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The distorted Born iterative method �DBIM� computes iterative solutions to nonlinear inverse
scattering problems through successive linear approximations. By decomposing the scattered field
into a superposition of scattering by an inhomogeneous background and by a material perturbation,
large or high-contrast variations in medium properties can be imaged through iterations that are each
subject to the distorted Born approximation. However, the need to repeatedly compute forward
solutions still imposes a very heavy computational burden. To ameliorate this problem, the
multilevel fast multipole algorithm �MLFMA� has been applied as a forward solver within the
DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The
typically regular distribution and shape of scattering elements in the inverse scattering problem
allow the method to take advantage of data redundancy and reduce the computational demands of
the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like
iterations, where partial measurements are used to accelerate convergence. Numerical results
demonstrate both the efficiency of the forward solver and the successful application of the inverse
method to imaging problems with dimensions in the neighborhood of ten wavelengths.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3458856�
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I. INTRODUCTION

Inverse scattering has received substantial research at-
tention in the past three decades. Linear methods such as
diffraction tomography1–3 seek rapid solutions under the as-
sumption that the scatterer does not strongly contrast with
the background medium, allowing simple inversion of the
scattering operator. Quadratic methods4,5 seek direct inver-
sion of a second-order approximation to the scattering opera-
tor in an attempt to avoid local minima in the solution. Itera-
tive linearized approximations seek a compromise between
these two methods, overcoming the assumptions implicit in
linear inverse scattering by representing the solution as a
sequence of successive linear approximations.

The distorted Born iterative method �DBIM� has re-
mained a powerful and popular linearized iterative inverse
scattering algorithm since its inception nearly two decades
ago.6 The method was originally applied to two-dimensional
electromagnetic problems in free space, but has been imple-
mented to solve acoustic problems7–10 and electromagnetic
problems in three dimensions.11–15 A distinct but mathemati-
cally equivalent method has been applied to two-dimensional
acoustic problems.16–18 In addition, the distorted Rytov itera-
tive method inverts the scattering problem in a manner
analogous to the DBIM, but using the distorted Rytov ap-
proximation in place of the distorted Born
approximation.19,20
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Inverse scattering algorithms in general, and the dis-
torted Born iterative method in particular, have substantial
promise in clinical ultrasound. The ability to reconstruct
high-resolution, quantitative images of human tissues using
acoustic waves may yield valuable diagnostic information
that can help distinguish between normal and abnormal
tissues.21,22 Ultrasound is preferable to x-ray imaging be-
cause ultrasound waves are non-ionizing and do not easily
damage tissue; non-ionizing electromagnetic radiation, with
its relatively low frequency and very fast wave speed, has a
much longer wavelength that degrades resolution. However,
the computational complexity of inverse scattering algo-
rithms has limited their use in clinical environments. Modern
clinical ultrasound systems still employ b-scan imaging,
which is much less computationally demanding but suffers
from image speckle, the inability to provide sub-wavelength
resolution, and the production of images that are inherently a
combination of instrument and tissue characteristics. Current
research on three-dimensional distorted Born
imaging10,14,15,23 typically employs forward solutions with
computational scaling that are O�N log N� for N voxels, lim-
iting the effectiveness for very large domains. Reported re-
sults do not appear to exceed 200, 000 unknowns. The solu-
tion of larger, more practical problems requires still greater
efficiencies and careful implementations to push beyond this
limit.

The fast multipole method �FMM� and its hierarchical
extension, the multilevel fast multipole algorithm
�MLFMA�,24–26 offer a forward solver that scales linearly

26
with the number of scattering elements. Furthermore, par-
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allel implementations of the MLFMA have been
developed27–29 that can efficiently employ tens or hundreds
of processors for the solution of large-scale scattering prob-
lems. Although the MLFMA is known for high setup costs,
these costs can be ameliorated by carefully exploiting the
nature of the inverse problem. Additionally, any setup costs
are amortized over many forward solutions in an iterative
solver such as the DBIM.

This paper presents a novel hybrid of the distorted Born
iterative method and the multilevel fast multipole algorithm
designed to exploit the efficiencies of the forward solver. The
resulting algorithm demonstrates linear computational scal-
ing in both the number of imaging voxels and the number of
transmissions used to measure the scattering domain; the
computational efficiency remains independent of the number
of receive angles. In addition, a Kaczmarz-like solution tech-
nique is proposed to more rapidly arrive at solutions for full-
angle inverse scattering experiments. Although the
Kaczmarz-like technique imposes serialization on the
otherwise-parallel application of the Fréchet derivative of the
scattering operator, problems of clinical relevance are large
enough that the algorithm could not be fully parallelized
even on large supercomputers. Hence, the Kaczmarz-like
technique takes advantage of hardware limitations in an at-
tempt to provide intermediate reconstruction information and
improve convergence rates for the iterative inverse scattering
procedure by updating more frequently the contrast image.

The remaining contents of this paper are organized as
follows. First, the theory governing the inverse scattering
problem is presented. Next, solution methods are described
that employ the matrix-free distorted Born iterative method,
the multilevel fast multipole algorithm, and a Kaczmarz-like
technique. Following the method descriptions, simple nu-
merical experiments are presented that, even on modest and
readily-available hardware, demonstrate the efficient solution
of inverse scattering problems. These examples study the
behavior of the Kaczmarz-like technique and the perfor-
mance of the method in the presence of noise. Finally, con-
clusions are drawn about the presented approach.

