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Gap Junctions in the Control of Vascular Function
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Abstract

Direct intercellular communication via gap junctions is critical in the control and coordination of vascular func-
tion. In the cardiovascular system, gap junctions are made up of one or more of four connexin proteins: Cx37,
Cx40, Cx43, and Cx45. The expression of more than one gap-junction protein in the vasculature is not redun-
dant. Rather, vascular connexins work in concert, first during the development of the cardiovascular system,
and then in integrating smooth muscle and endothelial cell function, and in coordinating cell function along
the length of the vessel wall. In addition, connexin-based channels have emerged as an important signaling
pathway in the astrocyte-mediated neurovascular coupling. Direct electrical communication between endothe-
lial cells and vascular smooth muscle cells via gap junctions is thought to play a relevant role in the control of
vasomotor tone, providing the signaling pathway known as endothelium-derived hyperpolarizing factor
(EDHF). Consistent with the importance of gap junctions in the regulation of vasomotor tone and arterial blood
pressure, the expression of connexins is altered in diseases associated with vascular complications. In this re-
view, we discuss the participation of connexin-based channels in the control of vascular function in physiologic
and pathologic conditions, with a special emphasis on hypertension and diabetes. Antioxid. Redox Signal. 11,
251–266.
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Introduction

CELL-TO-CELL communication is fundamental in vascular
function, as blood vessels are complex, multicellular

structures that must work as an unit, and thus, control of va-
somotor tone depends on the fine synchronization of the
smooth muscle and endothelial cell function along the length
of the vessel wall. Synchronization and coordination is ac-
complished by an intricate system of radial and longitudi-
nal cell-to-cell communication (10, 55, 170, 175). In addition,
in the microcirculation, small arteries and arterioles form a
complex network whose elements must work in concert to
regulate blood-flow distribution and peripheral vascular re-
sistance by precise, well-integrated changes in the luminal
diameter of the vessels (55, 171, 173, 174, 177).

One mode of communication that plays a critical role in
controlling the function of the vessel wall is the release of
paracrine molecules such as nitric oxide (NO) and prosta-
glandins. This signaling pathway is widely recognized, and
its role in vascular physiology has been extensively studied.
A complementary mechanism of communication that has

emerged as a key pathway to coordinate the vascular wall
function is the direct cell-to-cell communication via gap junc-
tions (Fig. 1). The expression of connexins has been reported
to be altered in several animals models of pathologies asso-
ciated with vascular complications (15), such as hyperten-
sion (56, 159) and diabetes (95, 215), which highlights the im-
portance of the direct cell-to-cell interaction for vascular
homeostasis.

Gap junctions are intercellular channels that directly con-
nect the cytoplasm of adjacent cells, allowing the passage of
current and small signaling molecules (molecular mass
�1,000 Da), such as Ca2� and IP3 (49, 162) (Fig. 1). These in-
tercellular channels comprise a protein family known as con-
nexins (Cx), which are denoted according to their predicted
molecular weight. Six connexins combine to make a con-
nexon or hemichannel, and the association in the plasma
membrane of two hemichannels provided by adjacent cells
forms a functional gap-junction intercellular channel (49,
162) (Fig. 1). It is noteworthy that independent hemichan-
nels may also remain unpaired and open to release paracrine
signals such as ATP or NAD� (70, 163). Although it has been
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suggested that monocytes and macrophages expressed Cx37
hemichannels that regulate cell adhesion (207), this mode of
connexin-based signaling has not yet been demonstrated to
participate directly in the control of the vascular wall func-
tion (Fig. 1).

At least twenty connexin isoforms have been described in
mammals, and one cell type often expresses more than one
connexin (162). However, the expression of several connex-
ins in one cell is not redundant. Gap junctions are not just
simple channels that offer a low-resistance intercellular path-
way for exchange of small solutes. Rather, the connexins me-
diate specific cell-to-cell signaling pathways, and the molec-
ular selectivity as well as subcellular localization differs
among connexin (55, 56, 129, 162, 203). Thus, although these
proteins may have some overlap in function, they work in
concert (55, 56, 79, 182, 183) and, in many cases, the function
of one connexin cannot be replaced by other connexin iso-
form (79, 203, 206, 216). In addition, hemichannels can be
composed of one (homomeric channels) or a mixture (het-
eromeric channels) of connexin proteins. Homomeric chan-
nels formed by different connexin isoforms typically differ
in unitary conductance, permeability, and regulation and, as
expected, the mixture of connexins in a heteromeric channel
results in unique communication properties (28, 84, 131, 141),
which provide an additional mechanism for fine regulation
of gap junction–mediated signaling processes (12, 129, 204).

Connexin in the Vasculature

The vascular gap junctions are assembled from one or
more of four connexin proteins: Cx37, Cx40, Cx43, and Cx45
(49, 55, 81, 178). The expression of connexins in the vessel
wall is not uniform and seems to vary with vessel size, vas-

cular territory, and species (85, 191, 192). In most cases, Cx45
is observed only in the smooth muscle cells (109, 122, 158).
Although Cx37 is typically confined to endothelial cells (64,
178, 191), it has also been detected in the smooth muscle cells
(158). In contrast, Cx40 and Cx43 may be expressed in both
cell types (64, 126, 178, 191), but Cx40 is located predomi-
nantly in the endothelial cells (64, 191), and Cx43 is the most
prominent gap-junction protein found in the smooth muscle
cells (191). It should be noted, however, that in the mouse,
Cx40 has been detected exclusively in the endothelium (36,
57, 91, 115, 183).

