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Abstract

A predictive component can contribute to the command signal for smooth pursuit. This is readily demonstrated by the fact
that low frequency sinusoidal target motion can be tracked with zero time delay or even with a small lead. The objective of
this study was to characterize the predictive contributions to pursuit tracking more precisely by developing analytical
models for predictive smooth pursuit. Subjects tracked a small target moving in two dimensions. In the simplest case, the
periodic target motion was composed of the sums of two sinusoidal motions (SS), along both the horizontal and the vertical
axes. Motions following the same or similar paths, but having a richer spectral composition, were produced by having the
target follow the same path but at a constant speed (CS), and by combining the horizontal SS velocity with the vertical CS
velocity and vice versa. Several different quantitative models were evaluated. The predictive contribution to the eye tracking
command signal could be modeled as a low-pass filtered target acceleration signal with a time delay. This predictive signal,
when combined with retinal image velocity at the same time delay, as in classical models for the initiation of pursuit, gave a
good fit to the data. The weighting of the predictive acceleration component was different in different experimental
conditions, being largest when target motion was simplest, following the SS velocity profiles.
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Introduction

Interacting with a moving target involves prediction, whether the

target be pursued by means of eye movements or intercepted by a

movement of the hand. Thus, for manual interception, the initial

direction of the hand is in advance of the target’s location [1–5].

Similarly, when the direction and the time of the onset of target

motion is predictable, smooth pursuit eye movements anticipate the

target’s motion [6–7] in contrast to the latency of 100 ms or more

when the motion onset is not predictable [8]. The fact that pursuit is

maintained, albeit at reduced gain, even when the target disappears

transiently [9–11] also provides evidence for predictive mechanisms.

In the examples cited above, the target speed for smooth pursuit

was always constant. However, anticipatory effects in pursuit can

also be demonstrated when target motion varies predictively, for

example when it is generated by a combination of sine waves of

different frequencies [12–15]. In that instance, eye velocity leads

target velocity at low frequencies (below 0.5 Hz), whereas it lags

target velocity at higher frequencies (as would be expected if eye

velocity were delayed with respect to target velocity). Furthermore,

the amount of phase lead depends on the spectral composition of

the target signal. For example, the addition of a harmonic

component to a fundamental frequency alters the amplitude and

timing of the response to the fundamental component [14]. This

suggests that the nature or the extent of predictive mechanisms

depends on the precise characteristics of the stimulus.

Thus the aim of the present experiments was to characterize

more precisely the predictive component of pursuit eye move-

ments by developing a quantitative model. Quantitative models

have been successful in predicting the initiation of eye movements

in response to a step of target velocity [16–18]. In all of these

models, pursuit eye velocity is driven in part by retinal image

velocity (the difference between target and eye velocity) with a time

delay. This signal is modified in different ways, either by means of

internal feedback loops of eye velocity [18] or acceleration [17] or

by a sensitivity to image acceleration [16]. The latter model was

also able to account for the effect of high frequency (2–10 Hz)

perturbations during maintained pursuit [19]. However, these

models do not account for anticipatory properties of pursuit eye

movements. Here we show that modifying the Krauzlis and

Lisberger [16] model by adding a low-pass filtered target

acceleration signal to image velocity is able to reproduce the

major aspects of two dimensional smooth pursuit of periodic target

motion, and that the gain of this predictive signal depends on the

characteristics of the target motion.

Methods

Six subjects participated in this experiment. All had normal or

corrected to normal vision and gave informed written consent to

procedures approved by the Institutional Review Board of the

University of Minnesota.

Target motions
Subjects tracked a cyan, circular target 0.5u in diameter that

was displayed on a computer monitor. The target underwent
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periodic motion in two dimensions with a period of 4.5 seconds.

Target trajectories were constructed by a sum of sines

(fundamental and 2nd or 3rd harmonic) in the x (horizontal) and

y (vertical) directions. Five such target paths were constructed,

illustrated in Fig. 1. These base trajectories (SS – sum of sines)

were modified such that the target followed the same path with

the same period (4.5 s) but at a constant speed (CS) [4]. This

transformation added additional harmonic frequency compo-

nents to the x and y components of the target velocities, in that

sense making target motion less predictable. Finally, we

constructed two additional target trajectories by combining the

x SS velocity with the y CS velocity and vice versa. These

combinations resulted in target paths that were modified slightly

from the original paths, as shown for one example (path 5) in the

lower right panel of Fig. 1. However, on the assumption that

smooth pursuit eye velocity depends primarily on target velocity

and its derivatives and not on position, these additional

trajectories permitted us to assess the extent to which the x –

and y – components of pursuit velocity are independent of each

other. If they are, then the horizontal and vertical eye velocity

components of these combined stimuli should be identical to their

respective counterparts in the SS and CS trajectories.

Experimental procedures and data analysis
The experimental procedures have been described in detail

previously [1,3]. Subjects sat with their eyes 40 cm from a

computer monitor with the head stabilized by a chin rest. At the

beginning of each trial the target appeared at the starting location

of the particular trajectory, and after a brief interval began moving

with the prescribed motion profile. As described above, there were

5 different paths and 4 motion profiles for each path, resulting in

20 combinations. Each was presented 10 times, in random order,

for a total of 200 trials. Each trial lasted 5.7 seconds, i.e., 1.25

times the period of the motion. Trials in which pursuit was not

maintained or in which there was an eye blink were rejected

during the experimental session and subsequently repeated.

