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Abstract
The dopamine system is under multiple forms of regulation, and in turn provides effective modulation
of system responses. Dopamine neurons are known to exist in several states of activity. The
population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the
ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the
behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine
tegmentum. When an animal is exposed to a behaviorally salient stimulus, the pedunculopontine
tegmentum elicits a burst of action potentials in the dopamine neurons. However, this bursting only
occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion
is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the
amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed
to carry information related to the environmental context. Thus, the ventral subiculum will adjust the
responsivity of the dopamine system based on the needs of the organism and the characteristics of
the environment. However, this finely tuned system can be disrupted in disease states. In
schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead
to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state.
Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic
drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation
of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site
of therapeutic intervention in the treatment or even the prevention of schizophrenia.

Schizophrenia is a devastating disorder that arises during late adolescence/early adulthood.
This disorder is characterized by a spectrum of disruptions, including disruption of perceptions
and hallucinations, thought disorder, and cognitive disturbances. Schizophrenia has been
shown to be genetically linked, in that the propensity for an individual to develop schizophrenia
is related to the proportion of shared genetic material (Gottesman and Shields, 1971, 1976).
Nonetheless, it is clear that this disorder is not completely genetically determined. Thus,
investigators have found a number of risk factors that predispose an individual to schizophrenia,
or alternately can lead to exacerbation of psychosis or relapse in those individuals in which the
schizophrenia is in remission, including stress, perinatal factors, environmental factors, and
drug abuse (Jones et al., 1994; Hultman et al., 1999; McDonald and Murray, 2000). However,
how such risk factors can interact with a genetic predisposition to facilitate transition to
psychosis, or what common neurobiological substrates underlie this comorbidity, is unknown.
Using studies in a rat model of schizophrenia, we found that risk factors such as stress and
psychostimulant abuse affect the mesolimbic dopamine (DA) system in a similar fashion.
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Moreover, preliminary data suggest that interruption of the cycle of system disruption set in
motion as a consequence of uncontrolled stress early in life may serve to circumvent the
transition to psychosis (Fox and Grace, 2009).

The dopamine system and schizophrenia
Substantial evidence exists implicating the dopamine system in schizophrenia. Thus, drugs
that increase DA release will exacerbate psychosis (Angrist et al., 1975) and may cause a
schizophrenia-like psychosis in normal individuals (Angrist et al., 1974; Friedman and
Sienkiewicz, 1991; Giladi et al., 2000). Moreover, all antipsychotic drugs in current use
attenuate DA transmission (Carlsson and Lindqvist, 1963; Creese et al., 1976; Seeman et al.,
1976; Kapur and Remington, 2001). Finally, studies using in vivo imaging in humans
demonstrate that amphetamine-induced raclopride displacement (which is an index of phasic
DA release;(Grace, 1991; Laruelle, 1998; Wong et al., 2006) is significantly higher in the brains
of schizophrenia patients, and moreover the magnitude of the increase above control levels is
proportional to the ability of the amphetamine to exacerbate the psychosis of the individual
tested (Laruelle and Abi-Dargham, 1999; Laruelle et al., 1999). Thus, there is substantial
correlative evidence that the DA system is involved at least in the psychotic features of
schizophrenia. Nonetheless, there is little direct evidence that it is the DA system that is
abnormal in schizophrenia (Post et al., 1975; van Kammen et al., 1986; Beuger et al., 1996).
Instead, evidence has pointed to a dysfunction in the regulation of the DA system – i.e., that
the DA system is in a hyper-responsive state due to alterations in its afferent regulation.