Consistent with the importance of gap junctions for the
vascular homeostasis, it has been found that selective abla-
tion of connexin genes results in severe vascular malforma-
tions. Cx45 knockout mice die at early embryonic stages (E9.5
to E10.5) and exhibit major defects in remodeling and orga-
nization of blood vessels. In addition, these animals fail to
form a smooth muscle layer surrounding the major arteries
(109). Deletion of Cx43 modifies the expression of many
genes known to be involved in the differentiation and func-
tion of vascular cells, and cell-signaling pathways important
for the regulation of vasculogenesis and angiogenesis (197),
which produces several alterations in the pattern of coronary
artery development, and the embryos die at birth of block-
age of the right ventricular outflow tract (25, 154). Although
Cx40-deficient embryos exhibit small septational defects,
deletion of one allele of Cx43 increases the cardiac malfor-
mations of Cx40-knockout mice and leads to neonatal death.
In contrast, haploinsufficiency of Cx40 did not affect the
Cx43-knockout phenotype (105). Deletion of Cx37 is not
lethal and has not been shown to produce any particular vas-
cular phenotype. However, simultaneous ablation of Cx37
and Cx40 results in severe vascular abnormalities in skin,
testis, intestine, stomach, and lung, and the animals do not
survive past the first postnatal day (183), which highlights
the role of the endothelial cell–gap junction communication
in the development of the vasculature. Taken together, these
data indicate that individual connexin isoforms are differ-
entially involved in vascular development and emphasize
the notion that although these gap–junction proteins may be
coexpressed, they basically work in concert.

Connexins in Vascular Physiology

Vascular smooth muscle

Synchronization of vasomotor tone among the smooth
muscle cells is critical for the function of blood vessels. The
contractile state of the smooth muscle cells is determined by
the cytoplasmic Ca2� concentration and the Ca2� sensitivity
of the contractile apparatus. Consequently, the smooth mus-
cle cell-membrane potential plays a central role in the tonic
control of intracellular Ca2� concentration by modulating the
influx of Ca2� via L-type, voltage-dependent Ca2� channels.
Gap junctions play a central role integrating the smooth
muscle cell function by coordinating changes in both mem-
brane potential and intracellular Ca2� between adjacent
smooth muscle cells (22–24).

In addition, gap-junctional communication of vascular
smooth muscle cells seems to be involved in the develop-
ment of the myogenic vasomotor tone in resistance arteries
(42, 118). Interestingly, the participation of the gap junction
in this process is not related to synchronization of Ca2� sig-
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FIG. 1. Gap-junction channels in the plasma membrane.
The family of proteins known as connexins constitutes the
structural and functional unit of gap-junctional intercellular
communication. Oligomerization of six connexin proteins
forms a connexon or hemichannel (49, 162). In response to
stimuli such as phosphorylation or Ca2�, the associated six
connexin subunits may coordinately change configuration to
open the hemichannel and allow movement of paracrine sig-
naling molecules such as ATP (70, 163). Hemichannels may
diffuse laterally to the junctional membrane where they are
in a position to dock with another hemichannel on the ap-
posed membrane of the adjacent cell to complete a gap-junc-
tion channel (49, 162).



naling, but rather to earlier signaling events such as coordi-
nation of the smooth muscle cell depolarization or, directly,
the mechanosensitivity of the vascular smooth muscle. This
hypothesis is supported by the fact that the gap-junction in-
hibitory peptide Gap27 or the gap-junction inhibitor 18�-gly-
cyrrhetinic acid, in addition to blocking Ca2� influx and
vasoconstriction in mesenteric resistance arteries, also pre-
vented pressure-induced smooth muscle cell depolarization
(42). However, a nonspecific effect of the gap-junction block-
ers on ion channels cannot be discounted. In any case, the
involvement of gap junctions in the myogenic response may
be consistent with the finding that tensile stretch increased
Cx43 expression as well as gap-junctional intercellular com-
munication in vascular smooth muscle cells. Interestingly,
this response was mediated by the formation of reactive oxy-
gen species (29, 30, 190), which has been reported to con-
tribute to the initiation of the myogenic constriction in
mouse-tail arterioles (146).

In addition, Cx43 seems to be essential for coordination of
cell proliferation and migration in the vasculature (55, 116,
151, 214), which was recently confirmed by the specific dele-
tion of the Cx43 gene in the smooth muscle cell (124). In these
animals, the injury to the carotid artery by vascular occlu-
sion or wire injury resulted in an increase in the neointima
and the adventitia formation (124), suggesting an accelerated
growth of the smooth muscle cell with the Cx43 deletion,
which was further confirmed by using cultured cells. In con-
trast to these findings, Chadjichristos et al. (19) showed that
in heterozygous Cx43-knockout mice, the neointimal forma-
tion was reduced. However, in those animals, Cx43 was
deleted from all cell types expressing Cx43, and the experi-
ments included a high-fat diet, which may have influenced
the result by either vascular adaptive responses to the diet
or complex interactions between different cell types. Al-
though the participation of Cx43 in neointimal formation de-
mands further investigation, these data highlight the rele-
vance of Cx43 in the feedback-control pathways necessary
for vascular morphogenesis.

Endothelium

The endothelium plays a key role in the tonic control of
blood pressure, and deletion of vascular connexin genes has
disclosed that gap-junctional communication is essential in
the coordination and integration of microvascular function
by the endothelial cells in a very complex manner. Vascular
endothelial cells–specific deletion of Cx43 (VEC Cx43�/�) re-
sults in hypotension (123) and, in contrast, ablation of Cx40
produces a hypertension associated with an irregular vaso-
motion (36, 37) and a dysregulation of renin production (107,
195, 196). Although deletion of Cx37 does not appear to al-
ter vascular function or blood pressure, polymorphisms of
this connexin have been associated with myocardial infarc-
tion, coronary artery disease, and atherosclerosis (13, 86, 211,
212). In mice, Cx40 and Cx37 are expressed primarily in the
endothelium, which emphasizes the importance of the en-
dothelial cell–gap junction communication in the control of
cardiovascular homeostasis and the idea that vascular con-
nexins work in concert coordinating specific signaling pro-
cesses.

Although the mechanistic bases of the hypotension ob-
served in VEC Cx43�/� are still unknown, the plasma lev-

els of angiotensin I and II as well as NO were elevated in
these animals (123), suggesting that a dysregulation of NO
production may have been responsible for the hypotension,
and the renin–angiotensin system was activated as a com-
pensatory mechanism. It is interesting to note that shear
stress upregulates the expression of Cx43 in cultured endo-
thelial cells (6, 38) and in the endothelium of rat cardiac
valves (93), which is consistent with the idea that Cx43 is in-
volved in the sensitivity to mechanical stimuli.

