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Mutations in ABHD12 Cause
the Neurodegenerative Disease PHARC:
An Inborn Error of Endocannabinoid Metabolism

Torunn Fiskerstrand,1,12,* Dorra H’mida-Ben Brahim,2,11,12 Stefan Johansson,1 Abderrahim M’zahem,3

Bjørn Ivar Haukanes,1 Nathalie Drouot,2 Julian Zimmermann,4 Andrew J. Cole,5 Christian Vedeler,6,7

Cecilie Bredrup,8 Mirna Assoum,2 Meriem Tazir,9 Thomas Klockgether,4,10 Abdelmadjid Hamri,3

Vidar M. Steen,1,7 Helge Boman,1 Laurence A. Bindoff,6,7 Michel Koenig,2,* and Per M. Knappskog1,7

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a neurodegenerative disease marked by early-onset

cataract and hearing loss, retinitis pigmentosa, and involvement of both the central and peripheral nervous systems, including demy-

elinating sensorimotor polyneuropathy and cerebellar ataxia. Previously, we mapped this Refsum-like disorder to a 16 Mb region on

chromosome 20. Here we report that mutations in the ABHD12 gene cause PHARC disease and we describe the clinical manifestations

in a total of 19 patients from four different countries. The ABHD12 enzyme was recently shown to hydrolyze 2-arachidonoyl glycerol

(2-AG), the main endocannabinoid lipid transmitter that acts on cannabinoid receptors CB1 and CB2. Our data therefore represent

an example of an inherited disorder related to endocannabinoid metabolism. The endocannabinoid system is involved in a wide range

of physiological processes including neurotransmission, mood, appetite, pain appreciation, addiction behavior, and inflammation, and

several potential drugs targeting these pathways are in development for clinical applications. Our findings show that ABHD12 performs

essential functions in both the central and peripheral nervous systems and the eye. Any future drug-mediated interference with this

enzyme should consider the potential risk of long-term adverse effects.
Inherited neurodegenerative diseases affecting both the

peripheral and central nervous systems and the eye can

be caused by a variety of metabolic disturbances. Mito-

chondrial dysfunction is a potent cause,1,2 arising either

from mutation in the mitochondrial genome—e.g.,

neuropathy, ataxia, retinitis pigmentosa (NARP, MIM

551500) and Kearns-Sayre syndrome (ophthalmoplegia,

retinal pigmentation, ataxia, and frequently peripheral

neuropathy, MIM 530000)—or from a mutated nuclear

gene. Friedreich ataxia (MIM 229300) and POLG-related

diseases (MIM 174763) are examples of the latter. Defects

involving peroxisomalmetabolism, such as Refsum disease

(MIM 266500) and alpha-methylacyl-CoA racemase

(AMACR; MIM 604489) deficiency, also give rise to similar

phenotypes.3

Recently, in a Norwegian family we described a progres-

sive, autosomal-recessive, neurodegenerative disease that

we ascertained initially as a phenocopy for Refsum disease

(Figures 1A–1E). We named the disorder polyneuropathy,

hearing loss, ataxia, retinitis pigmentosa, and cataract, or

PHARC4 (MIM 612674). The disease is slowly progressive,

with recognition of the first symptoms typically in the

late teens. Although the condition has similarities to Re-

fsum disease, patients do not have anosmia and both phy-
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tanic acid levels and peroxisomal function are normal. We

mapped the disease to a 16Mb region on chromosome 20.4

Subsequently, additional affected individuals in four coun-

tries were identified, and we used homozygosity mapping

to identify candidate regions for the mutated gene, fol-

lowed by sequencing of candidate genes.

For the present study, DNA was obtained from 19

persons affected with PHARC disease and from healthy

siblings and parents. The patients (10 females and 9 males)

had a mean age of 32.5 years (range 6–62 years) and origi-

nated from Norway (n ¼ 8), Algeria (n ¼ 7), the United

Arab Emirates (n ¼ 3), and the USA (n ¼ 1) (Table 1). In

the previously published Norwegian family, individuals

1.1 and 1.2 are siblings and 1.3 is their third cousin. There

are two affected siblings in families 2, 8, 9, and 10, and

three affected in family 6. The adults gave informed

consent to the investigation and publication of the results.