II. THEORY

Reconstruction of the acoustic parameters of arbitrary
media is based on the inversion of the forward scattering
problem. For the problem of interest, variations of density
within a scattering medium will be neglected. The two
acoustic parameters that govern wave propagation through
the medium are therefore the real sound speed, c�r�, and the
attenuation slope, ��r�, where r is the three-dimensional co-
ordinate vector. If the attenuation slope � is defined in units
of dB/cm/MHz, the complex wave number corresponding to
these parameters is

k�r� =
�

c�r�
+ i��r�f� log 10

20
� , �1�

where �=2�f is the radian frequency of the time-harmonic
pressure fields. A time dependence of e−i�t has been assumed
and will be suppressed. The wave number k corresponds to

an object contrast
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O�r� = � k�r�
k0

�2

− 1, �2�

which, in the presence of a source distribution S�r�, admits a
field �=�i+�s that satisfies the wave equation

��2 + k2�r����r� = − S�r� �3�

such that

�i�r� = k0
2�

V

dr�g0�r,r��S�r�� , �4a�

�s�r� = k0
2�

V

dr�g0�r,r��O�r����r�� �4b�

for the homogeneous Green’s function

g0�r,r�� =
eik0�r−r��

4��r − r��
. �5�

The distorted Born iterative method �DBIM� is moti-
vated by expressing the field scattered by a medium relative
to an inhomogeneous assumed background kb�r�:

��2 + kb
2�r�����r� − �b�r�� = − �k2�r� − kb

2�r����r� . �6�

The field �b satisfies Eq. �3� in the presence of kb. If gb�r ,r��
is the Green’s function describing the field due to a point
source located at r� in the presence of kb, the difference in
fields may be expressed as

��r� − �b�r� = ��s�r� = k0
2�

V

dr�gb�r,r���O�r����r�� ,

�7�

where ��s=�s−�s,b is the difference between the field scat-
tered by medium k and the field scattered by medium kb, and
�O=O−Ob is the difference between the total and back-
ground contrast functions.

Inversion of the nonlinear expression �7� provides a cor-
rection �O to the assumed contrast Ob. To facilitate inver-
sion, the contrast difference �O is assumed to be weakly
scattering. Under this approximation, �	�b and Eq. �7� be-
comes the approximate differential scattering equation

��s�r� 	 k0
2�

V

dr�gb�r,r���O�r���b�r�� . �8�

The DBIM initially assumes a known background profile kb

�in the absence of a priori information, kb=k0 is a suitable
initial guess�, and iteratively updates the assumed back-
ground with the computed update �O. With each iteration,
the Green’s function gb must also be updated.

III. METHODS

The Fréchet derivative operator F is defined as

�F�O��r� = k0
2�

V

dr�gb�r,r���O�r���b�r�� . �9�

This operator relates changes in the background scatterer to

changes in the observed scattered field. For numerical inver-
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sion of the differential scattering of Eq. �8�, the distorted
Born method computes a solution �O from a series of prod-
ucts of F with search functions computed through an itera-
tive process.

In realistic measurement scenarios, the range of the op-
erator �the locations at which the scattered field is measured�
and the domain of the operator �the support of the scatterer�
do not coincide and have different dimensionalities. The dis-
cretized Fréchet derivative operator is therefore not square.
To overcome this issue, one of two alternative equations can
be solved iteratively to yield a solution to Eq. �8�:

�F†F�O��r� = �F†��s��r� , �10a�

�FF†Y��r� = ��s�r�, �O�r� = �F†Y��r� . �10b�

When the measurement configuration results in an overdeter-
mined system �when the discrete form of the equation con-
tains more measurement samples than samples of the scatter-
ing contrast�, the first form �10a� is appropriate and will
solve the equation in the least-squares sense. When the mea-
surement configuration results in an underdetermined sys-
tem, the second form �10b� is appropriate and produces the
minimum-norm solution by constraining the solution to the
space spanned by the columns of F†.

A. Matrix-free inversion

A formulation of the DBIM has been previously
developed30 to invert the Fréchet derivative operator in the
differential scattering Eq. �8� without the need to construct
an explicit matrix equation or to compute Green’s functions
for inhomogeneous background media. In typical formula-
tions �such as that of Ref. 11�, application of the Fréchet
derivative and its adjoint requires knowledge of the Green’s
function in the presence of an assumed background. This is
accomplished either by precomputing and storing the fields
induced in the background by each of the transmitters and
receivers or by computing these quantities on demand. While
the alternative formulation does not avoid the need to com-
pute fields induced by each of the transmitters, there is no
need to compute fields induced by each of the receivers in-
dividually. This makes the inverse scattering problem much
more efficient, especially when many background updates
�and, therefore, updates to the Fréchet derivative� are re-
quired.