Smooth muscle–endothelium communication via 
gap junction

The smooth muscle cells and the endothelial cells can also
be electrically and metabolically connected by gap junctions
located at discrete points of contact between the two cell
types at the myoendothelial junction (MEJ) (11, 46, 127, 166,
179, 209). This heterocellular communication seems to play
a pivotal role in the Ca2�-mediated responses induced by
endothelium-dependent vasodilators, such as ACh (Fig. 2).
These vasodilator responses are typically paralleled by hy-
perpolarization of the underlying smooth muscle cells (46,
71, 75). The relaxant pathway associated with smooth mus-
cle hyperpolarization is thought to be independent on NO
and prostacyclin production by the endothelial cells and has
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FIG. 2. Control of vasomotor tone by the endothelium-
derived hyperpolarizing factor. Extensions derived from ei-
ther the smooth muscle cells or endothelial cells may pene-
trate the internal elastic lamina (IEL) to make close contact
with the other cell type. These points of contact, known as
myoendothelial junctions (MEJs), provide the structural or-
ganization to achieve direct heterocellular coupling between
the two cell types via gap junctions (40, 55, 166), and thus,
one basis for endothelium-mediated smooth muscle hyper-
polarization (often referred to as endothelium-derived hy-
perpolarizing factor, EDHF). Endothelium-dependent va-
sodilators such as acetylcholine (ACh) induce an increase in
endothelial cell intracellular Ca2� concentration, which, in
turn, activates the Ca2�-activated K� channels (KCa) of small
(SKCa) and intermediate conductance (IKCa). The endothelial
cell hyperpolarization is transmitted electrotonically to the
underlying smooth muscle cells via gap junctions located at
the MEJ, contributing to the endothelium-dependent vaso-
dilation (18, 44, 51). The question mark highlights that the
participation of a diffusible EDHF has not been definitely
discarded.



been attributed to the release of an endothelium-derived hy-
perpolarizing factor (EDHF) (50, 193). The identity of EDHF
remains controversial, and several EDHF candidates have
been proposed, such as K� ions (43), epoxyeicosatrienoic
acids (EETs) (4, 62), hydrogen peroxide (180), and C-type na-
triuretic peptide (CNP) (1, 20). However, the direct electro-
tonic transmission of a hyperpolarizing current from the en-
dothelial cells to the smooth muscle cells via myoendothelial
gap junctions (Fig. 2) has emerged as a most attractive hy-
pothesis to explain the EDHF pathway (18, 40, 74). In this
context, the increase in endothelial cell intracellular Ca2�

concentration activates the Ca2�-activated K� channels (KCa)
of small (SKCa) and intermediate conductance (IKCa), lead-
ing to the endothelium-dependent hyperpolarization of the
smooth muscle cells via gap junctions located at the MEJ (18,
32, 44, 51, 148) (Fig. 2). Consistent with this hypothesis, the
EDHF-dependent vasodilation is prevented by the connexin-
mimetic peptides that are thought to specifically block the
gap junction (21, 35, 104), as well as endothelial cell–selec-
tive loading of antibodies directed against the carboxyl-ter-
minal region of Cx40 (134).

In addition to NO, shear stress has been reported to acti-
vate an EDHF-dependent vasodilator response (198), and the
contribution of the EDHF-mediated responses seems to in-
crease as the vessel size decreases (165, 181), which suggests
that an EDHF pathway may be involved in the tonic control
of peripheral vascular resistance. Consistent with this idea,
intrarenal infusion of connexin-mimetic peptides homolo-
gous to the second extracellular loop of Cx43 (43Gap 27) or
Cx40 (40Gap 27) not only decreased basal renal blood flow,
but also increased mean arterial blood pressure of female
rats, either in the presence or the absence of NO synthase
(NOS) and cyclooxygenase (COX) blockade (35), suggesting
that the connexin-mimetic peptides induced vasoconstriction
by disrupting a tonic vasodilator signal.

Interestingly, in male animals, NO is the major endothe-
lium-dependent vasodilator signal, but in female animals,
EDHF prevails over NO or PGI2 (169), and estrogen appears
to be responsible for this gender difference (90, 128, 143). The
endothelial isoform of NOS (eNOS) is found in a inhibitory
association with caveolin-1, a structural protein of caveolae

(52, 65, 100, 139, 140), and estrogen modulates the expres-
sion of this negative regulator of eNOS, and the EDHF-pos-
itive regulators, Cx43 and Cx40 (35, 97, 128, 143) (Fig. 3).
Thus, in ovariectomized rats, the level of caveolin-1, Cx43,
and Cx40 decreases in parallel with an increase in the NO-
mediated vasodilation and a reduction in the EDHF-medi-
ated vasodilation sensitive to the gap-junction blockers 18�
and 18�-glycyrrhetinic acid (128, 143). As expected, all the
changes are recovered after estrogen replacement (128, 143).

Estrogen also enhances the EDHF-mediated vasodilation
in response to flow (90), which suggests that the myoen-
dothelial gap-junction–dependent signaling pathway may be
more important in the control of blood pressure in female
than in male animals. Recently, this idea was confirmed by
using an eNOS/COX-1 double knockout. Deletion of eNOS
and COX-1 did not alter the mean arterial blood pressure in
female mice, whereas the double knockout resulted in hy-
pertension in male mice (169). The endothelium-dependent
relaxation was intact in resistance vessels of female mice and
was mediated by the smooth muscle hyperpolarization (169),
strongly indicating that EDHF plays a predominant role in
the tonic control of blood pressure in female animals. These
data suggest that EDHF rather than NO may underlie the
higher resistance of premenopausal women to cardiovascu-
lar diseases such as hypertension.

Two estrogen receptor (ER) subtypes, ER� and ER�, are
expressed in vascular endothelial cells as well as smooth
muscle cells of both female and male animals (135, 136, 217).
It is thought that ER� mediates most of the vascular effects
of estrogen, but the importance of ER� is emerging, and ER�-
deficient mice develop hypertension as they age (217). In 
addition, recently Luksha et al. (130) proposed that ER� con-
tributes to the sex differences observed in the endothelium-
dependent control of vasomotor tone by reducing the gap
junction–mediated EDHF signaling in the male mouse 
(Fig. 3).