Regulation of dopamine system activity
We have performed extensive studies into the mechanisms that control DA neuron activity
states. First, it is known that the mesolimbic DA neurons can exist in several activity states.
First, the neurons can either be spontaneously firing or in a quiescent, non-firing “in reserve”
state (Bunney and Grace, 1978; Grace and Bunney, 1984). The proportion of neurons firing
spontaneously has been termed the “population activity” of the DA neurons (West and Grace,
2000; Floresco et al., 2001b; Moore et al., 2001a). Once the DA neurons are firing
spontaneously, they can demonstrate different patterns of activity. In the baseline, unstimulated
state, DA neurons fire in a slow, irregular patter, of about 3–5 Hz. However, if the DA system
is activated, either by antagonist administration (Bunney and Grace, 1978; Grace et al.,
1997), glutamate activation (Grace and Bunney, 1984; Lodge and Grace, 2006b), or afferent
stimulation (Smith and Grace, 1992; Floresco et al., 2003b; Lodge and Grace, 2006a, b), the
DA neurons will begin to fire in bursts of action potentials. These bursts are also emitted by
DA neurons in awake behaving animals in response to a behaviorally activating stimulus, such
as reward (Schultz, 1998; Anstrom and Woodward, 2005; Zweifel et al., 2009). We have found
that a brainstem nucleus known as the pedunculopontine tegmentum (PPTg) is the most potent
activator of mesolimbic DA neuron burst firing in the rodent brain (Floresco et al., 2003a;
Lodge and Grace, 2006b), with an associated region, the laterodorsal tegmentum, gating the
ability of the PPTg to drive bursting (Lodge and Grace, 2006a) (see Fig. 1). Burst firing in DA
neurons occurs via stimulation of N-methyl-D-aspartate (NMDA) receptors on the DA neuron
somatodendritic tree (Chergui et al., 1993; Zweifel et al., 2009). It is known that a neuron must
be in a depolarized state for the NMDA receptor to be capable of activation; otherwise, there
is a magnesium blockade of the NMDA channel (Mayer et al., 1984). As a result, only DA
neurons that are spontaneously firing can be driven to burst fire (Lodge and Grace, 2006c).

Our studies show that these two activity patterns; i.e., population activity and burst firing, are
driven by distinct processes. With respect to population activity, in vivo intracellular recording
studies have revealed that DA neurons are constantly bombarded with high-amplitude
GABAergic inhibitory postsynaptic potentials (IPSPs) arriving at a rapid pace (Grace and
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Bunney, 1985). These IPSPs presumably arise from GABAergic afferents derived from the
ventral pallidum, a region containing neurons that are GABAergic, fire at rapid rates (Tsai et
al., 1989), and project to the midbrain DA neuron population. We have posited that the ventral
pallidum, via high discharge rates and direct GABAergic projections to midbrain DA neurons,
holds subsets of these neurons in a hyperpolarized, non-firing state (Floresco et al., 2001a).
The primary source of input to the ventral pallidum arises from the nucleus accumbens which,
in turn, is potently driven by glutamatergic afferents from the ventral subiculum of the
hippocampus. We have found that the most potent control of DA neuron population activity
arises from this ventral subicular input (Floresco et al., 2001a; Floresco et al., 2003a). Thus,
when the ventral subiculum is activated, it provides a powerful glutamatergic drive over the
nucleus accumbens, which in turn inhibits the ventral pallidum and releases the DA neuron
population activity from inhibitory control (Fig. 1).

What is the purpose of modulating DA neuron population activity? We have shown that the
population activity of the DA system will have a minor influence on DA transmission in the
striatum; i.e., increases in the number of neurons firing appears to cause a linear increase in
the low level, tonic DA levels present in the striatum (Floresco et al., 2003a). However,
controlling the population activity is likely to have a much more important consequence when
it comes to regulating the responsivity of the DA system. Thus, as outlined above, burst firing
is believed to be the behaviorally salient output of the DA system. Furthermore, burst firing is
driven directly by glutamatergic afferents arising from the PPTg; a region that is known to
respond to conditioned responses and behaviorally salient cues (Pan and Hyland, 2005).