The healthy individuals were not subject to clinical inves-

tigation, whereas the affected individuals have all been

examined by neurologists, ophthalmologists, and otolo-

gists (Table 1). The study was approved of by the Regional

Ethics Committee of Western Norway and by the local

ethics committees of the University Hospitals of Bonn,

Constantine, and Algiers.
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Figure 1. Phenotype and Genotype of PHARC Patients with Genetic Disruption of the 2-AG-Hydrolyzing Enzyme ABHD12
(A–E) Main symptoms in PHARC patients are shown. A summary of the symptoms and findings in each case is given in Table 1.
(A) MRI scan of an American female aged 50 (case 7.1) showing cerebellar atrophy.
(B) Star-shaped cataract of the posterior pole of the lens in a Norwegian male aged 24 (case 4.1).
(C) Fundus of a Norwegian male aged 56 (case 1.2) showing bone-spicule-shaped pigment deposits in the mid-periphery, pallor of the
optic disc, attenuation of retinal vessels, and maculopathy.
(D) Audiogram of a Norwegian male aged 16 (case 5.1) showing sensorineural hearing loss of both right (red curve) and left (blue curve)
ear, around 60 dB in the higher frequencies.
(E) Signs of peripheral neuropathy with pes cavus and hammertoes in a Norwegian male aged 56 (case 1.2).
(F) The ABHD12 gene is located 25,223,379–25,319,477 bp from pter on the reverse strand of chromosome 20 (NCBI build 36.3). Two
isoforms containing the a/b-hydrolase domain have been identified, differing only in the last exon. The positions of the homozygous
mutations found in the families from the Emiraties (14 Kb deletion), Norway (c.337_338 delGAinsTTT), Algeria (c.846_852 dupTAA
GAGC), and USA (c.1054C>T) are indicated.
(G) 2-AG is formed nearly exclusively by the hydrolysis of diacylglycerol (DAG), catalyzed by DAG lipases (a or b). The main pathway for
formation of DAG from phospholipids is catalyzed by phospholipase Cß (PLCß). Several enzymes are responsible for the breakdown of
2-AG to arachidonate and glycerol. Although MAGL is responsible for 85% of the 2-AG hydrolysis in the mouse brain, ABHD12 and
ABHD6 may be important for hydrolysis in specific cell types and/or cellular compartments. 2-AG is also a substrate for the inducible
enzyme cyclooxygenase-2 (COX2), which is involved in neuroinflammation. COX2 converts 2-AG to the corresponding hydroperoxy
derivative, which is further metabolized to prostaglandin E2 glycerol ester by prostaglandin E2 glycerol ester synthase (PGE2S).
From the same region as the original Norwegian family

(family 1, Table 1),4 we ascertained a further five, appar-

ently unrelated, patients (including a brother and sister,

family 2) with suspected PHARC disease (family 2-5,

Table 1). Homozygosity mapping was performed with

GeneChip 250K NspI arrays (GEO accession number

GSE23151). The data were exported and treated for further

analysis by the programs GTYPE and Progeny Lab. Regions

of homozygosity were identified with the PLINK program5.

All eight Norwegian patients from five families were homo-

zygous for overlapping parts of the previously published

16 Mb region on chromosome 20 (Figure S1, available

online), indicating distant relationship. The inclusion of

these five additional patients enabled us to refine the
The American
candidate region to approximately 6.4 Mb (23,553,833–

29,936,849 bp from pter, NCBI build 36.3). Twenty-three

of approximately 60 genes in this region were sequenced,

and a homozygous indel mutation in exon 3 in the

ABHD12 gene (c.337_338 delGAinsTTT; Figure 1F, Fig-

ure S2) was identified in all eight patients. The reference

sequence for ABHD12 was NM_001042472.1. This frame-

shift mutation predicts the replacement of an asparagine

at codon 113 with phenylalanine leading to a downstream

premature stop codon (p.Asp113PhefsX15). The mutation

segregated fully with the disease in these families. We

screened 190 local healthy blood donors and found two

heterozygous carriers of this mutation, corresponding to

a disease incidence of approximately 1/36,000 in this
Journal of Human Genetics 87, 410–417, September 10, 2010 411