Conduction of vasomotor responses

Longitudinal conduction of vasomotor responses provides
an essential means of coordinating changes in diameter and
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FIG. 3. Possible sex differences in the regu-
lation of the endothelium-derived hyperpo-
larizing factor (EDHF). Nitric oxide (NO) and
EDHF are the major endothelium-derived va-
sodilator signals in resistance vessels. The in-
volvement of these two vasodilator signals dif-
fers between male and female animals. NO
prevails over EDHF in males, and the contrary
is observed in females (130, 169). This gender
difference may be explained by the estrogen
modulation of the myoendothelial gap junc-
tion–mediated smooth muscle hyperpolariza-
tion. In female animals, estrogen upregulates
the expression of caveolin-1 (Cav-1) (128, 143),
a structural protein of caveolae that, in turn, in-
hibits the activity of eNOS (52, 65, 100). In ad-
dition, this hormone enhances the expression

of Cx43 and Cx40 (128, 143), two gap-junction proteins found at the myoendothelial junctions (35, 97). As a result, the NO-
dependent vasodilation is reduced, and the gap junction–mediated EDHF signaling is increased. The involvement of the
estrogen receptor � (ER�) or � (ER�) remains to be determined. In contrast, in male animals, the activation of ER� reduces
the gap junction–dependent smooth muscle hyperpolarization (130).



flow distribution among vessels in a complex network. Va-
somotor signals spread along the vessel length through gap
junctions connecting cells of the vessel wall, and thereby,
participate in the minute-to-minute coordination of vascular
resistance by integrating function of proximal and distal vas-
cular segments in the microcirculation (37, 55, 56). Although
vasoconstrictor responses are thought to be conducted by the
smooth muscle cells (8, 17, 202), the cellular pathway for con-
duction of vasodilator signals is more controversial and may
be either exclusively the endothelium (47, 176) or both the
smooth muscle and the endothelial cells (8, 17). The cellular
pathway for conduction of vasomotor responses has been
studied by selectively damaging a short segment of the en-
dothelial cells or the smooth muscle cells with a light-dye
(fluorescein-conjugated dextran) treatment. In feed arteries,
selective damage of the endothelium completely blocked the
ACh-induced conducted vasodilation (47, 176), but in arte-
rioles, damage of either the endothelium or the smooth mus-
cle did not affect the conduction of the response to ACh (8,
17), which led to the proposal that the cellular pathway for
conducted vasodilations depends on the functional location
of the vessel in the microvascular network (172). However,
the cellular pathway of vasodilator signals may also depend
on the stimulus that initiated the response, because, in con-
trast to ACh, selective damage of the endothelium blocked
the vasodilation induced by bradykinin in arterioles (17, 202).

Direct measurements of membrane potential have shown
that conducted vasomotor responses are associated with
rapid propagation (milliseconds) of an electrical signal along
the vessel length (47, 202, 208, 209). Because many observa-
tions have revealed an exponential decay of the conducted
electrical signal, it was proposed that longitudinal spread of
vasomotor responses reflects the passive, electrotonic con-
duction of changes in membrane potential via gap junctions
connecting cells of the vessel wall (76, 150, 202). Therefore,
the decay of the conducted vasomotor responses along the
vessel length should be consistent with the length constant
calculated from electrotonic potentials produced by current
injection into the smooth muscle or endothelial cells of arte-
rioles, which is between 0.9 and 1.6 mm (45, 87, 88).

Conduction of vasoconstrictor responses typically behaves
as predicted by the electrotonic model. However, a simple
electrotonic model often fails to predict conduction of va-
sodilator signals initiated by endothelium-dependent stim-
uli, such as ACh or bradykinin. These signals have been re-
ported to propagate for many millimeters without showing
noticeable decay in magnitude (36, 41, 47, 48) (Fig. 4). In ad-
dition, the electrical length constant of ACh-induced hyper-
polarization has been shown to be longer than that measured
for current injection (45), and the hyperpolarizing signal ac-
tivated by ACh has been also reported to increase during the
first 1,000 �m of longitudinal conduction (33). The lack of
decay of these responses suggests that a regenerative, en-
ergy-dependent mechanism underlies the conduction pro-
cess, similar to that described in neurons. Consistent with
this idea, it was shown recently that electrical stimulation
also activates a conducted, nondecremental endothelium-de-
pendent vasodilation (Fig. 5) that is hypothesized to be me-
diated by a complex interplay between voltage-gated Na�

channels (Nav) and T-type, voltage-gated Ca2� channels [T-
Cav (54)], where Nav underlies the conduction of the signal
and T-Cav mediates the vasodilation (Fig. 6). Interestingly,

deletion of Cx40 selectively eliminates the regenerative com-
ponent of the conducted vasodilation induced by ACh,
bradykinin (36), or electrical stimulation (57), leaving a de-
caying component consistent with the electrotonic model,
which demonstrates that gap junctions are the pathways for
the intercellular propagation of these vasodilator signals and
suggests that Cx40 may be functionally associated with the
endothelial Nav (Fig. 6). Deletion of Cx37 did not affect con-
duction of vasodilator responses (Figueroa and Duling, un-
published observations), and replacement of Cx40 by Cx45
did not restore the nondecremental component of the con-
ducted vasodilation activated by ACh or bradykinin (206),
supporting the idea that individual connexins have different
functions, but leaving much to be explained as to how such
selectivity is conferred.