The term ��s in Eq. �8� is the total field in the presence
of kb due to a source distribution J=�O�b. The field �b is
computed using a fast forward solver for an assumed back-
ground Ob, allowing iterative inversion of the differential
scattering Eq. �8� to proceed efficiently. As a side effect of
this formulation, the Green’s function gb does not need to be
explicitly calculated. With the source distribution J, the
Fréchet derivative may be expressed as

�F�O��r� = k0
2�

V

dr�g0�r,r���Ob�r���J�r�� + J�r��� ,

�11�

where �J�r�� is the field in the presence of Ob due to the

source distribution J:
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�J�r� − k0
2�

V

dr�g0�r,r��Ob�r���J�r��

= k0
2�

V

dr�g0�r,r��J�r�� . �12�

Thus, computing the Fréchet derivative requires two calls to
a fast forward solver: one to compute �b, and another to find
�J. In a similar fashion, the adjoint Fréchet derivative may
be expressed as

�F†Y��r� = k0
2��

VT

drT�b�r��Y�r���

, �13�

where � · �� denotes complex conjugation, VT is the space in
which transmissions are defined, and �Y is the field induced
in Ob by a source distribution Y excited within the receiver
space VR:

�Y�r� − k0
2�

V

dr�g0�r,r��Ob�r���Y�r��

= �
VR

Y��rT,rR�g0�r,rR� . �14�

Observe that, in the definition of the adjoint Fréchet deriva-
tive �13�, the quantities �b�r� and �Y�r� are implicit func-
tions of the transmitter location rT and are, therefore, not
constant in the integrand. A more thorough derivation of this
matrix-free formulation of the Fréchet derivative and adjoint
Fréchet derivative operators is presented in Ref. 30.

B. Application of the multilevel fast multipole
algorithm

The Fréchet derivative and adjoint Fréchet derivative
operators may be computed in a matrix-free fashion using
the expressions �11� and �13�, respectively, but the corre-
sponding solutions �12� and �14� required to implement these
formulations must take advantage of fast solvers if the over-
all method is to be efficient. The fast multipole method
�FMM� and the multilevel fast multipole algorithm
�MLFMA�26,31 provide the requisite efficiency, offering
evaluation of the scattering operator in O�N� time for N un-
knowns for three-dimensional, volume-filling scatterers.26 In
addition, the relatively high setup overhead associated with
the MLFMA can be amortized over the repeated forward
solutions required in the distorted Born iterative method.

Since the solutions of the forward problems �12� and
�14� must be computed for each transmit angle, and the so-
lution for unique transmit angles are independent, the evalu-
ation of the Fréchet derivative operator and its adjoint are
embarrassingly parallel. Each of the fields �b due to a dis-
tinct transmit angle may be produced in parallel with no
interprocess communication or synchronization overhead.
Likewise, �J and �Y can be computed with no communica-
tion or synchronization demands. With each of these three
fields available for all transmit angles, only the adjoint
Fréchet derivative operator requires communication or syn-
chronization to perform the final integration in Eq. �13�. As

30
detailed for two-dimensional problems, the distorted Born

J. Hesford and W. C. Chew: Fast inverse scattering solutions 681



iterative method distributed in this fashion scales almost ide-
ally up to T processors when there are T unique transmit
angles in an inverse scattering experiment. However, the al-
gorithm does not scale above T processors.

A parallel MLFMA can alleviate these scaling issues.
Several researchers have investigated parallel implementa-
tions of the MLFMA, with problems involving tens of mil-
lions of unknowns scaling well on tens of
processors.28,29,32–34 An additional study has shown excellent
scaling of the MLFMA for more than 100 processors.27 In
addition, by assigning unique transmit angles to distinct
groups of processors instead of single processors, each for-
ward scattering solution can be computed independently with
a parallel MLFMA. This allows a significant increase in the
number of processors that may be employed to solve the
inverse scattering problem, taking advantage of the low over-
head associated with the evaluation of independent forward
solutions where appropriate.

C. Redundancy in the fast multipole method

In the inverse problem, the material properties of the
scattering medium are not known a priori. Therefore, seek-
ing an optimal covering of the scattering region �using, e.g.,
tetrahedral scattering elements� offers no benefit. Cubic scat-
tering elements arranged in a regular grid offer several ad-
vantages in the forward problem that are leveraged in the
results presented here. Minor benefits include a reduced
memory footprint for geometric descriptions, more straight-
forward meshing of the scattering domain, and a resulting
contrast image that is easy to visualize.

The principal benefit of a regular, cubic arrangement of
scatterers is the redundancy that may be exploited to improve
computational efficiency. When scatterers are of equal, cubic
dimensions and regularly spaced within a grid, the interac-
tions between scatterers obey a pattern. The translational in-
variance of the Green’s function and symmetry of the prob-
lem means, for example, that the value of the Green’s
function is the same whenever the source and receiving ele-
ments are separated by a constant number of grid spaces
along any dimension. This value does not depend on the
position of these two elements in the global grid. For ex-
ample, in a cubic grid of 8 elements in a 2�2�2 arrange-
ment, there are 64 interactions, only four of which are
unique:

1. The interaction of any element with itself;
2. The interaction of any two elements separated by one grid

space in exactly one dimension;
3. The interaction of any two elements separated by one grid

space in exactly two dimensions; and
4. The interaction of any two elements separated by one grid

space in exactly three dimensions.

An example of each of these interactions is shown in Fig. 1.
While the MLFMA requires knowledge of these 64 interac-
tions because the proximity of the elements renders multi-
pole expansion inaccurate, only four evaluations of integrals
of the Green’s function need to be calculated to represent all

interactions. Since these interactions are typically precom-
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puted rather than computed on demand, reducing such com-
putations reduces the setup time of the MLFMA. Further-
more, since precomputation requires storage of these values,
the overall memory footprint of the algorithm is reduced.
The memory associated with direct interactions in this
simple example is reduced by a factor of 16.