Thus, a salient stimulus will activate burst firing in spontaneously firing DA neurons via
activation of the PPTg. However, the number of DA neurons that are driven to burst fire will
depend on the population activity. Therefore, the more DA neurons firing, the larger the
amplitude of the phasic response (Lodge and Grace, 2006b). As a result, the ventral subiculum,
by controlling the number of DA neurons firing, will set the amplification factor, or the gain,
of the phasic burst firing response driven by the PPTg.

What is the role of the ventral subiculum, beyond its influence over DA neuron activity? Studies
have shown that the ventral subiculum (which is the rodent homolog of the anterior
hippocampus in humans) receives afferent input from a number of structures, including the
dorsal hippocampus CA1 region (Amaral et al., 1991) as well as areas related to limbic system
information processing (French et al., 2003; Herman and Mueller, 2006). It is well-known that
dorsal regions of the hippocampus are involved in place learning, and contain place cells
believed to code one’s location in space (O'Keefe, 1976). However, as one moves ventrally
through the rodent hippocampus, the place information appears to be more integrated with
limbic input. I propose that this represents a layering of affective input on top of the location,
which would transform information from “where am I in space” to “what is the emotional
significance of my location?” The emotional salience of a location would, by definition, be its
behaviorally salient context. This is highly consistent with studies showing that the ventral
subiculum is involved in context-dependent fear conditioning (Fanselow, 2000) as well as other
context-related processes (Jarrard, 1995; Maren, 1999; Sharp, 1999). This would also be
consistent with its role in determining DA neuron population activity; i.e., the amplitude of the
stimulus-driven phasic response of the DA system should be a function of the behavioral
context of the event. Thus, in conditions in which the context is safe and innocuous, stimuli
should cause little activation of the DA system and promote minor behavioral modifications.
However, in conditions in which the organism is in an environment in which rapid and massive
responses are required to obtain reward (e.g., identifying prey) or reacting to threat, the context
should maintain the DA system at a high state of responsivity (Fig 2).
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Abnormal drive of the dopamine system in schizophrenia
As outlined above, the gain of the DA system is regulated by drive from the ventral subiculum
in a context-dependent manner. In other words, the system is modulated to be highly vigilant
and reactive to stimuli under conditions of high threat/high reward, but to return to a baseline
state when in a more safe context. Such modulation would be necessary in order to maintain
proper perspective over situations, and to modulate responses appropriately. It would not be
behaviorally advantageous to be in a constant low-active state, particularly when a rapid
reaction to a threat is required. However, on the other hand, being in a maintained high-
vigilance state at all times would be disadvantageous for other reasons – one would be
constantly over-reacting to non-threatening or benign/non-salient stimuli, with no ability to
screen out events. In other words, the normal filter that tells the brain what is important and
screens out everything else is turned off, as has been described by schizophrenia patients (Saks,
2007). Such a condition appears to be present in the brain of schizophrenia patients, as well as
in animal models of schizophrenia. Thus, as reviewed above, in the schizophrenia patient the
DA system is in a hyper-responsive state, with abnormal levels of DA release occurring to
stimuli when contrasted with control conditions. Moreover, there is increasing evidence that
the anterior hippocampus (the human homolog of the ventral subiculum) is overactive in
schizophrenia patients (Malaspina et al., 1999; Kegeles et al., 2000; Heckers, 2001; Medoff et
al., 2001; Meyer-Lindenberg et al., 2005).