The electrotonic and regenerative components of the con-
ducted vasodilation activated by an endothelium-dependent
vasodilator such as ACh are highlighted schematically in a
hypothetical model shown in Fig. 6. The opening of inward-
rectifier K� channels (Kir) induced by the smooth muscle hy-
perpolarization may be an alternative hypothesis to explain
the extended conduction of vasodilator responses. An in-
trinsic biophysical property of Kir channels is that they in-
crease their activity on cell hyperpolarization, and it has been
proposed that the activation of these K� channels in the
smooth muscle cells amplifies the hyperpolarizing current
initiated by ACh, thereby facilitating the conduction of this
signal (98). However, as mentioned earlier, current-induced
hyperpolarization decays faster than the response induced
by ACh (45), which argues against the participation of Kir

GAP JUNCTIONS IN THE VASCULAR FUNCTION 255

FIG. 4. Conduction of vasodilator responses induced by
the stimulation of cremasteric arterioles with a pulse of
ACh. The microcirculation of the cremaster muscle was pre-
pared as described previously (54, 57), and arterioles were
stimulated focally with the ejection of ACh (10 �M) by a pres-
sure-pulse from a micropipette (inner diameter, 3–4 �m). The
changes in diameter were measured first at the stimulation
site (local), and then, at locations 500, 1,000, and 2,000 �m
upstream in four separate stimuli. Variations in diameter
were expressed as percentage of the maximal dilation pos-
sible (% maximum). The duration of the pulse (300–700 ms)
and the ejection pressure (10–20 psi) were set to induce a lo-
cal vasodilation of �100%, �50%, or �25%. Maximal diam-
eter was estimated during superfusion of 1 mM adenosine.
Note that the magnitude of the response decays only from
the local site to the 500-�m conducted site and does not show
a further reduction thereafter.



alone in the nondecremental component of the conducted
vasodilation and suggests that further investigation is
needed to elucidate the mechanisms involved in the con-
duction of vasomotor responses.

Theoretic analysis of vascular adaptation to hemodynamic
and metabolic stimuli indicate that conduction of vasodila-
tor signals may also play a role in the long-term control of
peripheral resistance by contributing to the maintenance of
the structural homeostasis of the microvascular network
(152). The vascular rarefaction observed during the devel-
opment of hypertension may be an example of this. The phe-
nomenon of rarefaction is manifested as a reduction in the
number or density of microvessels, which occurs in two
phases: a functional and an anatomic rarefaction (120). The
functional rarefaction involves a reduction in the perfusion
of microvessels that appears to reach a nadir at which they
may then be disassembled, leading to the structural or ana-
tomic rarefaction. Interestingly, mathematical simulations
suggest that conduction of vasomotor responses induced by
metabolic stimuli may be essential to preclude the disas-
sembly of microvessels observed in the functional rarefac-
tion (152, 153). Therefore, the functional longitudinal com-

munication from capillaries up to arterioles via gap junctions
(9, 185) provides pathways for both short-term modulation
of diameter and for long-term regulation of the microvascu-
lar network architecture in physiologic and pathologic con-
ditions.

Neurovascular coupling

Conduction of vasomotor signals is also involved in the
control of cerebral microcirculation by neuronal activity, re-
ferred to as neurovascular coupling (3, 83, 121). In this case,
however, vasomotor signals seem to be conducted by astro-
cytes, as opposed to smooth muscle or endothelium (2, 106,
137, 142, 189, 218). Tight spatial and temporal coupling be-
tween neuronal activity and blood flow is essential for the
brain function (2, 83, 121, 161), and astrocytes are found in
a strategic location between neurons and the microvascula-
ture, with the astrocytic endfeet ensheathing the vessels (Fig.
7). This spatial organization places the astrocytes in a key
position to orchestrate the neurovascular coupling, and an
increasing body of evidence shows that the astrocyte trans-
duces and conducts neuron-generated vasomotor signals to
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FIG. 5. Representative trac-
ings of the conduction of the
vasomotor responses in-
duced by focal electrical
stimulation of cremasteric ar-
terioles. The microcirculation
of the cremaster muscle was
prepared as described previ-
ously (54, 57). An Ag/AgCl

reference electrode immersed in the superfusate was positioned symmetrically around the cremaster, and the arteriole was
stimulated with a depolarizing train of pulses (30 Hz, 2 ms, 30 V) for 10 s by using a beveled micropipette (inner diame-
ter, 3–4 �m) filled with 1 M NaCl. The stimulating pipette was inserted under the cremasteric mesothelium and positioned
directly above the arteriole at a distance selected to evoke a local constriction of �50% (54, 57). In separate stimuli, the
changes in diameter were observed at the stimulation site (local), and at locations 500, 2,000, and 4,000 �m upstream. Vari-
ations in diameter were expressed as percentage of the maximal constriction or dilation possible (% maximum). Maximal
diameter was estimated during superfusion of 1 mM adenosine. Focal electrical stimulation of the arteriole evoked a vaso-
constriction that was restricted to a short vessel segment (�70–100 �m) at the stimulation site and, in addition, activated a
rapid conducted vasodilation that spread along the length of the entire vessel without decay. Horizontal bars indicate the
stimulation period.

FIG. 6. Hypothetical model of conducted va-
sodilator responses activated by endothelium-
dependent vasodilators [based on data from
(36, 54, 57, 206)]. Stimulation of the endothelial
cells with ACh or bradykinin triggers a regen-
erative, conducted vasodilator signal that is me-
diated by the activation of voltage-dependent
Na� channels (Nav) and rapidly propagated
along the endothelium selectively via Cx40 gap
junctions (red lines). The Nav-mediated con-
ducted electrical signal is transduced into vaso-

dilation by activation of the T-type, voltage-dependent Ca2� channels Cav3.2 and the subsequent initiation of the produc-
tion of Ca2�-sensitive vasodilator signals such as NO and Ca2�-activated K� channel (KCa)-mediated smooth muscle hy-
perpolarization (black lines). The KCa-dependent hyperpolarization may be conducted electrotonically along the longitudi-
nal axis of the vessel by either the smooth muscle cells or the endothelial cells via Cx40 or other connexins present in the
vascular wall, which, in this schematic, we designated “generic” Cxs. This hypothetical model is compatible with the evi-
dence showing that deletion of Cx40 completely eliminates the regenerative component of the conducted vasodilator re-
sponse (36, 57, 206). The decremental conducted vasodilation that remains in the absence of Cx40 may correspond to the
electrotonic conduction of the KCa-dependent hyperpolarizing signal. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article at www.lieberonline.com/ars)



the local microvasculature (2, 138, 142, 189, 218). As a result,
astrocytes couple neuronal activation to vasodilation of lo-
cal parenchymal arterioles (Fig. 7), which, in turn, leads to
an increase in blood-borne oxygen and glucose supply to sat-
isfy the enhanced metabolic demand rapidly (2, 83, 121, 161).