Subjects could take breaks during the course of the experiment

and each experiment lasted about 1.5 hours.

Eye movements were recorded using head-mounted infrared

cameras (EyeLink, SR Research, Mississauga, Ontario) at 250 Hz.

To increase the signal to noise ratio, we generally combined

recordings from the left and right eyes. Position data were first

smoothed with a double-sided exponential filter (time constant

4 ms) and differentiated numerically. Saccades were identified and

removed by interpolation with a cubic spline [1]. Desaccaded

velocity traces for the 10 trials for each experimental condition

were then averaged and all subsequent analysis was performed on

these averaged data.

Eye velocities were first analyzed in the frequency domain. We

restricted our analysis to the steady state response, neglecting eye

movements during the first second of target motion. For this

purpose, we resampled eye or target velocities to generate 512

equally spaced points in the interval from 1.0 to 5.5 seconds and

transformed the data into the frequency domain using the fast

Fourier transform (fft). From this analysis, we computed gains and

phases of the response at various frequencies. Average responses

from the six subjects were computed, using circular statistics for

the phase data [20] and the Rayleigh test for significance with

p,0.01.

We also tested several different models relating smooth pursuit

eye velocity to target motion. These models will be described in

detail in Results. For each model, we solved the differential

equations relating input and output using the Runge-Kutta

method with adaptive step size [21] and found the parameters

providing the best fit of the model to the data by minimizing the

square error between model velocity and eye velocity in the

interval from 1.0 to 5.5 seconds, i.e. neglecting the onset of

pursuit. For this purpose, we used the simplex algorithm of Nelder

and Mead [22].

Results

Figure 2 illustrates representative results from one subject (4)

and one path (2), each of the 4 panels corresponding to one of the

motion profiles: A is sum of sines (SS), B is constant speed (CS),

and C and D are combinations of SS and CS for the x – and y –

components of the target motion, generated from the same

component velocity profiles as in A and B. Each panel shows from

bottom to top the x– and y – velocities, the speed, and the direction

of motion, positive being up and to the right and direction being

measured in the counterclockwise direction from the right

horizontal. Target motion is shown by the heavy black trace and

the blue traces show the mean (61 SE) of the ocular response.

From inspection of the traces, it is apparent that pursuit was

initiated at a latency of about 100 ms. Thereafter, for the

sinusoidal motion (Fig. 2A) pursuit velocity matched target velocity

with a gain that was close to unity, but with a slight delay. These

Figure 1. Target motion paths. The first 5 panels depict the 5 paths
defined by the target, following either a sum of sines (SS) or constant
speed (CS) trajectory. The path was not displayed to the subject, but was
traversed by a small dot. The filled circle (N) denotes the location of the
onset of target motion and the open circle (#) its location 1 s later. The last
panel depicts the 5th path when the horizontal (x) velocity was defined by
the sum of sines and the vertical (y) velocity followed the CS trajectory.
doi:10.1371/journal.pone.0012574.g001

Motion Prediction for Tracking
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delays are more apparent for the CS profile in Fig. 2B. Also, note

that transforming the trajectory so that it moved at constant speed

introduced higher frequency components to the x – and y – target

motion profiles and that the ocular response appears to reflect a

low pass filtering of the target motion. Inspection of Fig. 2B may

suggest that the amount by which eye velocity lagged the target’s

velocity was not constant, but varied over time (see for example the

x velocity at ,3.5 s). However, the results of modeling to be

presented in a subsequent section do not support this supposition.

Finally, even though the target’s speed was constant in Fig. 2B, eye

speed was modulated substantially, decreasing when the direction

of target motion changed abruptly (i.e. also at ,3.5 s).

The responses in x – and y – velocity to combined (SS-CS)

stimuli were largely similar to the component responses to SS and

CS target motions, as can be ascertained for example by

comparing the x – velocities in Fig. 2C and 2A, and the y –

velocities in Fig. 2C and 2B. Nevertheless, there were instances

where there were clear differences, for example in the y – velocity

component around 2.0 s in Fig. 2D and 2A, and the x – velocity

component at about 3.5 s in Fig. 2D and 2B, suggesting an

interaction between the horizontal and vertical components of

pursuit. As we will show in a following section, some of these

differences, although small, were found consistently in the

responses of the six subjects.

Frequency response of pursuit eye velocity
When the target velocity consisted of a sum of sines (a

fundamental component at 0.22 Hz and a 2nd or 3rd harmonic),

smooth pursuit velocity led target velocity at the fundamental

frequency, but lagged it at higher frequencies (Table 1). The gain

of the harmonic responses was greater than the gain of the

fundamental and the horizontal gain was greater than the gain in

Figure 2. Representative results for one target path (2) and one subject (4). Each panel shows the horizontal (Vx) and vertical components
(Vy) of target velocity (black trace) and pursuit eye velocity (blue, mean 61 SE), and in the upper two traces, the speed and direction. A) shows the
response when target motion was generated by a sum of sines (SS) and B) shows the responses to the constant speed (CS) stimulus. The lower two
panels show the responses to combinations of SS and CS stimuli (C – x: SS. y: CS and D – x: CS, y: SS).
doi:10.1371/journal.pone.0012574.g002
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the vertical direction. All of these results are in agreement with

previous observations [1,12,14,23]. An ANOVA on the gain and

phase at each frequency using speed profile and path as factors

showed that, with the exception of the phase of the y-velocity

response at 0.22 Hz (see Table 1), neither the phase nor the gain

depended on the speed profile (SS or CS) of the other directional

component (p.0.05). In several instances, the gain and/or the

phase of the smooth pursuit did depend on the path (F4, 50.4.36,

p,0.01).