A similar condition appears to exist in animal models of schizophrenia. One model which was
developed in my laboratory (Moore and Grace, 1997; Grace and Moore, 1998) and has been
extensively characterized (Moore et al., 2001b; Flagstad et al., 2004; Gourevitch et al., 2004;
Le Pen et al., 2006; Moore et al., 2006) is based on administration of the mitotoxin
methylazoxymethanol acetate (MAM). We have found that administration of MAM to
pregnant rats during gestational day 17 creates in the adult offspring a set of characteristics
consistent with what one would predict for an animal model of schizophrenia, including limbic
cortical thinning with increased cell packing density, disruption of prepulse inhibition of startle
and latent inhibition, deficits in social interactions, reversal learning and hyper-responsivity to
PCP and amphetamine, all characteristics shared with the MAM rat model and human
schizophrenia patients (Talamini et al., 1999; Flagstad et al., 2004; Gourevitch et al., 2004; Le
Pen et al., 2006; Moore et al., 2006; Lodge et al., 2009). In these animals, we found that there
is a substantial increase in the population activity of the DA neurons, being nearly 2.5× higher
than that observed in controls. Moreover, this occurs in concert with hyperactivity of ventral
subicular neurons (Lodge and Grace, 2007). In these animals, both the increased DA neuron
population activity and the hyper-responsivity to amphetamine can be restored to baseline upon
inactivation of the ventral subiculum (Lodge and Grace, 2007). The source of this hyper-
activity in the ventral subiculum appears to correlate with a loss of parvalbumin GABAergic
interneuron staining observed in the ventral subiculum and in the prefrontal cortex of MAM
rats (Lodge et al., 2009) as well as in schizophrenia patients (Lewis et al., 2001; Zhang and
Reynolds, 2002). Furthermore, the diminished parvalbumin staining corresponds to a
disruption of gamma band rhythmic activity in these regions in the MAM-treated rat (Lodge
et al., 2009); a characteristic also found in schizophrenia patients (Gonzalez-Hernandez et al.,
2003; Gallinat et al., 2004; Cho et al., 2005; Basar-Eroglu et al., 2007). Thus, these studies
suggest that, in both animal models of schizophrenia and in the human schizophrenia patient,
a loss of parvalbumin-GABAergic regulation of hippocampal activity leads to hyper-
responsivity of the DA system and loss of control over appropriate responses to stimuli.

Risk factors in the development of schizophrenia: stress and drug abuse
Schizophrenia is a genetically linked disorder. However, there are a number of environmental
factors that can increase the probability that a particular person will convert to psychosis.
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Studies have shown that substance abuse can play a significant role in susceptibility to
schizophrenia. Thus, studies by Murray and collaborators (Arseneault et al., 2002) have shown
that abuse of cannabis, particularly during adolescence, can render an individual more
susceptible to schizophrenia, particularly when this is combined with other risk factors such
as a polymorphism at the site for catechol-O-methyl-transferase enzyme responsible for
metabolism of DA in the frontal cortex (Caspi et al., 2005). Cannabinoids themselves are
known to be endogenous transmitters that modulate transmission, particularly when it involves
GABA and glutamate synapses (Schlicker and Kathmann, 2001). GABA interneurons receive
potent afferent drive from long-loop projections, such as those arising from the amygdala.
Studies have shown that cannabinoids will potently modulate emotional learning mediated by
amygdala afferents to the prefrontal cortex (Laviolette and Grace, 2006a, b). Thus, cannabinoid
agonists will potentiate emotional learning to the point where it will enable learning and
conditioning to stimuli that otherwise would be below threshold for mediating a learned
response (Laviolette and Grace, 2006b). Interestingly, although GABAergic neurons that
contain parvalbumin do not express cannabinoid receptors (Katona et al., 1999; Marsicano and
Lutz, 1999; Hajos et al., 2000), these neurons are potently modulated by cannabinoid-receptor
containing cholecystokinin (CCK)-expressing (Marsicano and Lutz, 1999; Tsou et al., 1999)
GABAergic interneurons (Karson et al., 2009). Indeed, studies show that cannabinoid agonists
can disrupt the ability of parvalbumin interneuron-driven gamma rhythmicity (Hajos et al.,
2000; Robbe et al., 2006). Therefore, cannabinoids are positioned to interfere with the same
neuronal subtype that was shown above to be disrupted in schizophrenia frontal cortical
regions.