Calcium seems to be the intracellular vasomotor signal of
the astrocyte-mediated neurovascular coupling. The increase
in neuronal activity results in astrocytic calcium signaling
that propagates through the astrocytic processes into the
endfeet (2, 58, 142, 187, 218). The increase in cytosolic cal-
cium concentration in the endfeet ultimately causes the re-
lease of vasoactive factors and arteriolar dilation (2, 58, 59,
187, 218) (Fig. 7). Interestingly, astrocytes express gap junc-
tions (132, 133, 155, 162), and a calcium signal may propa-
gate between neighboring astrocytes in a wavelike manner
(27, 144, 145), coordinating the neurovascular coupling in the
local cerebral microcirculation (2, 58, 142, 187, 218). How-
ever, the possible participation of gap junctions in the coor-
dination of the astrocyte-mediated vasomotor signals re-
mains to be established.

As described in the peripheral microcirculation (171, 177),
local vasodilation of cerebral arterioles must be communi-
cated to upstream vascular segments to produce a functional
increase of blood-flow supply and to match the local meta-
bolic demand (31, 92). Although vasomotor responses have
been observed to be conducted in cerebral arterioles (39, 89),
recently Xu et al. (210) demonstrated in vivo that astrocytes
also play a central role in integrating the function of local ar-
terioles with upstream cerebral vessels involved in the neu-
rovascular coupling. Pial arterioles are important upstream
vessels of the parenchymal cerebral arterioles. It is impor-
tant to note that pial arterioles overlie a thick layer of astro-
cytic processes, known as the glia limitans, which isolate
these arterioles from the neurons that are located right be-
low (Fig. 7). Vasodilation of pial arterioles associated with
neuronal activation was blocked by the selective elimination
of astrocytes through treatment with L-�-aminoadipic acid,
and, interestingly, this response was also sensitive to the in-
hibition of Cx43-based channels with the specific connexin-
mimetic peptide gap-27 (161, 210). The selectivity of the Cx43
inhibition was confirmed by using two connexin-blocking
peptides: gap-27, which targets Cx43/37-based channels,
and gap-26, which is a Cx40/37-selective peptide (210).
Taken together, these data suggest that Cx43 is essential in
the astrocytic signaling that mediates the neurovascular cou-
pling. In astrocytes, Cx43 may be found forming unpaired
hemichannels or gap-junction intercellular channels (155,
162, 186). Thus, astrocytic, Cx43-based channels could be in-
volved in the coordination of calcium waves between astro-
cytes or in the release of vasoactive factors (Fig. 7), which is
an interesting scientific challenge that requires further in-
vestigations.

Vascular Connexins in Pathology

Hypertension

Consistent with the participation of gap junctions in the
control of vasomotor tone, the expression of vascular con-
nexins is altered in hypertension (56). However, changes in
several parameters associated with this pathology, such as
mechanical load (30), bioavailability of NO (80, 101, 156, 213),
shear stress (93, 99, 117), or angiotensin II (78, 103), may mod-
ulate the expression of connexins. In addition, gap junctions
are involved in different and sometimes antagonistic (vaso-
dilation vs. vasoconstriction) functions in the control of vas-
cular function, and changes in connexin expression vary de-
pending on the experimental model of hypertension or
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FIG. 7. Connexin-based channels likely to be involved in
neurovascular coupling. Neurotransmitters released on an
increase in neuronal activity may exit the synaptic cleft and
activate receptors on astrocytes (2, 218). These receptors
cause an increase in astrocyte intracellular Ca2� concentra-
tion that leads to the activation of large conductance Ca2�-
activated K� channels (BKCa) and/or cytochrome P450
epoxygenase (P450) at the astrocytic endfeet. The efflux of
K� through BKCa and/or production of epoxyeicosatrienoic
acids (EETs) by P450 results in vasodilation of the parenchy-
mal arterioles (2, 58, 59, 82, 187). The astrocyte-mediated va-
sodilator signal may be coordinated by the propagation of
an interastrocyte Ca2� signal via ATP release or directly by
gap-junction communication. ATP may be released by either
P2X7 receptors or unpaired hemichannels (70, 188). The po-
tential role of interastrocyte Ca2� waves in the coordination
of the neurovascular coupling remains to be clearly defined.
Local vasodilation of parenchymal cerebral arterioles must
be communicated to upstream vascular segments to produce
a functional increase of blood supply, and astrocytes may
also communicate the vasodilator response to upstream ves-
sels, such as the pial arterioles. These arterioles overlie a thick
layer of astrocytic processes, called the glia limitans. The va-
sodilator signal triggered by neuronal activity reaches the
glia limitans and induces a Cx43-based channel-dependent
vasodilation (210). The mechanism by which Cx43 controls
the astrocyte-mediated vasodilation has not been estab-
lished, but coordination of the response between astrocytes,
via gap-junction communication, or ATP release by
hemichannels, is an interesting hypothesis that must be ex-
plored. An alternative hypothesis may be that a vasodilator
factor is released at the endfeet via Cx43-based hemichan-
nels.



vascular territory studied (72, 77, 78, 80, 103, 157, 160, 199,
213). Therefore, a simple analysis of connexin expression
does not allow one to determine whether connexins play a
role in the genesis of hypertension or whether the changes
observed are a consequence of the development of the
pathology. Also, it is important to note that the heterocellu-
lar coupling between the smooth muscle and endothelial
cells has been shown to be enhanced in spontaneously hy-
pertensive rats (SHRs). However, in these animals, the va-
sodilation induced by ACh and the gap junction–mediated
smooth muscle hyperpolarization were reduced, which was
assumed to be the result of structural changes in the media,
and that the greater heterocellular coupling was a compen-
satory mechanism to maintain the EDHF signaling in this
model of hypertension (164). A recent review describes in
detail the alterations of gap junctions in hypertension (56),
and therefore, in this section of the review, we focus on the
genetic manipulations of connexin expression that result in
an altered control of arterial blood pressure.