Table 1. Clinical Findings and Results of Investigations in the 19 Patients with PHARC Disease

Family/
Case

Age (yr)
and Sex

Sensory and
Motor
Neuropathy

Neurography
and EMG

Sensorineural
Hearing Loss Ataxia

MR/CT
of Brain

Pyramidal
Tract Signs

Retinitis
Pigmentosa ERG Cataract

Norway mutation: c.337_338delGAinsTTT [p.Asp113PhefsX15]

1.1 62 F 38 years; pes cavus;
sensory loss; absent
ankle reflexes

Demyelinating
polyneuropathy

Twenties No Normal No 38 years Rod-cone
dystrophy

28 years

1.2 56 M 37 years; pes cavus
from childhood

Demyelinating
polyneuropathy

Thirties 37 years; gait
ataxia

Normal Extensor plantar
response at lower limbs;
spasticity; hyperreflexia

37 years Rod-cone
dystrophy

37 years

1.3 46 M 38 years; no pes
cavus; sensory loss
distally

Demyelinating
polyneuropathy

From
childhood

43 years; gait
ataxia; upper limb
intention tremor

Cerebellar
atrophy

Extensor plantar
response at lower limbs;
spasticity; hyperreflexia

46 years Rod-cone
dystrophy

25 years

2.1 58 M 51 years; pes cavus;
sensory loss; reduced
tendon reflexes

Demyelinating/axonal
polyneuropathy

Twenties No Cerebellar
atrophy

Extensor plantar
response at lower limbs

35 years Rod-cone
dystrophy

26 years

2.2 54 F 53 years; pes cavus;
normal sensibility;
reduced tendon
reflexes

ND Twenties No ND No 25 years Flat 25 years

3.1 36 F Pes cavus; normal
sensibility; reduced
tendon reflexes in
lower limbs

Demyelinating
polyneuropathy

Deaf by the
age of 10

Yes Atrophy of vermis
and medulla
oblongata

Extensor plantar
response at right
side; spasticity

36 years Rod-cone
dystrophy

32 years

4.1 24 M Pec cavus;
hammertoes; reduced
tendon reflexes in
upper and lower limbs

Demyelinating
polyneuropathy

Late in teens No Slight ventricular
assymmetry.
No cerebellar
atrophy

Indifferent plantar
response

No Normal 15 years

5.1 16 M Pes cavus; reduced
sensibility; reduced
tendon reflexes in
upper limbs, absent
in lower limbs

Demyelinating
polyneuropathy

13 years No Normal No No Normal 16 years
(slight)

The Emirates mutation: 14 Kb deletion removing exon 1

6.1 24 M Pec cavus from
childhood; absent
tendon reflexes

Abnormal Deaf by the
age of 14

Mild Normal Indifferent plantar
response

Twenties ND 15 years

6.2 20 M Pes cavus from
age 4; absent
tendon reflexes

Demyelinating
polyneuropathy

6 years 2 years; gait, limb,
and speech ataxia;
wheelchair-bound
from age 10

Cerebellar
atrophy (age 3)

Extensor plantar
response

Yes ND Yes

6.3 6 F Absent tendon
reflexes

ND Yes Speech and limb Cerebellar
atrophy

Indifferent plantar
response

No ND Yes

4
1
2

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

8
7
,
4
1
0
–
4
1
7
,
S
e
p
te
m
b
e
r
1
0
,
2
0
1
0



Table 1. Continued

Family/
Case

Age (yr)
and Sex

Sensory and
Motor
Neuropathy

Neurography
and EMG

Sensorineural
Hearing Loss Ataxia

MR/CT
of Brain

Pyramidal
Tract Signs

Retinitis
Pigmentosa ERG Cataract

USA mutation: c.1054C>T [p.Arg352X]

7.1 50 F 34 years; pes cavus;
hammertoes;
sensibility slightly
reduced

Abnormal 17 years 18 years; dysarthria;
gait ataxia; jerky eye
movements; tremor
in hands

Cerebellar atrophy
Increased signal in
periventricular
white matter.