This redundant information is not restricted to evalua-
tion of direct interactions. The multilevel fast multipole al-
gorithm requires the determination of outgoing and incoming
far-field patterns for scattering elements, defined respectively
as26

F�ŝ,c� = �
V

drf�r�eik0ŝ·�c−r�, �15a�

R�ŝ,c� = �
V

drf�r�eik0ŝ·�r−c�. �15b�

The outgoing pattern provides a representation of the field
radiated by an induced source at the scattering element as a
directional distribution of plane-wave amplitudes emanating
from an arbitrary center c. Conversely, the incoming pattern
serves to “focus” incoming waves, scaling the amplitudes of
plane waves converging on an arbitrary center c before the
waves are summed to represent the field induced in a target
basis function. The unit vector ŝ, defined over the unit
sphere, characterizes the angular dependence of the pattern
associated with the particular element. The basis function f
characterizes the field over the support of the scattering ele-
ment. In a regular, cubic arrangement of scattering elements,
the basis functions f associated with each element are iden-
tical, and the integrals �15� are identical except for the trans-
lationally invariant offset r−c. If every finest-level MLFMA
group is described by an identical but translated grid struc-
ture, the collection of incoming and outgoing patterns for a
single group may be recycled to represent the patterns for
every other group. The need to compute only one set of
patterns, rather than one for every group, greatly reduces the

1

2
3

4

FIG. 1. �Color online� Representative interactions in a grid of 2�2�2
scattering elements. There are only four unique types of interactions in this
group of unknowns.
setup overhead of the MLFMA.
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D. Fast superposition of multiple sources

The adjoint Fréchet derivative operator correlates fields
induced by transmitters with fields produced by simultaneous
excitation of all receivers. To find the field produced by this
simultaneous excitation of all receivers, an incident field
must be computed. A continuous distribution of plane waves
originating from directions ŝ relative to a center c0 and with
amplitudes A�ŝ� produces an incident field �i,f on a testing
function f given by

�i,f = �
V

drf�r��
�

dŝA�ŝ�e−ik0ŝ·�r−c0�, �16�

where � is the unit sphere. To evaluate this field directly for
N distinct testing functions involves O�NR� operations,
where R is the number of samples of the space �. When R
and N are large, simply generating the incident field can be a
costly operation, especially since this calculation needs to be
computed once for every transmit angle.

In analogy with the fast computation of scattered fields
first described in Ref. 35, the MLFMA can be used to accel-
erate computation of Eq. �16� in a way that is approximately
independent of the number of receivers. The disaggregation
procedure of the MLFMA distributes an arbitrary distribution
of incoming plane waves P�ŝ� centered about c0 to a testing
function f within the computational domain by computing

� f = �
�

dŝ�

l=1

L

eik0ŝ·�rl−rl−1�Fl�P�ŝ��
V

drf�r�eik0ŝ·�r−cL�,

�17�

where L is the maximum MLFMA level and cl represents the
center of the MLFMA group at level l containing the testing
function f . The operators Fl represent lowpass filtering of the
plane-wave distribution P for MLFMA level l. In their dis-
crete forms, the lowpass filters also reduce the sampling rate
of P to allow accurate but more efficient evaluation of the
integrals of the filtered distribution.

By letting P�ŝ�=A�−ŝ� and changing the variable ŝ→
−ŝ, the disaggregation operation �17� may be written

�i,f 	 � f = �
V

drf�r��
�

dŝA��− ŝ�e−ik0ŝ·�r−c0�, �18�

in which the filtering operators Fl have been composited and
applied to A�−ŝ� to yield �after canceling the complex expo-
nentials� a lowpass-filtered approximation A��−ŝ�. The accu-
racy of the approximation �18� to the true incident field �Eq.
�16�� depends on the filter cutoff. If the cutoff is chosen
according to the excess bandwidth formula with the same
parameters used for other MLFMA interactions, the error of
the incident field approximation will not exceed the error of
the forward solver calculations.

The successive filtering, resampling and shifting opera-
tions of the MLFMA disaggregation procedure occur in
O�N� time for N unknowns. If the incident distribution A is
not sampled on a grid coincident with that required to repre-
sent incoming far-field patterns for the coarsest MLFMA
level, the distribution must be interpolated. The interpolation

may be performed in O�R� time when the distribution is
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known at R points. Hence, for N unknowns and R=o�N�
receivers �as is the case in typical measurement scenarios�,
the disaggregation method for computing the incident field
will have overall complexity O�N+R�=O�N�. This is much
more efficient than direct computation.

E. Minimizing transmission angles

The DBIM formulated using the MLFMA for fast super-
position of multiple sources and fast computation of scat-
tered fields exhibits linear scaling dependence on the number
of transmit angles and independence from the number of
receive angles used to image a scattering domain. In the
absence of any hardware concerns that may impose con-
straints on the measurement configuration, the cost of a
DBIM iteration that seeks to maintain a constant total num-
ber of measurements will benefit from reducing the number
of transmit angles while compensating with an increased
number of receive angles. Attempting to reduce the number
of transmitters while retaining image quality requires careful
consideration. Extreme attempts to limit the number of trans-
mit angles �for example, employing only a single transmis-
sion� may fail to insonify portions of the scatterer, resulting
in shadowing effects that cannot be overcome. However,
even when multiple transmissions are employed, another is-
sue can affect reconstruction quality.

