTCCA

PSMB4:for GCCAGATGGTGATTGATGAG rev GGGC-

TTCATAGGCTACACCA

PSMB5:for ACTTCCCTTACGCAACATGG rev GCCTAG-

CAGGTATGGGTTGA

PSMB6:for GGCGGACTCCAGAACAACC rev CCAGTG-

GAGGCTCATTCAGT

PSMB7:for CTGTGTCGGTGTATGCGCCA rev GCAACA-

ACCATCCCTTCAGT

GAPDH: for TGGTATCGTGGAAGGACTCATGAC rev A-

TGCCAGTGAGCTTCCCGTTCAGC

Peptide fractionation
Peptides were separated according to their isoelectric-point

using an Agilent 3100 OFFGEL fractionator (Agilent,G3100AA)

as described previously[43]. Briefly, we used 13 cm IPG Drystrips,
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pH 3–10 (GE Healthcare). Strips were rehydrated for 20 min with

a solution containing 5% glycerol and 1:50 dilution of IPG buffer,

pH 3–10 (20 ml/well). Peptides were diluted in 5% glycerol and

IPG buffer. A total of 100 mg of peptides were loaded on each

strip. Focusing was done for 20 kVh with a miximum current of

50 mA and power of 200 mW. Fractions were acidified by adding

1% TFA, 0.5% acetic acid and 3% acetonitrile. Prior to LC-MS

analysis peptides were concentrated and desalted on Stage-

Tips[44].

LC-MS analysis
Peptides were separated by reverse-phase chromatography on

an in-house made 15 cm column (inner diameter 75 mm, 3 mm

ReproSil-Pur C18-AQ media), using a nanoflow HPLC system

(Proxeon Biosystems). HPLC was coupled on-line via a nanoelec-

trospray ion source (Proxeon Biosystems) to a LTQ-Orbitrap mass

spectrometer (Thermo Fisher Scientific). Peptides were loaded

onto the column with buffer A (0.5% acetic acid) with a flow rate

of 500 nl/min, and eluted with 90 min linear gradient at a flow

rate of 250 nl/min. After the linear gradient the column was

washed with 90% buffer B and re-equilibrated with buffer A. Mass

spectra were acquired in the positive ion mode applying a data-

dependent automatic switch between survey scan and tandem

mass spectra (MS/MS) acquisition. Samples were analyzed with a

‘top 5’ method, acquiring one Orbitrap survey scan in the mass

range of m/z 300–2000 followed by MS/MS of the five most

intense ions in the LTQ. The target value in the Orbitrap was

1,000,000 ions for survey scan at a resolution of 60,000 at m/z 400

using lock masses for recalibration[45]. Fragmentation in the LTQ

was performed by collision-induced dissociation with a target value

of 5,000 ions. Ion selection threshold was 1000 counts.

MS data analysis
Raw MS files from the LTQ-Orbitrap were analyzed by

MaxQuant[14,46] (version 1.0.14.3). MS/MS spectra were

searched against the decoy IPI-human database version 3.62

containing both forward and reverse protein sequences by the

MASCOT search engine (version 2.2.04, Matrix Science). Parent

mass and fragment ions were searched with maximal initial mass

deviation of 7 ppm and 0.5 Th, respectively. The search included

variable modifications of methionine oxidation and N-terminal

acetylation, and fixed modification of cystein carbamidomethyla-

tion. Peptides of minimum 6 amino-acids and maximum of two

missed cleavages were allowed for the analysis. For peptide and

protein identification false discovery rate (FDR) was set to 0.01. In

case the identified peptides of two proteins were shared by two

proteins (homologs or isoforms), the two proteins were reported by

MaxQuant as one protein group. Complete protein and peptides

lists are given as Table S4 and Table S5.

Genome profiling algorithm
The algorithm is applied to the log ratios between relative

protein levels of a cancer cell to a normal cell. Chromosomal

locations are assigned to proteins according to the Ensembl

annotation that is included into Uniprot. On each chromosome

the sequentially ordered proteins are checked for significant

regional deviations of their normalized log ratios from zero. For

that purpose windows encompassing various numbers of adjacent

proteins are moved along the chromosome, and the deviation of

the window mean from zero is tested with a one-sample t-test.