There was power at frequency components not contained in the

target signals, but this was generally small, never exceeding 3.4u/s,

compared to peak target velocities that ranged from 30 to 40u/s

(see Fig. 2). The largest non-target related frequency responses

were at the 4th and 5th harmonics. At these frequencies, pursuit

response amplitude averaged 4.3% (0.89 Hz) and 6.1% (1.11 Hz)

of the amplitude of the largest target-related frequency compo-

nent. Although small, some of these responses could not be

attributed to random noise because sometimes the phase of the

response for a given frequency and path was not randomly

distributed for the six subjects (Rayleigh test with p,0.01). This

was the case for 75% of the instances at 1.11 Hz, but much less

common at all other frequencies in the range of 0.89 to 3.33 Hz

(maximum 40% at 1.33 Hz, average 20%). Furthermore, when

the phases were not randomly distributed they generally (in 75%

of the instances at 1.11 Hz) did not differ significantly when the

velocity along the other coordinate (x or y) was generated from a

sum of spines (SS) or a constant speed (CS) trajectory. Thus it is

unlikely that these distortions are attributable to interactions

between the x- and y- components of pursuit velocity.

When the target velocity was generated according to the CS

criterion, its power was distributed throughout the frequency

spectrum, being highest at the frequency components for the

corresponding SS trajectory. This is illustrated in Fig. 3 for two of

the paths (3 and 4). In each panel, the black trace in the lower plot

depicts the amplitude at each of the frequency components up to

3.3 Hz on a logarithmic scale. For example, for the x – component

of Path 3, the SS trajectory was generated from the fundamental

(0.22 Hz) and the 3rd harmonic (0.67 Hz), whereas the y –

component contained power at the fundamental and the 2nd

harmonic. Generally, power in the target signal decreased with

frequency, albeit in a non-monotonic fashion. For those

frequencies in which there was consistent response (Rayleigh test

on the phase, p,0.01), the plots also depict the amplitude of the

pursuit eye velocity, its gain and its phase. For each panel, two

traces are shown, coded according to whether the target velocity of

the other component corresponded to the SS trajectory (cyan) or

the CS trajectory (red).

Comparing the results for the two paths and the two directions

(x – and y – axes), one notes that the phases are quite consistent,

independent of path and component, whereas the gains are

considerably more variable, within a particular path and direction

(see error bars denoting the standard deviation across subjects) and

also between conditions. Specifically, in the frequency range from

0.22 to 3.33 Hz, the phase decreased monotonically from a slight

phase lead at 0.22 Hz to a lag of ,180u at 3.33 Hz. Furthermore,

the phase of the response was quite similar, irrespective of whether

the other component of the target’s velocity followed the SS or the

CS trajectory. The only exception to this in Fig. 3 is for the y –

component for Path 3 (top left panel), where the phase at 1.56 Hz

for the SS trajectory (cyan) was close to zero. (The phase for the

CS trajectory at this frequency is not shown, because this value

was not consistent from subject to subject, p.0.01). The results for

the two paths shown in Fig. 3 are representative of the results for

all 5 paths (see Table 2). A statistical comparison of the phases of

the response showed that in only a small fraction of the cases (7%,

9/128, paired t-test for each path and frequency, p,0.01) did this

value depend on the target motion of the other coordinate.

As noted before, the gains of the responses were more variable.

In general, the gain declined gradually with frequency (for

example, the x – direction for path 3 and the y – direction for

path 4), but there were also instances where the gain remained

elevated or increased with frequency (y – direction, path 3). On

average the gain, which was 0.8 to 0.9 at the lowest frequencies,

decreased to a value of about 0.5 at 3 Hz. At the lowest 3

frequencies, the gains for the CS condition tended to decrease

slightly in contrast to the increase found when the target followed a

sum of sines (SS) trajectory and the phase lag at 0.67 Hz tended to

be greater (221.3u on average) compared to the phase lag at that

frequency for the SS trajectories (211.3u on average).

Interactions between horizontal and vertical components
of pursuit

As described above, the analysis of the results in the frequency

domain did not provide strong evidence for interactions between

pursuit along the two coordinate axes in the sense that the phase of

the responses generally did not depend on the target motion in the

other dimension. To further examine this issue, we also analyzed

the data in the time domain, computing the difference in pursuit

velocity along one dimension (e.g. x-axis) for the two different

target motions along the other axis (e.g. y-axis). We first eliminated

any effects arising from potential differences in the gain of pursuit

in the two conditions by scaling. This effect was modest, the slopes

of the regressions between the two conditions averaging

0.9360.05 for SS and 0.9860.33 for CS. Since the coefficients

of determination were also uniformly high (r2.0.944 in all cases,

averaging 0.982), differences in pursuit eye velocity along one axis

arising from different target velocities along the other axis can be

expected to be minor.