The field scattered by a domain of fixed size has an
approximately limited harmonic bandwidth that can be esti-
mated according to the excess bandwidth formula

L 	 ka + ��ka�1/3, �19�

where k is the wave number, a is the radius of the smallest
sphere enclosing the object and � depends on the accuracy of
the approximation.26,36 For a field with harmonic bandwidth
L, the field may be completely described with L polar angu-
lar samples and 2L azimuthal angular samples. Eliminating
duplicate samples at the poles, the total number of samples
required to represent the scattered field without aliasing is
therefore Ns=2L�L−2�+2.

If the number of receivers is increased beyond the limit
specified by the excess bandwidth formula �19�, receivers
will oversample the scattered field and contribute redundant
information to the inverse problem. Increasing the number of
receive angles beyond the oversampling limit while decreas-
ing the number of transmit angles to improve performance
will result in a loss of unique transmission information with-
out introducing unique reception information. This loss of
unique information will result in degraded reconstructions.

F. A Kaczmarz-like method

The Kaczmarz method37 is an iterative technique to in-
vert a system of equations without manipulating the entire

system at each iteration. If the system Ā ·x=b represents an
m�n matrix equation with n	m, the Kaczmarz method

seeks an iterative solution

J. Hesford and W. C. Chew: Fast inverse scattering solutions 683



xk+1 = xk +
bi − �Ai,x

k�
�Ai�2

Ai
�, �20�

where xk is the approximate solution for the k-th iteration,
i=k mod m, bi is the i-th element of b, and Ai is the trans-

posed i-th row of Ā. The sequence xk converges to the true

solution x provided that Ā is invertible. Direct application of

the method requires complete knowledge of matrix Ā. There-
fore, direct application of the Kaczmarz method to the
matrix-free DBIM is not appropriate.

When there are not enough parallel processors available
to distribute solutions for independent transmit angles, per-
formance of the DBIM can be improved with a Kaczmarz-
like, round-robin scheme. Rather than attempt to invert the
entire Fréchet derivative matrix to arrive at an update to the
background contrast, the round-robin scheme considers only
the portion of the Fréchet derivative matrix constrained to a
limited number of insonification angles. The constrained
Fréchet derivative problem will be severely underdeter-
mined. In this case, the method �10b� is used to provide a
solution with minimum norm.

When a contrast update has been obtained, the partial
Fréchet derivative constrained to a different set of insonifi-
cation angles is inverted for an additional update. The pro-
cess then repeats to further refine the solution until all trans-
mit angles have been considered in sequence. The cost of
applying the partial Fréchet derivative for a single transmit
angle involves exactly two forward solutions, while applica-
tion of its adjoint requires another forward solution. Hence, a
full sequence of contrast updates using the round-robin tech-
nique for every transmission is no more expensive than a
single DBIM iteration using the full Fréchet derivative, since
successive applications of partial Fréchet derivatives and
their adjoints for every set of insonification angles involves
as many forward solutions as a single application of the full
Fréchet derivative and its adjoint.

The round-robin scheme is distinct from the classical
Kaczmarz method because the Kaczmarz method assumes
the linear operator remains constant during iterations. In the
round-robin technique, updates in the solution at each step
are matched with a change in the Fréchet derivative operator
being inverted. This key difference can help accelerate con-
vergence of the imaging process because each partial solu-
tion takes advantage of information about the scatterer ob-
tained from previous partial solutions. Such intermediate
information is unavailable in DBIM inversions that employ
the full Fréchet derivative to compute each update. However,
the round-robin technique is only efficient when application
of the Fréchet derivative and its adjoint can be performed
using the previously described technique that avoids the need
to explicitly construct Green’s functions for the constantly
changing, inhomogeneous background.

In analogy with the frequency hopping employed to
solve multiple-frequency imaging problems,8,9,15,20,30,38,39 the
round-robin technique attempts to avoid local minima asso-
ciated with the solution of a single, restricted inverse prob-
lem �e.g., involving a single imaging frequency and a limited

set of transmit angles� by using a previously obtained solu-
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tion as a starting guess for a subsequent inversion. If local
minima associated with distinct transmit angles do not coin-
cide, a solution stagnating in a local minimum for one trans-
mit angle may move away from the local minimum and to-
ward the global minimum when the transmit angle is shifted.

G. Regularization

Regularization of the inverse problem is important be-
cause the problem is ill posed in the sense of Hadamard. The
classical Tikhonov regularization of the inverse scattering
problem �8� seeks a solution to the modified least-squares
equation

F†��s = �F†F + �I��O , �21�

where � is a regularization parameter. The solution to this
equation minimizes the modified cost functional

C��O� = F†��s − F†F�O2
2 + ��O2

2. �22�

Hence, the regularization parameter � mitigates the effect of
small singular values of F on the solution and imposes a
penalty on large variations in �O.