Window sizes range from 3 proteins to the whole chromosome in

steps of factors of square root of 2. Each log p-value was

transformed in a window-length dependent way to a posterior

error probability, applying Bayes rule to two-dimensional

histograms. To correct for multiple hypothesis testing, a false

discovery rate of 2% was applied by permutation-based estimation

on the basis of 10 randomized genomes. The final amplification or

deletion profile is then calculated from the window medians of all

windows in which the average value differs statistically significantly

from zero. At each position each intersecting significant window is

considered and among those the value is taken that deviates most

from zero. This is then the value of the amplification/deletion

profile reported at this position. To obtain copy numbers, these

values have to be exponentiated and multiplied by two. Protein

ratios and the corresponding gene copy number changes are given

in Table S6. Protein ratios after genome profiling are given in

Table S7.

Two-dimensional annotation analysis
Categorical annotation is supplied in form of Gene Ontology

(GO) biological process (BP), molecular function (MF) and cellular

component (CC) as well as participation in a KEGG pathway and

membership in a protein complex as defined by CORUM. The

chromosome of the corresponding gene was considered as an

additional protein annotation. For each annotation term proteins

are separated into two groups, one containing the proteins

annotated with this term and the other containing the comple-

ment. A two-dimensional two-sample test then finds significant

difference between the two-dimensional means of the two protein

populations. Here, the two numerical dimensions consist of log

protein ratio and log copy number ratio, but the algorithm would

apply to other data types as well. The specific test we use is a two-

dimensional version of the non-parametric Mann-Whitney test.

Multiple hypothesis testing is controlled by using a Benjamini-

Hochberg false discovery rate threshold of 5%. For categories that

are significant a two-dimensional difference score is calculated by

determining the average rank of the proteins belonging to the

category. This average rank is then rescaled to the interval

between 21 and 1. A value of 1 in one of the dimensions would

mean that all members of this category are the largest values in this

dimension, while a value of 0 means that the ranks of the members

of the category are distributed in the same way as the background

proteins, having no significant bias towards larger or smaller

values.

Supporting Information

Figure S1 Oxidative phosphorylation changes. Gene copy

number changes (A) and proteomic changes (B) in oxidative

phosphorylation proteins in HCC2218 cells. Oxidative phosphor-

ylation proteins that were identified in HCC2218 were selected

and network was established using the STRING database[47]

(Version 8.2). Graphical network was done in Cytoscape (Version

2.6.3). Colors distinguish between highly up-regulated (.3 fold;

red), up-regulated (1.6–3 fold; orange), constant (0.6–1.6 fold;

yellow), down-regulated (,0.6; green), identified but not quanti-

fied (grey).

Found at: doi:10.1371/journal.pgen.1001090.s001 (2.93 MB EPS)

Figure S2 Protein complexes. Distribution of genes versus

proteins. (A) Scatter plots of gene and protein distribution in

HCC1143. Highlighted in red are the 26S or 20S proteasomal

subunits. (B) Ratio distribution of genes and proteins in HCC1143

and HCC2218, with complexes highlighted in red.

Found at: doi:10.1371/journal.pgen.1001090.s002 (5.84 MB EPS)

Table S1 Changes of functional categories on the proteome and

genome level.

Found at: doi:10.1371/journal.pgen.1001090.s003 (0.13 MB PDF)
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Table S2 Cancer-associated genes that have a change in gene

copy number.

Found at: doi:10.1371/journal.pgen.1001090.s004 (0.08 MB PDF)

Table S3 Amplified and deleted genes and matching changing

proteins.

Found at: doi:10.1371/journal.pgen.1001090.s005 (0.16 MB XLS)

Table S4 Complete protein table.

Found at: doi:10.1371/journal.pgen.1001090.s006 (2.39 MB XLS)

Table S5 Peptide table.

Found at: doi:10.1371/journal.pgen.1001090.s007 (9.21 MB

XLSX)

Table S6 Merged table of protein ratios and gene copy number.

Found at: doi:10.1371/journal.pgen.1001090.s008 (1.82 MB XLS)

Table S7 Genome profiled protein ratios.

Found at: doi:10.1371/journal.pgen.1001090.s009 (1.25 MB XLS)
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