Flexor plantar response;
spasticity; preserved
reflexes

Twenties ND 22 years

Algeria mutation: c.846_852dupTAAGAGC [p.His285fsX1]

8.1 11 M Absent tendon reflexes
and moderate muscle
weakness of lower
limbs; normal
sensibility

ND No 3-4 years; limb and
gait ataxia; horizontal
nystagmus; dysarthria;
dysmetria upper and
lower limbs; delayed
walking at 15 month;
action and intention
tremor

Cerebellar
atrophy

Extensor plantar
response at lower
limbs

No ND No

8.2 10 F Absent tendon reflexes
of lower limbs; normal
sensibility

ND No 4–5 years; gait ataxia Vermian
atrophy

Extensor plantar
response at lower
limbs

No ND No

9.1 44 M Pes cavus; sensory
loss; absent tendon
reflexes at lower
limbs; scoliosis

Demyelinating
polyneuropathy

Yes 7–10 years; gait and
limb ataxia; cerebellar
dysarthria; dysmetria
at upper limbs with
adiadocokinesia; head
titubation

Vermian
atrophy

Extensor plantar
response at lower
limbs; macroglossia

amblyopia ND

9.2 26 F Pes cavus; sensory
loss; reduced tendon
reflexes at upper
limbs, and absent at
lower limbs

Severe
demyelinating
polyneuropathy

Deaf 4–9 years; gait and
limb ataxia;
horizontal nystagmus;
moderate dysarthria;
dysmetria at upper
and lower limbs

Vermian
atrophy

Extensor plantar
response at lower limbs;
tongue fasciculations

Yes ND Yes

10.1 26 F Pes cavus; sensory
loss; absent tendon
reflexes

Severe demyelinating
polyneuropathy
on nerve biopsy

6 years 6–12 years;
gait and limb ataxia

Normal Indifferent plantar
response

No ND No

10.2 19 F 12 years; pes cavus;
sensory loss; absent
tendon reflexes at
upper and lower
limbs

ND No ND ND

11.1 32 F Pes cavus; sensory loss
and absent tendon
reflexes at lower limbs

Axonal polyneuropathy Yes 16–20 years; gait ataxia;
dysarthria; dysmetria
at upper limbs

Cerebellar
atrophy

Extensor plantar
response at lower
limbs

Decreased visual
acuity and
amblyopia

ND No

Data on patients from four different countries (11 families) are shown. All individuals in one family are siblings, except for 1.3, who is the third cousin of 1.1 and 1.2. All adult patients have polyneuropathy of demyelinating
type and sensorineural hearing loss (three patients are deaf), and nearly all adult patients have developed cataracts. Retinitis pigmentosa is typically recognized in the twenties or thirties. Ataxia is present in about half of the
patients, with cerebellar atrophy and pyramidal tract signs like spasticity and extensor plantar response. The onset of ataxia is highly variable, starting particularly early in the families from the Emirates and Algeria.
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population. This indicates that the frequency of PHARC in

Western Norway is comparable to, or may be even higher

than, relevant differential diagnoses like Friedreich ataxia

and Refsum disease.

Concurrent mapping studies in one family from the

United Arab Emirates and four families from Algeria were

performed with Genechip 10K XbaI arrays followed by

analysis on selected individuals with the GeneChip

6.0 array (Affymetrix, Santa Clara, USA). Regions of

homozygosity were identified with the HomoSNP soft-

ware (Figure S3). These patients, initially diagnosed with

recessive ataxia, defined a 5.5 Mb linkage interval in the

20p11.21-q12 region on chromosome 20 (24,393,550–

29,940,293 bp from pter, NCBI build 36.3, Figure S1).

Twelve of the 29 genes of this region were sequenced,

and a 14 Kb deletion (g.25,312,257_25,326,263

del14007insGG, NCBI Ref.Seq: NC_000020.10) in

ABHD12, encompassing the promoter region and exon 1

of the gene (Figure 1F, Figures S4A–S4C), was identified in

the family from the Emirates. No copy-number variations

in this region have been reported to the Database of

Genomic Variants (hg 18). The seven patients in the four

Algerian families were homozygous for a 7 bp duplication

in exon 9 (c.846_852 dupTAAGAGC) in ABHD12 (Fig-

ure S2), which directly replaces the histidine residue at

codon 285 with a stop codon (p.His285fsX1). Also in these

families the mutation segregated fully with the disease.