A strategy for the selection of the regularization param-
eter � was presented in Refs. 9 and 10 that uses the expres-
sion

� =
1

2
�
0�2max�10log2 RRE,10−4�

	
1

2
�
0�2max��RRE�3,10−4� , �23�

where 
0 is the dominant singular value of the Fréchet de-
rivative and may be estimated using power iteration. The
relative residual error �RRE� is given by

RRE =��
VT

drT�
VR

drR���s�rR,rT��2

�
VT

drT�
VR

drR��s�rR,rT��2
, �24�

in which VR and VT represent, respectively, the receiver and
transmitter measurement spaces, and the scattered field �s

and field error ��s have been expressed as functions of both
the transmit and receive angles. The choice of regularization
parameter �23� was motivated by spectral analysis of the
Fréchet derivative operator for two-dimensional scattering
geometries.8

When the round-robin technique is employed, the im-
portance of regularization is diminished. The underdeter-
mined system of equations resulting from inversion of the
Fréchet derivative operator of a limited number of transmit
angles is inverted using the minimum-norm technique �Eq.
�10b��, which automatically imposes a penalty on large
variations in the solution �O. However, when noise is
present, regularization using the above strategy �Eq. �23��
can mitigate the effects of noise by suppressing error in the

Fréchet derivative operator.
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IV. NUMERICAL RESULTS

A single scattering configuration will be the basis for
numerical experiments involving the distorted Born iterative
method. The scatterer, shown in Fig. 2, involves twelve
spheres of various sizes and acoustic properties embedded in
a larger reference sphere. The properties of the spheres are
designed to mimic the human tissues shown in Table I. The
reference sphere is immersed in water, which is assumed to
be of infinite extent. The specific parameters describing each
sphere are listed in Table II. Density variations were not
considered for these experiments, although the effect of den-
sity variations on distorted Born imaging has been examined
in Ref. 9.

The computer hardware used to perform imaging simu-
lations consists of single workstation with 16 GB or random-
access memory and two 2.4-GHz AMD Opteron processors
with two CPU cores in each package. The forward and in-
verse scattering implementation was threaded to take advan-
tage of all processing cores without the need for message
passing. To generate the synthetic scattering data used for
inversion, an integral equation solver similar to that em-
ployed in the inverse solver was used.

A. Asymptotic scaling

Scaling of the DBIM with an MLFMA forward solver
was tested by independently varying the number of voxels in
the reconstruction domain and the number of transmissions
used to image the domain. To measure performance with a
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FIG. 2. �Color online� The reference scattering geometry used for inverse
spheres. At right, a cross section of the geometry in the z=0 plane showing
tissue.

TABLE I. Material properties of spheres designed to mimic human tissue.

Tissue
Sound speed

�m/s�
Absorption

�dB/cm MHz�

Water 1509.0 0.00
Fat 1478.0 0.52
Muscle 1547.0 0.91
Skin 1613.0 1.61
Reference 1570.0 0.30
J. Acoust. Soc. Am., Vol. 128, No. 2, August 2010 A.
variable number of voxels, the scattering phantom was in-
sonified by 100-kHz plane waves incident from two direc-
tions in the �=90° plane ��=0° and �=180°�. Far-field scat-
tering measurements were collected on an equi-angular grid
composed of 64 polar and 128 azimuthal samples over the
unit sphere. The imaging domain was assumed to be a cube
with edge lengths of 40, where 0 is the wavelength in
water. This domain is approximately 25% larger than the
scatterer radius in each dimension. The number of voxels
was varied from 16 to 128 per dimension. A single DBIM
iteration was performed using two round-robin steps of a
single transmission each.

The performance of the DBIM with a variable number
of transmissions was measured assuming an approximately
constant total number of measurements and a constant num-
ber of voxels. As in the variable voxel experiment, the scat-
terer was insonified with 100-kHz plane waves. The cubic
imaging domain had an edge length of 40 and was sampled
with a 32�32�32 voxel grid. Transmissions were defined
on an equi-angular grid with T� polar samples and T�=2T�

azimuthal samples over the unit sphere, with T� ranging be-

tering experiments. At left, a three-dimensional view of the 12 scattering
ssue type assignments: “M” for muscle, “F” for fat, and “C” for connective

TABLE II. Characteristics of the spheres in the tissue-mimicking phantom.

Radius
�mm�

Center
�mm�

Tissuex y z

4.0 0.0 0.0 0.0 Fat
5.0 14.0 2.0 4.0 Skin
5.0 5.0 �10.0 �4.0 Fat
3.0 17.0 �7.0 0.0 Fat
7.8 �10.0 10.0 7.2 Muscle
7.8 5.0 12.0 �7.2 Muscle
5.0 14.0 12.0 3.0 Muscle
5.0 �5.0 �18.0 �3.0 Skin
2.5 7.5 �18.0 �2.0 Skin
1.5 �4.0 20.0 0.0 Skin
2.5 �18.0 4.0 2.0 Skin
9.1 �12.5 �5.0 �5.2 Muscle
scat
the ti
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tween 2 and 12 directions. The field was sampled on an
equi-angular grid with R� polar samples and R�=2R� azi-
muthal samples over the unit sphere, with R� chosen accord-
ing to the formula

R� =� N3

T�T�

, �25�

where N=32 is the number of voxels per dimension and N3

is the total number of voxels. Hence, the total number of
measurements is approximately twice the number of voxels.