In addition to cannabinoids, other factors are known to play a prominent role in susceptibility
to schizophrenia. Thus, other drugs of abuse, such as psychostimulants, are known to
exacerbate the symptoms of schizophrenia (Angrist et al., 1975), and abuse of these drugs can
render an individual more susceptible to transition to psychosis (Chen et al., 2003). Another
factor that has been associated with schizophrenia susceptibility is stress. Stress is known to
lead to relapse in schizophrenia patients that are in remission (Benes, 1997), and early
adolescent stress is known to be a risk factor in the development of schizophrenia (Benes,
1997; Tsuang, 2000). Indeed, studies by Johnstone and colleagues have shown that in children
at genetic risk for developing schizophrenia, those that show abnormally high responses to
stressors tend to be those that convert to psychosis (Johnstone et al., 2002). Thus, there is an
interesting relationship between stress and schizophrenia susceptibility.

Stress is a complex variable that is mediated via a number of brain circuits. Interestingly, the
ventral subiculum is posited as a primary central integrator of the stress response (O'Mara,
2005; Herman and Mueller, 2006). Moreover, the prefrontal cortex has been shown to be a
potent regulator of the stress response, in part via attenuation of responses in the amygdala
(Rosenkranz and Grace, 2002a, b; Rosenkranz et al., 2003), which is the brain region in which
fear and anxiety are expressed (LeDoux, 2000). We have posited that a potential etiological
factor in schizophrenia may relate to an ineffective prefrontal cortical suppression of the stress
response (Grace, 2004; Thompson et al., 2004). Thus, an initial deficit in prefrontal cortical
function could interfere with the normal suppression of stress responses, leading to the
heightened activation seen in those that transition to schizophrenia. A brain region that has
been shown to be particularly susceptible to the deleterious effects of maintained stress is the
hippocampus (Sapolsky et al., 1990; Sapolsky, 2000; Lee et al., 2002). Thus, it may be that
deficits in prefrontal cortical modulation of the stress response could lead to a condition of
overdrive of stress circuits, resulting in hippocampal interneuron damage and hyperactivity
leading to psychosis (Grace, 2004; Thompson et al., 2004). If such a condition were indeed
present, one would posit that limiting the stress response during the periadolescent period,
when the at-risk individuals are showing heightened stress responses, may indeed circumvent
this transition and prevent the onset of schizophrenia. In preliminary experiments, we have
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found that if the anti-anxiety drug diazepam is administered in the peri-pubertal period of
MAM-treated rats, we prevent the increase in DA neuron population activity observed in the
adult that we posit is related to psychosis (Fox and Grace, 2009). It may be that such an
intervention in humans, in which the abnormal stress response in children at risk is treated,
may actually prevent schizophrenia from emerging later in life.

Stress and drug abuse have been shown to be risk factors in schizophrenia; moreover, studies
show that stress is a risk factor in the onset or relapse to drug-taking behavior (O'Doherty,
1991; Koob and Le Moal, 2001). This can occur via long-term stress-induced hippocampal
damage, as mentioned above. However, there is also evidence that both stress and
psychostimulant abuse exert common actions on the DA system.

Psychostimulants, stress and dopamine system dysregulation
In the animal model of schizophrenia, we found that the increased behavioral response to
amphetamine was correlated with an increase in the DA neuron population activity, or the
number of DA neurons firing spontaneously (Lodge and Grace, 2008). There is another
condition in which animals exhibit abnormally heightened responses to psychostimulants, and
this is behavioral sensitization. Thus, when a rat is administered amphetamine or cocaine for
a period of 5 days and then is withdrawn from the amphetamine for an equivalent period, the
rat will show an abnormally large, or sensitized, response when tested with a single dose of
amphetamine (Post, 1980; Robinson and Berridge, 2000; Lodge and Grace, 2008). We found
that animals treated in this manner exhibited a substantial increase in DA neuron population
activity (Lodge and Grace, 2008), in a similar manner (but less magnitude) than was observed
in the schizophrenia model (Lodge and Grace, 2007; Fig. 3).