Nevertheless, as shown in Figs. 4 and 5, occasionally there were

differences in pursuit velocity that were consistent from subject to

subject. Fig. 4 shows the difference in pursuit velocities for path 5,

results for the x-direction being shown in the left column and for

the y-direction in the right column. The two target velocities along

the other coordinate direction are shown in the overlay in the

middle or lower trace of each panel, and the top traces show the

difference in pursuit eye velocity for the two conditions for each of

the six subjects. Note that this difference plot has been scaled by a

factor of 5 compared to the target velocity.

Table 1. Frequency Response to Sum of Sines Stimuli.

Frequency Speed Horizontal Velocity (x) Vertical Velocity (y)

Gain Phase Gain Phase

0.22 SS 0.8260.11 10.2610.4 0.6860.14 7.9±9.2**

0.44 SS 0.8860.10 24.262.5 0.8060.09 24.362.3

0.67 SS 0.9260.11 212.462.0 0.7960.11 29.462.1

0.22 CS 0.7860.13 11.3610.8 0.6260.12 14.3±13.9**

0.44 CS 0.8660.10 25.862.9 0.7360.09 26.363.0

0.67 CS 0.8660.10 212.862.1 0.6960.12 210.762.3

**p,0.01, difference between speed profiles.
Values are means 6 SD.
doi:10.1371/journal.pone.0012574.t001
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While the differences are generally small and variable from

subject to subject, occasionally, such as in the interval from 1 to 2 s

for the SS Vx (top left panel) and for the CS Vy at 1 s (bottom right

panel), there were consistent differences in the results. This can

also be seen in Fig. 5 which shows the mean (6 SE) for the results

for a different path (path 2) plotted in the same format. Time

intervals in which the difference in velocities was significant (t-test,

p,0.01) are indicated above the traces of the mean velocities. For

this path, these instances were sparse and this was the case for all 5

paths; overall, the difference in velocities was significantly different

from zero 8.6% of the time at the p,0.01 level and 2.8% of the

time at the p,0.001 level.

We were unable to relate the differences in the response to the

differences in the time course of target motion along the other

axis, such as differences in target velocity or acceleration. A

frequency analysis of the differences in pursuit velocity showed

that the power in the difference was uniformly distributed in the

interval from 0.22 to 2.0 Hz, with an amplitude of ,0.75u/s,

decreasing at frequencies above 2 Hz. Accordingly at the lowest

frequencies (,0.67 Hz), the difference signal was small com-

pared to the response to the target motion (,8%), whereas at

higher frequencies the ratio was much greater (e.g. 48% at

2 Hz).

Quantitative models of prediction in smooth pursuit
A flat gain and a phase lag that increases with frequency implies

a pure time delay between the input and the output. Thus, the

frequency responses described in Fig. 3 and Tables 1 and 2 suggest

the presence of a time delay between target motion and eye

velocity. This conclusion is hardly surprising because it is

consistent with a large body of evidence. However, at the lowest

frequency (0.22 Hz), eye velocity actually led target velocity

irrespective of whether target motion only consisted of a few

frequency components (SS) or whether the spectral composition of

the motion was more complex. This observation suggests the

presence of a predictive component in the control of a smooth

pursuit and we tested a variety of models in an attempt to

characterize this component more precisely.

Figure 3. Frequency analysis of response to CS stimuli. Results for horizontal motion (x) are shown on the left and for vertical motion (y) on
the right. The top panels show results for path 3, the results for path 4 being shown below. The results are the mean 61 SD for all 6 subjects, the
traces in each panel depicting from top to bottom the phase and gain of eye velocity with respect to target velocity and the amplitude (on a
logarithmic scale) of target velocity (black) and eye velocity. Results when the motion along the other axis followed a CS profile are shown in red and
the corresponding results for the SS profile are shown in cyan. Note that the phase decreases consistently from a small lead at 0.22 Hz to a lag of
about 180u at 3 Hz.
doi:10.1371/journal.pone.0012574.g003
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We began with a simple model in which eye acceleration is

proportional to the difference of target velocity (vt) and eye velocity

(ve) , each delayed in time:

dve(t)

dt
~a½gvt(t{tt){ve(t{te)� ð1Þ

where tt and te are the time delays of eye acceleration dve/dt

relative to the target and eye velocity, respectively. The parameter

g (gain) is included because the gain of smooth pursuit was typically

less than unity. Finally, the parameter a defines the time constant

of the response, having units of s21. This model is a simplified

version of one developed by Krauzlis and Lisberger [16]. Their

model also included a term proportional to retinal image

acceleration, which was considerably smaller, and a transient

response triggered at the onset of target motion. Since we were

interested primarily in the steady-state response, this second term

could be neglected. If the two time delays tt and te are equal and

g = 1, the model implies that eye acceleration is proportional to the

retinal image velocity. However, to allow the model more

flexibility, we permitted the two time delays to differ.

We fitted the model to the data for the constant speed (CS)

condition, fitting the x- and y-components of the velocity separately.

For each subject (6) and path (5), we identified the 4 parameters that

minimized the square error between the model and the actual eye

velocity over the interval from 1 to 5.5 seconds. That is, we

neglected the first second of the response in the fitting. Overall, the

model gave a good fit to the data, the variance not accounted for

(VNAF) averaging 9.063.0% for the fits to the 30 trial averages.