The per-iteration run times for both a variable number of
voxels and a variable number of transmit angles are shown in
Fig. 3. As expected, the inversion is approximately linear in
the number of voxels, with some deviation from linear scal-
ing for small domains �where MLFMA setup time is signifi-
cant compared to inversion time� and slight variations as the
number of voxels requires nonuniform filling of MLFMA
groups and, hence, suboptimal MLFMA trees. Ideal linear
scaling is shown to bound the scaling of the inversion as the
number of voxels increases. For a variable number of trans-
missions, the actual scaling is much closer to ideal linear
scaling. Because the MLFMA aggregation and disaggrega-
tion procedures have been used, respectively, to compute far-
field scattering and incident fields due to multiple plane
waves, the scaling in the bottom panel of Fig. 3 was virtually
independent of the number of receive angles, which varied
inversely with the number of transmit angles.

The inversions involving a variable number of transmit
angles were run until the RRE �24� fell below 1%. As shown
in Fig. 4, the corresponding root-mean-square error �RMSE�
between the reconstructed image O and an ideal reference

FIG. 3. �Color online� Run times for DBIM inversion with �i� a fixed num-
ber of measurements but a variable number of voxels �top� and �ii� a fixed
number of voxels but a variable number of transmit angles �bottom�.
image Or, defined as
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RMSE =��
V

dr�O�r� − Or�r��2

�
V

dr�Or�r��2
, �26�

fell sharply to a floor of 25.1% as the number of transmit
angles was increased above 32. The number of iterations
required to obtain a convergent solution decreased only
slightly, from 9 iterations for T�	4 and 8 iterations other-
wise.

The increase in final RMSE in Fig. 4 for measurement
configurations involving fewer than 72 transmit angles is ex-
plained by the degrading effect of oversampling received
fields to ensure a constant number of total measurements.
The excess bandwidth formula �19� predicts a maximum
possible harmonic bandwidth L	30 for two-digit accuracy.
For this bandwidth, attempts to keep the number of measure-
ments constant resulted in oversampled received fields for
configurations involving fewer than 72 transmit angles. The
resulting loss of unique scattering information resulted in
increased reconstruction error.

B. The round-robin technique

Reconstruction tests involving the round-robin technique
were performed with 300-kHz insonification of the phantom
depicted in Fig. 2, which had a radius of 4.80 at the oper-
ating frequency. The reconstruction domain was cubic with
an edge length of 12.80 and was centered at the center of
the reference sphere. The domain was divided into a 64
�64�64-voxel grid. Plane-wave transmissions were simu-
lated from an equi-angular grid on the unit sphere with T�

=6 and T�=12, the smallest number of transmissions that
produced a convergent RMSE of 25.1% in the scaling ex-
periments described above. To ensure that the overall mea-
surement scheme was overdetermined by a factor close to
two, the scattered field was sampled on an equi-angular grid
with R�=60 and R�=120. This scheme does not oversample
the fields, which have an estimated maximum harmonic
bandwidth L	80.

Reconstruction experiments were first conducted with a
single transmit angle per round-robin step. The resulting sys-
tems corresponding to each step were severely underdeter-
mined, so the solution was sought in the minimum-norm
sense �Eq. �10b��. Because minimal variations are favored in

FIG. 4. �Color online� Root-mean-squared error, as a function of the number
of transmit angles, of the earliest contrast reconstruction corresponding to a
relative residual error below 1%.
the minimum-norm solution, regularization was not applied
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to the inversion procedure. Two entire iterations �comprising
a total of 144 round-robin steps� were required to obtain an
RRE below 1%, resulting in a final RMSE of 16.0%. Repre-
sentative z=0 slices of the reconstructed sound speed and
attenuation slope are shown in Fig. 5, while a comparison
between the reconstruction and the reference image along the
y=z=0 line is shown in Fig. 6. The convergence history of
the inversion is shown in Fig. 7.

As Figs. 5 and 6 show, reconstructions of sound speed
are more accurate than reconstructions of attenuation. This
phenomenon is observed because any finite measurement
scheme fails to collect all information contained in the scat-
tered field. Finite apertures will not capture all outward-
radiating scattered waves, while evanescent waves will never
be detected with far-field measurements. This missing infor-
mation manifests as spurious attenuation in the reconstruc-
tion, which absorbs energy that cannot be measured.

An attempt to compare the round-robin technique to
standard DBIM inversion was performed using the choice of
regularization parameter dictated by Eq. �23�. However, after
six iterations, the solution began to diverge from a minimum
RRE of 37.7% and a minimum RMSE of 52.3%. While an
improved selection of the regularization parameter �specifi-

FIG. 5. Sound-speed �left� and attenuation slope �right� reconstructions, in t
from 300-kHz plane waves incident from 72 directions.

FIG. 6. �Color online� Sound-speed �left� and attenuation slope �right� re-
constructions, along the y=z=0 line, of a phantom using the round-robin
technique to invert scattering from 300-kHz plane waves incident from 72

directions.
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cally, a slower rate of decrease� can help to combat the di-
vergence, this would tend to slow convergence of the prob-
lem and require more iterations to obtain a final solution.
Furthermore, no selection of regularization parameters was
found to provide a lower RMSE corresponding to a 1% RRE
than that of the round-robin solution. Thus, for this example,
the round-robin technique was at least three times faster at
obtaining a convergent reconstruction than the traditional
DBIM, while paying no penalty in the quality of the recon-
struction.