What is the source of the increased DA neuron population activity that is present following
sensitization? An observation that may yield a clue to this is the finding that the sensitization
is strongest when the behavior is tested in the same cage in which the sensitization occurred
(Vezina et al., 1989; Badiani et al., 1995; Crombag et al., 2000). Thus, sensitization is a context-
dependent phenomenon, and context is mediated via the ventral subiculum. Inactivation of the
ventral subiculum in the amphetamine-sensitized rats was found to reverse the increase in DA
neuron population activity, bringing the number of DA neurons firing spontaneously back to
control levels. Moreover, following ventral subicular inactivation, the sensitized behavioral
response to amphetamine was reversed (Lodge and Grace, 2008). Note that the rats still
responded with behavioral activation to amphetamine administration, but the magnitude of the
response was now identical to that observed in controls (Fig. 3).

Stress is also a phenomenon that demonstrates a number of characteristics that are similar in
nature to what is observed in these other models. Thus, stress has been shown to cross-sensitize
with amphetamine, in that an animal exposed to a stressor will show a heightened behavioral
response to subsequent administration of amphetamine (Antelman et al., 1980; Pacchioni et
al., 2002). Moreover, stress is a context-dependent phenomenon, in that a rat will exhibit
anxiety-like behaviors when returned to an environmental context in which it had been
previously stressed (Fanselow, 2000). The ventral subiculum, as mentioned above, is a region
that is proposed to mediate central effects of stress (O'Mara, 2005; Herman and Mueller,
2006), and has afferent input from numerous stress-related structures, such as the amygdala
and the noradrenergic locus coeruleus (Oleskevich et al., 1989; Schroeter et al., 2000; French
et al., 2003), each of which we found will activate ventral subicular firing (Lipski and Grace,
2008). Stress itself has been shown to increase levels of dopamine in postsynaptic targets
(Abercrombie et al., 1989; Finlay et al., 1995; Castro and Zigmond, 2001). What is the state
of the DA system following an acute stressor? To examine this, we employed a 2-hour restraint
protocol, which has been reported to lead to an increased behavioral response to amphetamine
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(Pacchioni et al., 2002). We found that, following 2 hours of restraint, there was a significant
increase in DA neuron population activity. Moreover, as shown in the other paradigms,
inactivation of the ventral subiculum reversed the increase in DA neuron population activity
and normalized the behavioral response to amphetamine (Valenti and Grace, 2008).