Moreover, the parameters that gave the best fit were also quite

consistent for all subjects and paths. The parameter a averaged

6.261.3 s21, corresponding to a time constant of 160 ms. This is

somewhat larger than the value of ,10 s21 obtained by Krauzlis

and Lisberger [16]. The estimates for the time delays of target and

eye velocity were also consistent, but differed significantly, with an

estimate of 120630 ms for the delay in eye velocity (te) compared to

a value of 20620 ms for target velocity (tt). While the value for te is

consistent with the latency for the initiation for smooth pursuit, the

value for tt clearly is much smaller. Finally, the average gain (g) in

the x-direction (0.7360.11) was slightly larger than the value

(0.6260.10) in the y-direction (see Table 2).

Not surprisingly, this model gave an even better fit to the results

for the SS condition with an average VNAF of 2.9%. The

estimates for the two time delays (100620 ms for te and

40620 ms for tt) were comparable to the values obtained for

the CS target trajectories, as were the values for the gain g and the

time constant a.

The fact that the time delay for target velocity was much smaller

than the time delay for eye velocity and also much less than the latency

for the initiation of smooth pursuit suggests that there was an

additional, predictive signal providing for a phase advance of the target

velocity. One means of achieving this would be to add a component

proportional to target acceleration, since by Taylor’s theorem,

v(tzt)%v(t)zt _vv(t) ð2Þ

Moreover, the frequency analysis suggested that that such a predictive

component would be most important at low frequencies (Fig. 3 and

Table 2). One means of achieving this would be to low-pass filter target

acceleration:

d_vvtp(t)

dt
~b½ _vvt(t)- _vvtp(t)� ð3Þ

where _vvt is the target acceleration and _vvtp is a predictive version of this

signal, obtained by low-pass filtering with a time constant equal to 1/b.

Thus, we added a predictive target acceleration component to the

original model (eq. 1), and constrained the time delays for target and

eye velocity to be the same:

dve(t)

dt
~a½gvt(t{t)zc1 _vvtpn(t{t)zc2 _vvtpt(t{t){ve(t{t)� ð4Þ

The tangential acceleration (_vvtpt) is equal to the rate of change in speed

whereas the normal component (_vvtpn) is proportional to the curvature

or the rate of change in direction. Since visual sensitivity to these two

components may differ, we permitted the weightings for the two

predictive acceleration components to differ [24]. Thus, this model had

one more free parameter than did the simpler one (eq. 1).

We first fitted the new model to all of the data (5 paths and 4

conditions) for each of the subjects, assuming that that the gains in

the x- and y-direction (gx and gy) could differ, minimizing the

squared error between the model and the actual data over one

cycle (from 1.0 to 5.5 s). This procedure gave a good fit to the

data, with an average variance not accounted for equal to 7.43%.

However, the estimates for the time delay t were very variable

(ranging from 0 to 70 ms), as were the estimates for the time

constant b (eq. 3), which ranged from 3.4 to 7.8 s21. This was not

unexpected; according to eq. 2 changes in time delay can be

compensated for by changing the weighting (and filtering) of the

acceleration term. We explored the effect of fixing the time delay

(t) and found that fixing it at 80 ms, a plausible value given neural

time delays in the feedback loop, gave only a modest 4% increase

in the error (from 7.43 to 7.72%). Therefore, we fixed the time

delay, and found the other parameter values that gave a best fit to

the data (see Table 3). With this restriction, the estimates for the

other parameters were quite consistent across the 6 subjects. The

average value of the parameter b was 3.47, corresponding to a time

constant of ,300 ms for the predictive acceleration term and the

average value for a was 7.12 , corresponding to a main time

constant of 140 ms. This latter value is comparable to the value of

Table 2. Frequency Response to Constant Speed Stimuli.

Frequency Horizontal Velocity (x) Vertical Velocity (y)

Gain Phase Gain Phase

0.22 0.9260.16 9.869.3 0.8160.13 14.168.9

0.44 0.9560.12 28.4615.7 0.7660.26 26.4635.1

0.67 0.7560.21 218.0623.2 0.6460.14 224.6617.6

0.89 0.8260.22 238.8612.2 0.6660.20 231.4622.4

1.11 0.7360.32 259.4624.8 0.8060.21 252.369.9

1.33 1.0360.49 273.8622.1 0.7860.52 281.6635.7

1.56 0.7460.26 283.2619.6 0.7460.40 269.3640.2

1.78 0.8260.37 286.2633.5 0.7960.46 2101.7624.3

2.00 0.8260.41 2113.2630.0 0.6760.30 2135.6649.4

2.22 0.6160.30 2139.4628.9 0.7560.44 2141.8625.1

2.44 0.6460.29 2156.4630.2 0.6760.27 2148.2631.2

2.67 0.6260.29 2158.6629.2 0.5060.40 179.6623.6

2.89 0.7660.35 2175.1623.3 0.826.54 176.7628.6

3.11 0.6960.37 2178.0624.2 0.4860.33 145.6653.3

Values are means 6 SD.
doi:10.1371/journal.pone.0012574.t002
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160 ms found using the simpler model. The predictive feedback

weighting terms c1 and c2 were similar to one another, 0.27 and

0.29 respectively. Finally, the gain in the x direction (gx = 0.53) was

somewhat larger than the value for the y direction (gy = 0.43) as in

the simpler model. However, both values were smaller than the

values found with the simpler model but this is to be expected,

since the second model had additional acceleration terms that

added to the target motion signal.