Experiments were also conducted with multiple trans-
missions per round-robin step. The number of transmissions
per step was increased from 1 to 24, with no appreciable
difference in final reconstruction quality for an RRE toler-
ance of 1%. However, as the number of transmissions per
step was increased, the total number of contrast updates per
overall DBIM inversion decreased, which resulted in in-
creased iteration counts to obtain the desired 1% RRE. In the
worst case, using 24 transmissions per round-robin steps re-
quires 4 full DBIM iterations, while only two iterations were
required to obtain the same RRE for a round-robin solution
with 1 transmissions per step. Multiple transmissions were
grouped by consecutive indices, with indexing starting at the
minimum polar and azimuthal transmit angles and increasing

0 plane, of a phantom using the round-robin technique to invert scattering

FIG. 7. �Color online� The root-mean-square error and corresponding rela-
tive residual error for iterative reconstruction of a scattering phantom at 300
kHz �top�. The round-robin technique was employed to yield reconstruction
results and error measurements at fractional iterations. The relative residual
error is also shown on a log scale to provide more detail in the low-error
he z=
limit �bottom�.
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in raster order, first through azimuthal angles and then
through polar angles. No attempt was made to optimize the
choice of grouped transmit angles.

C. Imaging in the presence of noise

Noisy imaging experiments were conducted by adding a
Gaussian-distributed noise to the simulated measurements.
The peak signal-to-noise ratio �PSNR� for single-
transmission measurements collected at R=R�R� locations
�ŝi�i=1

R ��, where � is the unit sphere, is defined to be

PSNR = 10 log10

maxŝ����s�ŝ��2

1

R
�
i=1

R

�E�ŝi��2
, �27�

in which the noise E�ŝi�=�s,N�ŝi�−�s�ŝi�, the noisy measure-
ment is �s,N and the ideal measurement is �s. The noise E is
assumed to be independent of ŝi and to have zero mean.

The parameters of the previous imaging experiment
were used for the noisy imaging simulation. Plane-wave
transmissions oscillating at 300-kHz were simulated from an
equiangular grid with T�=6 and T�=12. The scattered field
was sampled on an equi-angular grid with R�=60 and R�

=120. The standard deviation of the Gaussian noise was cho-
sen such that the PSNR was 40 dB. The corresponding total
signal-to-noise ratio �SNR� was, averaged over all transmis-
sions,

SNR = 10 log10

�
�

dŝ��s�ŝ��2

�
�

dŝ�E�ŝ��2
= 11 dB, �28�

which corresponds to 28% error due to noise. Imaging was
performed on a 64�64�64-voxel domain with overall edge
length of 12.80.

A reconstruction was attempted using the round-robin
technique with a single transmission per step. Since the
simulated noise contributed an uncertainty to the scattered
field of approximately 28%, the convergence criterion was
an RRE less than 28%. This was attained after two overall
DBIM iterations, with an RRE of 21.2%. The reconstruction

FIG. 8. Sound-speed �left� and attenuation slope �right� reconstructions, in
scattering from 300-kHz plane waves incident from 72 directions.
profile in the z=0 plane is shown in Fig. 8, while the profile
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along the y=z=0 line is compared to an ideal reference im-
age in Fig. 9. Although the sound speed is faithfully recon-
structed, there is significant error in the attenuation slope. As
discussed above, this error may be attributed to non-ideal
measurement schemes that fail to capture all information of
the scattered field. In addition, artificial variations in mea-
sured scattered energy contributed by noise may be compen-
sated by the addition of spurious positive and negative at-
tenuation. Round-robin reconstructions involving multiple
transmissions per step did not affect the convergence rate and
had no substantial impact on the RRE and RMSE of the
convergent solution.

The convergence history of the noisy reconstruction is
shown in Fig. 10. The regularization strategy in Eq. �23� was
used to mitigate the sensitivity of the reconstruction process
to noisy data. During the second iteration, the regularization
parameter was �	0.03�
0�2, which was sufficient to allow
the RMSE to converge to 28.2%. However, additional itera-
tions were computed with �	0.005�
0�2, causing the con-
trast solution to diverge while the RRE did not increase. This
illustrates the sensitivity of noisy DBIM reconstructions to a
termination strategy and to selection of the regularization
parameter.

z=0 plane, of a phantom using the round-robin technique to invert noisy

FIG. 9. �Color online� Sound-speed �left� and attenuation slope �right� re-
constructions, along the y=z=0 line, of a phantom using the round-robin
technique to invert noisy scattering from 300-kHz plane waves incident
the
from 72 directions.
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V. CONCLUSION

An implementation of the distorted Born iterative
method was presented that incorporates the multilevel fast
multipole algorithm for efficient solutions. The MLFMA
scales linearly with the number of scattering elements, pro-
viding excellent scalability for computationally intensive,
linearized inverse scattering problems. Although the
MLFMA suffers from relatively high setup costs, a careful
implementation and aggressive reduction of redundant pre-
liminary calculations both reduced the setup time and amor-
tized the cost over repeated applications of the forward
solver. In addition, a Kaczmarz-like, round-robin technique
was presented to accelerate convergence and offer interme-
diate results useful for visualization and monitoring while
the full imaging process is still underway. Numerical results
demonstrated the effectiveness of this technique and the lin-
ear scaling of the inverse scattering algorithm in both the
number of voxels and the number of transmit angles.
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