Probably the clearest participation of gap junctions in hy-
pertension is through the control of renin secretion. Cx37, 
-40, and -43 are expressed in the kidney and link the cells of
the juxtaglomerular apparatus (JGA) (5, 114, 215). These
three gap-junction proteins are expressed in the endothelial
cells of afferent arterioles. In addition, Cx37 and Cx40 are
found in renin-secreting cells and mesangial cells (5, 114,
215). Interestingly, endothelial cell communication via Cx43
appears to be a key in the control of renin secretion, because
replacement of Cx43 by Cx32 (Cx43KI32) disrupted the reg-
ulation of renin synthesis and secretion (79). In Cx43KI32
mice, expression of renin was reduced, and the levels of this
hormone were not downregulated by a high-salt diet or in-
creased by clipping a renal artery in the two-kidney, one-
clip (2K1C) model of renin-dependent renovascular hyper-
tension (79).

In contrast to the inhibition of renin secretion observed in
Cx43KI32 mice, deletion of Cx40 resulted in increased renin
production and plasma renin concentration (Fig. 8), leading
to the proposal that this connexin plays an essential role in
the tonic inhibition of the renin system in the kidney (107,
196). Consistent with this idea, intrarenal pressure and an-
giotensin II failed to attenuate renin secretion in Cx40-defi-
cient mice (196). Although Cx40 is the dominant gap-junc-
tion protein in renin-secreting cells, the dysregulation of the
renin system observed in Cx40-knockout mice may depend,
not on direct cell-to-cell signaling via Cx40 gap junctions, but
on structural changes in the JGA architecture, as shown by
Kurtz et al. (114). Ablation of Cx40 seems to affect the JGA
development and, in the absence of Cx40, renin-expressing
cells were not present in the terminal part of the afferent ar-
teriole wall; instead, renin was found in cells of the extra-
glomerular mesangium and periglomerular interstitium
(114). Taken together, these studies highlight the importance
of gap-junction communication in the control of JGA devel-
opment and renin secretion. It is important to remember that
Cx37 is also expressed in the JGA, and although deletion of
Cx37 does not affect arterial blood pressure, the participa-
tion of this connexin in JGA development and control of the
renin system remains to be determined.

Although it may be controversial (107), the increase in
renin secretion does not fully account for the hypertension
observed in Cx40-knockout mice because blockade of the an-

giotensin II receptor AT1 with candesartan (37) or the an-
giotensin I–converting enzyme (ACE) with enalapril (196) re-
duced, but did not revert the blood pressure of these ani-
mals to the normal values (Fig. 8). As mentioned earlier,
deletion of Cx40 is also associated with an irregular vaso-
motion of microvessels and an impaired conduction of va-
sodilator signals (37). Therefore, the renin/angiotensin II–in-
dependent component of the hypertension triggered by the
absence of Cx40 probably is caused by an interruption of the
control and coordination of the cells of the vessel wall (Fig.
8). In support of the importance of coordination and inte-
gration of vasomotor tone in the control of arterial blood
pressure (37, 55, 56) and structural adaptation of the mi-
crovascular network (152, 153), conduction of vasodilator re-
sponses has been found to be impaired in spontaneously hy-
pertensive hamsters (110, 111) and SHRs (72).

The potential importance of endothelial cell Cx40 in the
development of hypertension has also been noted in SHRs
(103, 160). In the caudal artery of these animals, Rummery
et al. (160) found decreased endothelial cell size and a re-
duction in the density of endothelial gap-junction plaques
containing Cx40. Again, the heterogeneity in connexin par-
ticipation arises because, in these experiments, no changes
were found in the expression of Cx37 or Cx43.

Consistent with the key role played by Cx40 in the con-
trol of renin secretion and coordination of vasomotor tone,
two closely related polymorphisms (�44A and �71G) within
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FIG. 8. Mechanisms of the control of arterial blood pres-
sure by Cx40. Cx40 seems to play a central role in the con-
trol of arterial blood pressure by the parallel coordination of
the vasomotor tone of resistance vessels and by renin secre-
tion in the juxtaglomerular apparatus (JGA). Deletion of
Cx40 affects the endothelial cell–dependent longitudinal syn-
chronization of the vessel wall function, which results in an
impaired conduction of vasodilator responses (36, 57), an ir-
regular vasomotion and segmental constrictions (37). At the
same time, the absence of Cx40 in the renin-secreting cells at
the JGA disrupts the tonic inhibition of renin system, lead-
ing to an increase in renin secretion with the consequent in-
crease in angiotensin II levels (107, 196). The dysregulation
in the longitudinal communication of microvessels and renin
secretion converges to increase the peripheral vascular re-
sistance and produce the hypertension observed in Cx40-
knockout animals (36, 37, 107, 196).



the regulatory region of the human Cx40 gene have been as-
sociated with increased risk of hypertension in men (61, 73).
As expected, these polymorphisms seem to alter the activity
of the Cx40 promoter, because in vitro reporter assays re-
vealed that the Cx40 haplotype �44A/�71G reduced the ex-
pression of luciferase by 50%, and the �44A polymorphism
negatively affects the promoter regulation by the transcrip-
tion factors Sp1 and GATA4 (60, 61, 73).

Diabetes

As observed in hypertension, control and coordination of
vasomotor tone play a critical role during the development
of diabetes, and vascular complications are the leading
causes of mortality in this pathology. Diabetes and hyper-
glycemia may lead to vascular dysfunction by several mech-
anisms, such as nonenzymatic glycosylation (16, 194), ox-
idative stress (69), polyol-myoinositol alteration (63), and
activation of diacylglycerol (DAG)-protein kinase C (PKC)
pathways (119, 205).