While one might expect that the two time constants (a and b)

would be consistent from trial to trial for a given subject, one

might also expect that the gains of the feedback of target velocity

(g) and the amount of the predictive contribution (c) could depend

on the speed profile, in the sense that a simpler velocity profile (SS)

would be more predictable. Therefore, we repeated the modeling,

fixing the two time constants and the time delay t at the values in

Table 3 and obtaining the values for the other 4 parameters that

gave the best fit for each of the 20 combinations of path and speed

profile. This gave a substantially better fit to the data, the average

VNAF decreasing by 23% from 7.72% to 5.96%. Some examples

of this fitting procedure are shown in Figs. 6 and 7 for two different

subjects (1 in Fig. 6 and 6 in Fig. 7) and two different paths, 2 and

5 respectively. In each panel, the x- and y- components of the eye

velocity are shown in cyan and the predictions of the model are

superimposed in red. For these two examples, the average VNAF

was 5.3% (Fig. 6) and 4.6% (Fig.7), the worst fit being for the y-

velocity components in Fig. 6B (10.8%) and Fig. 7C (8.0%). Note

that the model was able to reproduce well most of the fluctuations

in pursuit eye velocity, some exceptions occurring for the y-velocity

(Fig. 6B and 6C, interval 1.5 to 2.0 s) and the x-velocity in Fig. 7B

(at about 1.5 s). Recall that we did not include the first 1.0 s after

motion onset in the fitting procedure, and occasionally this initial

interval was also not well-fit by the model.

In two instances, both involving the CS velocity profiles, there

was a discrepancy between target motion and eye velocity in the

sense that eye velocity decayed to zero while target motion

increased. In those instances, the model gave a poor fit to the data.

One is shown in Fig. 8, the two arrows denoting times where the

model’s prediction deviated substantially from the measured

responses. These results are for path 1, and in both instances, the

y-component of target velocity was large and negative, whereas the

y-component of pursuit velocity decayed to zero. These intervals

correspond to times at which the target approached the lower

boundary of the monitor at constant speed (see Fig. 1), before

reversing. A similar discrepancy was also observed for the x-velocity

for path 3 as the target approached the right-hand border (data not

shown). These discrepancies most likely reflect the effect of cognitive

influences on tracking behavior, subjects expecting with some

confidence that the target would reverse direction as it approached

Figure 4. Degree of independence of pursuit motion along the horizontal and vertical directions. Each panel shows the difference in
horizontal pursuit velocity (left) and vertical pursuit velocity (right) for two of the stimulus conditions and path 5. Results for each of the subjects are
shown superimposed in a different color. The stimulus conditions are shown below. For the panels on the left, horizontal target velocity was always
generated by a sum of sines (top) or constant speed (bottom), for the two different vertical velocity profiles (shown in black and cyan). Note the
difference in scale for the difference velocity and the target velocity traces.
doi:10.1371/journal.pone.0012574.g004
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the edge of the screen. The model was not intended to capture such

effects, which have also been observed previously [25].

The two weighting coefficients for the predictive acceleration

component (c1 and c2) did depend on the speed profile (ANOVA,

F3,116.12.4, p,0.001), but they did not differ from each other

(paired t-test, p = 0.18). The coefficients were largest for the SS

condition (averaging 0.39) and they were smallest for the CS

condition (averaging 0.21), with intermediate values for the two

combined CS-SS conditions (0.29 on average). The values for the

two combined conditions (SSx-CSy and CSx-SSy) did not differ

from each other. Thus, as was expected, the weighting of the

predictive acceleration component in eq. 4 became greater when

the target motion was more predictable, in the sense that its power

spectrum was more confined. However, the components of

acceleration tangential and normal to the direction of motion

were equal.

Table 3. Best Fit Parameter Values.

Subject
Feedback Time
Constant (a – s21)

Predictive Time
Constant (b – s21)

Gain –x-
direction (gx)

Gain –y-
direction (gy)

Weighting
Normal
Accel (c1)

Weighting
Tangential
Accel (c2)

Time Delay
(t – ms) VNAF

1 7.94 3.23 0.63 0.53 0.24 0.23 80 6.68

2 7.00 3.27 0.49 0.39 0.34 0.33 80 8.34

3 7.13 4.56 0.59 0.48 0.23 0.20 80 7.20

4 7.02 3.74 0.58 0.50 0.25 0.23 80 6.81

5 6.53 3.36 0.38 0.32 0.34 0.31 80 9.09

6 7.08 2.80 0.52 0.39 0.34 0.32 80 8.22

Ave 7.1260.46 3.4760.56 0.5360.09 0.4360.08 0.2960.05 0.2760.06 80 7.7260.97

doi:10.1371/journal.pone.0012574.t003

Figure 5. Interactions between horizontal and vertical eye velocities. The panels show the average difference (61 SD) in pursuit velocity for
two stimulus conditions in the same format as in Fig. 4, but for path 2. Intervals during the difference in pursuit velocity differed significantly from 0
are indicated above the velocity trace in each panel. Those intervals were sparse.
doi:10.1371/journal.pone.0012574.g005
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Fig. 9 illustrates the effect of the predictive acceleration

component in the frequency domain, with three different values

for c (ranging from 0.0 to 0.5). (The gain was normalized in these

plots so that the maximum value was always equal to unity.) Note

that the effect of this predictive component is most prominent at

low frequencies, introducing a phase advance but decreasing the

relative gain at frequencies below 1.0 Hz. At higher frequencies,

the effect of this predictive component is negligible.