Conclusions
The DA system plays a critical role in regulating responses to environmental stimuli. In
particular, the DA system adjusts depending on the needs of the organism and the demands of
the environment to modulate how an organism responds to stimuli. Thus, the responsivity of
the DA system itself must be adjusted in order to enable a contextually-appropriate response
to occur. Behaviorally salient stimuli can evoke different responses in different environmental
contexts. Provided that the system is functioning in a normal fashion, the organism can
efficiently interact with the environment and other organisms, yet be ready to alter their
response pattern as the demands change. Being in a low responsive state when confronted with
threat, or being in a highly vigilant state even in a very benign setting will lead to inappropriate
and perhaps deleterious responses. For this reason, a complex system is in place to adjust the
amplitude of the DA response based on a number of mood- and location-related stimuli.
However, if this system is disrupted, such as is proposed to occur with conditions of ventral
subiculum hyperactivity, then the responses will not match the environmental contingencies,
leading the organism to over-attribute salience to benign stimuli, to be overwhelmed with
attention-demanding stimuli without the ability to prioritize their responses, or to behave in a
manner not consistent with effectively achieving their goals. The ability to pharmacologically
restore normal activity levels within a damaged hippocampal circuit could provide an effective
means of alleviating this deficit state at the source of disruption.
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Figure 1.
Diagram illustrating the interconnections of the brain regions regulating dopamine neuron
firing. Dopamine neurons in the ventral tegmental area (VTA) are differentially regulated by
two projection systems. Spatial location is integrated with limbic and stress-related information
from the basolateral amygdala (emotion and stress) and noradrenergic locus coeruleus
(attention and stress) within the ventral subiculum, providing a contextual representation of
the behavioral contingencies. The ventral subiculum then drives nucleus accumbens neuron
activity which, in turn, inhibits the ventral pallidum. The ventral pallidum provides a powerful
inhibition to the VTA dopamine neurons, causing a portion to be inhibited and non-firing. By
controlling the ventral pallidum, this system determines the number of VTA dopamine neurons
that are firing spontaneously. In contrast, the pedunculopontine tegmentum provides a
glutamatergic drive over the dopamine neurons that causes only the spontaneously active
neurons (determined by the ventral pallidum) to burst fire in response to a phasic stimulus. The
ability of the pedunculopontine tegmentum to drive burst firing is gated by the lateral dorsal
tegmentum; inhibition of the lateral dorsal tegmentum prevents burst activity altogether. These
systems interact to provide phasic behaviorally salient dopamine release (via the
pedunculopontine tegmentum) in response to a stimulus, with the amplitude of the phasic
release dependent on the number of dopamine neurons firing (via the ventral subiculum). Solid
lines = excitatory/facilitatory projections; dashed lines = inhibitory projections
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Figure 2.
Dopamine neuron activity states are regulated by the ventral subiculum of the hippocampus
and the pedunculopontine tegmentum. Stimuli that are behaviorally salient activate the
pedunculopontine tegmentum, causing glutamate release onto mesolimbic dopamine neurons
and leading them to burst fire. The amplitude of this phasic dopamine signal is dependent on
the number of dopamine neurons that the pedunculopontine can activate, since it can only cause
burst firing in dopamine neurons that are already spontaneously firing. By controlling the
population activity (i.e., proportion of dopamine neurons firing spontaneously), the ventral
subiculum regulates the gain of the phasic signal. A) In a safe, benign context, novel salient
stimuli activate the pedunculopontine tegmentum. However, because of the benign
environmental context, the ventral subiculum only allows a small proportion of dopamine
neurons to be firing spontaneously. As a result, the dopamine signal is small, garnering little
behavioral activation of the subject. B) In an activating context, stimuli would likely have a
strong motivating or threatening association, such as when searching for prey (rewarding) or
in dangerous situations (threatening). In this case, the ventral subiculum causes a large
proportion of dopamine neurons to be spontaneously firing. Now when a salient stimulus
activates the pedunculopontine tegmentum, the dopamine signal is large in amplitude. C) In
schizophrenia, a dysfunctional and overactive ventral subiculum overdrives the dopamine
system, causing essentially all of the dopamine neurons to fire spontaneously. In this condition,
even minor activation of the pedunculopontine tegmentum by salient or even nonsalient stimuli
still results in massive activation of the dopamine signal. As a result, the subject is forced to
attend to every signal it receives as if it were a life-threatening situation, clamoring for attention.
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Figure 3.
Amphetamine sensitization increases dopamine neuron population activity via activation of
the ventral subiculum. A) Acute administration of amphetamine (1.5 mg/kg i.p.) causes a
decrease in the population activity of dopamine neurons in the midbrain ventral tegmental area.
In contrast, after 5 days repeated amphetamine and 5 days withdrawal, there is a substantial
increase in the number of dopamine neurons firing spontaneously. B) Inactivation of the ventral
subiculum (cross-hatched) does not produce a strong effect on the population activity in control
animals, likely due to its low level of activity in anesthetized rats. In contrast, inactivation of
the ventral subiculum in amphetamine sensitized rats restores the increased population activity
back to control levels. C) Inactivation of the ventral subiculum with TTX injection does not
affect the locomotor response of control rats to amphetamine injection (1.5 mg/kg i.v., vertical
dashed line). D) In contrast, in amphetamine-sensitized rats inactivation of the ventral
subiculum restores the locomotor response to amphetamine back to control levels. Adapted
from (Lodge and Grace, 2008). dPBS = distilled phosphate buffered saline; †Significant group
effect of treatment
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