A large body of evidence shows that PKC-dependent
phosphorylation of Cx43 affects the gap-junction intercellu-
lar communication (125, 162), and, in the vasculature, the di-
rect activation of PKC with phorbol myristate acetate (PMA)
reduces the Cx43-mediated dye coupling in primary cultures
of human tonsil high endothelial cells (53). In accordance
with these findings, high glucose concentrations inhibited
gap-junction dye transfer through the activation of a PKC-
dependent signaling pathway in cultured bovine aortic en-
dothelial cells (94, 95). In addition, exposure to a high-
glucose medium reduced gap-junction activity in rat mi-
crovascular endothelial cells (167), and the reduction in dye
coupling observed in these cells was correlated with a de-
crease in Cx43 mRNA and protein levels (Fig. 9), whereas
the expression of Cx37 and Cx40 was not affected (167). To-
gether, these data suggest that inhibition of gap junction–en-
dothelial cell communication by an increase in glucose 
concentration may be involved in the endothelial cell dys-
function typically observed in diabetes (Fig. 9).

Glucose and diabetes may also alter vascular function by
affecting gap-junction activity in vascular smooth muscle
cells (102). In this regard, Kuroki et al. (95, 113) showed that
high glucose levels reduce gap-junction intercellular com-
munication of cultured aortic smooth muscle cells through
the activation of a PKC-dependent pathway and the subse-
quent Cx43 phosphorylation (Fig. 9). In view of the impor-
tance of Cx43 gap junctions in smooth muscle cell prolifera-
tion and migration, as well as in vascular morphogenesis (55,
112, 124, 151, 214), the effect of high glucose on Cx43 gap-
junction activity may contribute to the development of the
diabetes-associated angiopathy. In addition, the permeabil-
ity properties of the Cx43-derived gap-junction channel were
reported to be altered in corporeal vascular smooth muscle
cells isolated from streptozotocin-induced diabetic rats (14)
(Fig. 9). As Cx43 appears to play a central role in the devel-
opment of myogenic vasoconstriction, the alteration in the
selectivity filter observed in the gap-junction communication
of corporeal vascular myocytes may be involved in the dia-
betes-related erectile dysfunction.

The retina is a particularly sensitive tissue to be damaged
by diabetes. Chronic hyperglycemia in diabetes is associated
with the development and progression of pathologic changes

in the retinal vasculature, and diabetic retinopathy is the
leading cause of blindness in the working population (26).
Retinal microvessels are well coupled via gap-junction chan-
nels, and, as may be expected, soon after the onset of strep-
tozotocin-induced diabetes, the intercellular communication
of the retinal microvascular network is disrupted (149).
Therefore, the breakdown in the cell-to-cell organization via
gap junctions may contribute to the early vascular dysfunc-
tion typically observed in diabetes (Fig. 9).

Concluding Remarks

Gap junctions play a multifaceted role in the vasculature
that is essential in the control of gene expression, vascular
development, and vascular function. However, the function
of gap junctions in the vasculature does not depend only on
the molecular selectivity or permeability of the different vas-
cular connexin isoforms. It is now evident that connexins
work in concert, and thus, the same connexin isoform may
have distinct and sometimes antagonistic functions, de-
pending on organization of the connexins and the cell type
of the vessel wall in which they are expressed (e.g., the en-
dothelial cells or the smooth muscle cells). In addition, the
function of gap junctions may be influenced by the subcel-
lular localization of the connexin-based channels. Gap junc-
tions may be targeted to signaling microdomains such as
tight junction, lipid raft, and caveolae (55, 147, 168). In ac-
cordance with that localization, connexins have been re-
ported to be associated with cytoskeletal proteins and cave-
olin-1 (7, 56, 66–68, 147, 168). Such targeting positions the
connexins in a strategic spatial relation with a variety of cell-
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FIG. 9. Diabetes affects the Cx43-mediated communica-
tion in the vascular wall. The hyperglycemia associated with
diabetes leads to a reduction in the gap-junction intercellu-
lar communication in the endothelial cells and smooth 
muscle cells through the activation of PKC (94, 113). The re-
duction in gap-junction communication induced by hyper-
glycemia is associated with a decrease in Cx43 expression
(167), Cx43 phosphorylation (113), and changes in the per-
meability properties of the Cx43-based channels (14). Al-
though the phosphorylation of Cx43 is mediated by PKC, the
participation of this protein kinase in the changes of Cx43
expression and permeability remains to be established. Cx43
is an important gap-junction protein in the vasculature, and
the disruption of Cx43-mediated gap-junction communica-
tion induced by hyperglycemia may contribute to the vas-
cular dysfunction typically observed in diabetes.



signaling cascades in which they may participate in cell–cell
signaling both by direct protein-to-protein interactions and
by coordination of signaling pathways between two neigh-
boring cells (34, 55, 147, 200, 201). Therefore, simple analy-
sis of the level of connexin expression is not sufficient to un-
derstand fully the participation of the gap junction in
cardiovascular function in normal and pathologic condi-
tions. In addition, the cell-type distribution and, if it is pos-
sible, the subcellular localization of the specific connexin iso-
forms must be determined.

The apparent co-regulation of the connexin expression is
another potentially important point in the study of vascular
gap junctions. That is, deletion of one connexin isoform may
affect the expression of another isoform (96, 108, 123, 184).
Interestingly, this interaction may traverse the cell bound-
aries, and connexins present in one cell of the vascular wall
may be linked to the expression of connexins in the func-
tional associated cell type, as observed by Liao et al. (123),
who reported a reduction in the Cx43 levels in the smooth
muscle cells of VEC Cx43�/� mice. Consequently, changes
in one connexin may be secondary to the alteration of a dif-
ferent connexin, which leads to a demand for parallel anal-
ysis of multiple connexin isoforms, especially during the
study of gap junctions in chronic vascular diseases.

Although the participation of the gap junction in vascular
function seems to be very complex, the development of con-
nexin-knockout animals has been a great contribution to our
understanding of how these proteins work in the vascula-
ture. In addition, connexin-mimetic peptides have demon-
strated to be an effective tool to dissect the participation of
gap junctions in vascular function. However, the potential
manipulation of connexin function and/or expression in
therapeutic interventions must await the expected future de-
velopment of selective pharmacologic tools that allow tar-
geting gap junctions in a connexin-isoform and cell type–spe-
cific manner.
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