The fact that the weighting of the predictive acceleration

component depended on the target’s velocity profile (SS or CS)

could potentially account for the differences pursuit velocity

illustrated in Figs. 4 and 5. We tested this possibility by computing

the regression between the differences in the fits of the model to

the data (for the two conditions in which the motion along the

other coordinate differed) and the experimentally observed

differences at intervals in which the latter differed significantly

from 0 (see Fig. 5). The correlation was significant (p,0.001), but

the regression accounted for only a small amount of the variance

(r2 = 0.195) and the slope was considerably less than unity (0.18).

Furthermore, while the model predicted low-frequency variations

in the differences (as expected from Fig. 9), it failed the account for

the higher frequency fluctuations observed in Figs. 4 and 5.

Alternative models of prediction in smooth pursuit
We also tested a different set of models in which the speed (ve)

and direction (he) of pursuit were the controlled variables, rather

than the x- and y-velocities. A formulation in terms of speed and

direction could potentially account for the lack of independence of

the horizontal and vertical components of velocity described in

Figs. 4 and 5. Furthermore, this formulation was suggested by

modeling studies of manual tracking [26] and manual interception

[4] where the speed and direction of hand movements appeared to

be the controlled parameters.

We again assumed a predictive acceleration component _vvtp

achieved by means of low-pass filtering as defined by eq. 3. We

then assumed that the rate of change in speed and direction would

be proportional to error signals proportional to the difference

between eye speed (ve) and predicted target speed and between the

direction of pursuit (he) and the predicted target direction (ht):

dve(t)

dt
~a½g(vt(t-t)zc1 _vvtp(t-t))-ve(t-t)�. t

I
ð5Þ

ht(t)~tan-1½ vty(t)zc2 _vvtpy(t)

vtx(t)zc2 _vvtpx(t)� ð6Þ

dhe(t)

dt
~d½ht(t-t)-he(t-t)� ð7Þ

In eq. 5, t
I

is a unit vector in the direction of eye velocity ve at time t

Figure 6. Fit of the predictive model to the experimental data. Experimental results (horizontal and vertical components of velocity) for one
path (2) and subject (1) are shown in cyan and the target motion is shown in black. The fit of the predictive model (eq. 3 and 4) is shown in red, each
of the panels presenting results for one experimental condition.
doi:10.1371/journal.pone.0012574.g006
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and g is a gain factor for target velocity vt. As was the case for the

model given by eq. 4, we assumed that the gains in the x- and y-

directions could differ. The model also assumed that the weighting

coefficients c of the predictive acceleration component for direction

and speed could differ. The parameters a (eq. 5) and d (eq. 7)

represent the time constants for speed and direction, respectively.

As was the case for the previous model, we fixed the time delay

at 80 ms and then identified the 7 parameters (a, b, c1, c2, d, gx, gy)

that gave the best fit to all of the data (5 paths64 speed profiles) for

each of the 6 subjects. We then fitted the data separately for each

path and speed condition, assuming a fixed value for the three

time constants (a, b, d) but letting the gains and the weighting

coefficients for the acceleration vary from condition to condition.

Even though the model given by eq. 5–7 had one more free

parameter than did the previous model (eq. 4), it gave a poorer fit

to the data, the VNAF increasing by 8.5%. A paired samples t-test

confirmed that the previous model gave a significantly better fit to

the data (t119 = 3.673, p,0.001).

We also tested a variant of the model in eq. 5–7 in which the

normal acceleration ve
_hhe was proportional to the directional error,

rather than the angular velocity of the eye in eq. 7. However, this

variant gave an even poorer fit, the VNAF increasing by an

additional 22%. Therefore, we could not find any support for the

hypothesis that speed and direction, rather than eye velocity, were

the variables that were controlled in smooth pursuit.

Discussion

We presented subjects with a target that moved in two

dimensions along trajectories that varied in their predictability.

In the simplest case, we generated the trajectory from a sum of two

sinusoids (SS): the fundamental frequency and the second or the

third harmonic. With this formulation, the target’s velocity, speed

and direction changed smoothly throughout the trial and speed

and the rate of change of direction were inversely correlated, i.e.

they approximately followed the power law relation between speed

and curvature [27,28]. It has been shown that tracking errors are

smaller for motions obeying this relation [29] and that the motion

appears perceptually to be more uniform [30].

In a second condition, the target followed the same path but

with a different time course, namely at a constant speed (CS).

However, even though the speed was entirely predictable, target

direction could change abruptly, as could the horizontal and

vertical components of target velocity (see Fig. 2). We reasoned

that, due to such abrupt changes, the target motion would be less

predictable. In fact, the speed of pursuit in this condition was not

constant but it was modulated in a consistent fashion (Fig. 2B). We

also examined two more conditions, in which we combined

smooth target motion (SS) along one axis with the target’s velocity

for the CS condition along the other axis. This set of stimuli also

permitted us to assess the extent to which the horizontal and

Figure 7. Fit of the predictive model to experimental data for another path (5) and subject (6). The results are plotted in the same format
as in Fig. 6.
doi:10.1371/journal.pone.0012574.g007
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vertical components of smooth pursuit were independent of each

other [14].

We tested several different quantitative models with the aim of

identifying the signals that governed smooth pursuit under steady

state conditions, and the influence of the motion’s predictability on

the relative contribution of these signals. We began with a

simplified version of the model introduced by Krauzlis and

Lisberger [16], namely one in which eye acceleration is

proportional to retinal image velocity. This model gave a

reasonable fit to the data, with a time constant (160 ms) that is

close to the time constant that can be estimated from the response

to a step in target velocity [16,18,25]. However, in this model we

permitted the time delays for target and eye velocity to differ, and

the time delay for target velocity that gave the best fit (20 ms) was

much less than the time delay for eye velocity (120 ms) and also

much less than the latency for the initiation of smooth pursuit

(,100 ms). This observation suggested that a signal predicting

future target motion was added to the retinal image motion signal.

We modeled this as low-pass filtered version of target acceleration,

reasoning that high frequency changes in acceleration would be

essentially unpredictable. This model gave a reasonable fit to the

data, and the relative importance of this predictive signal was

greater for the more predictable set of target motions.

The model we have proposed is physiologically plausible.

Target motion, rather than retinal image motion is encoded in the

activity of MST neurons [31–34]. An acceleration signal is

represented, albeit weakly in the activity of MT neurons [35,36].

Whether or not this parameter is encoded by activity of neurons in

MST is not known. However, a predictive acceleration signal, as

contemplated by our model, could also be derived from a velocity

signal by intrinsic mechanisms such as short-term synaptic

depression and spike-frequency adaptation [37].

In our model, we did not include a term proportional to image

acceleration, as was done by Krauzlis and Lisberger [16].

However, in the range of target accelerations experienced in the

present experiment, they found the gain for acceleration to be

,10% of the velocity contribution and thus smaller than the

predictive acceleration term in our model. Recently, two groups

[38,39] have probed the dynamics of smooth pursuit using

random perturbations. Both groups estimated the time constants

of the response to such perturbations in the range from 40 to

60 ms, i.e. much faster than the time constants estimated in our

experimental conditions. However, the gain of the response was

found to decrease rapidly with the amplitude of the stimulus,

decreasing to a value of about 0.2 when the standard deviation of

the noise stimulus was 8u/s. Conceivably, the addition of a low-

gain, faster response to our model could have improved the fit of

the model to our data, especially in the high-frequency domain.

We assumed that the relative contribution of the predictive

acceleration component was constant throughout one cycle of

target motion, after steady-state conditions had been achieved (i.e.

1 s after motion onset). Prior to this time, the contribution of

retinal image acceleration or target acceleration to smooth pursuit

is modest, at best [16,25]. Target acceleration also generally is not

perceived directly [40] nor does it contribute to direct the arm

during manual interception tasks [4] for targets following

trajectories similar to the ones studies here. Under other

conditions, such as the interception of objects accelerated by

gravity, subjects can accurately time an interception movement

[41], but this behavior is highly context dependent [5] and appears

to reflect the implementation of an internal model of motion in a

gravitational field rather than the use of a predictive extrapolation

as described by our model. (Note that in most manual interception

tasks, target motion is viewed for less than one second).

Thus the gain of the predictive acceleration component in our

model should be expected to increase gradually over the course of

the first second or so. In fact, in a situation where the target was

subsequently occluded, Bennett et al. [42] have reported that only

when an accelerating target was in view for more than 500 ms was

the acceleration reflected in pursuit eye movements. In our model,

Figure 8. Instance in which the model gave a poor fit to the
data. Two intervals in which there was a discrepancy between the
model’s predictions and the experimental data for the vertical velocity
component (vy) are indicated by the arrows. In each instance, eye
velocity decayed to zero, whereas the target velocity remained large
and negative. Both instances correspond to times when the target
approached the lower border (see Path 1 in Fig. 1).
doi:10.1371/journal.pone.0012574.g008

Figure 9. Effect of predictive target acceleration on the
frequency response of pursuit eye movements. Traces depict
the gain and phase of the response for three values of the weighting of
the predictive acceleration signal, as indicated by the different symbols.
Model predictions can be compared to the experimental data in Fig. 3.
doi:10.1371/journal.pone.0012574.g009
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we assumed that the gain was constant after the first second. This

assumption is probably incorrect and the gain of this component

most likely fluctuates over time. For example, a Kalman filter

would generate a predictive component whose importance could

fluctuate [43–45]. However, since the experiments were not

specifically designed to test for this possibility, we did not

incorporate it into our model. Finally, we examined only linear

models and some of the discrepancies between the model’s

behavior and the experimental data could have arisen from

amplitude-dependent nonlinearities in the response.

One aim of our experiments was to assess the extent to which

horizontal and vertical components of pursuit are independent of

each other. We found that, for the most part they are, but we also

found instances in which horizontal eye velocity was affected by

the vertical component of the target signal and vice versa (see

Figs. 3 and 4). The effect was generally small (,10%) and

infrequent (,10% of the time) and was more pronounced for the

higher frequency components of the response. The interdepen-

dence of the horizontal and vertical components of pursuit eye

velocity could be accounted for in part by allowing the gain of the

predictive acceleration component to depend on the overall target

motion. However, this factor accounted for only a small

percentage of the variance and it accounted mostly for the low

frequency components of the difference, i.e. the region where the

predictive feedback component is most effective (see Fig. 9).

However, we are unable to account for the higher frequency

components of this phenomenon.
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