Finally, a patient from theUSAof French-Canadianheritage

with suspected PHARC disease was found to be homozy-

gous for a nonsense mutation (c.1054C>T) in exon 12 in

ABHD12 (Figure1F, Figures S1andS2), leading toapredicted

stop codon in position 352 in the protein (p.Arg352X).

Thefindingof four different deleteriousABHD12mutations

in a total of 19 patients with PHARC disease from four

countries clearly supports a causal genotype-phenotype

relationship.

The addition of several new families requires refinement

of our earlier clinical description.4 The essential clinical

features are summarized in Figures 1A–1E and Table 1.

PHARC in the Norwegian patients, and in the single Amer-

ican patient, appears to be a slowly progressive disease with

recognition of the first symptoms typically in the teens.

Cataracts, hearing loss, and a predominantly demyelin-

ating peripheral neuropathy are present in all adult

patients (Table 1), whereas the presence and extent of

ataxia is variable. Retinitis pigmentosa typically presents

in young adult life (twenties or thirties), and electroretino-

grams in most patients show a rod-cone dysfunction. The

disorder in families from Algeria and the Emirates shows

an earlier onset of ataxia that has both central and periph-

eral characteristics (Table 1). No evidence of behavioral

disturbances or abnormalities related to appetite was de-

tected in our adult patients. Cerebral cortical function

appears to be spared, with only one patient having mental

retardation (case 9.1) and another epilepsy (case 7.1,

myoclonic seizures). Adult heterozygous carriers of

ABHD12 mutations do not have an obvious phenotype,
414 The American Journal of Human Genetics 87, 410–417, Septemb
implying that their residual enzyme activity is sufficient

to avoid clinical symptoms.

Each of the four different ABHD12 mutations is inter-

preted as a null mutation that would either abolish or

severely reduce the activity of the encoding enzyme, a/b-

hydrolase 12 (ABHD12). PHARCmay, therefore, be consid-

ered a human ABHD12 knockout model. The question also

arises whether less detrimental mutations may cause

various incomplete phenotypes. The serious and progres-

sive disease seen in our patients suggests that ABHD12

performs an essential function in the peripheral and

central nervous systems and in the eye. This is supported

by the high expression of ABHD12 in the brain, with

a striking enrichment in microglia (Figure 2), as shown

by our replotting of data from GNF Mouse Gene Atlas

V3. Expression is also high in macrophages. Currently,

the only known substrate for ABHD12 is the main endo-

cannabinoid 2-arachidonoyl glycerol (2-AG) (Figure 1G).

This compound has important functions in synaptic plas-

ticity6,7 and neuroinflammation.8,9 In acute ischemia

and/or excitotoxicity, 2-AG appears to have neuroprotec-

tive properties,9–11 but the effects of long-term increased

levels of this metabolite have not been investigated.

The endocannabinoid signaling system is the focus of

increasing scientific interest, in part because of the poten-

tial for developing novel therapeutic agents.11–13 The

system is tightly regulated and appears to be important

for many physiological processes including neurotrans-

mission, pain appreciation, appetite, mood, addiction

behavior, body temperature, and inflammation.11 Key

players in these pathways are the G protein-coupled

cannabinoid receptors CB1 and CB2 and their endogenous

ligands, endocannabinoids, as well as enzymes that

synthesize or hydrolyze these ligands.14 The most abun-

dant endocannabinoid, 2-AG, (Figure 1G) is formed on

demand from the membrane lipid diacylglycerol (by diac-

ylglycerol lipase a or b).14 Endocannabinoids act locally as

lipid transmitters and are rapidly cleared by hydrolysis.

Interestingly, our patients did not show overt cannabino-

mimetic effects.

Several enzymes are involved in 2-AG hydrolysis15,16

(Figure 1G), and there is evidence that these enzymes are

differentially expressed in various cell types17 and cellular

compartments.7,16,17 In the mouse brain, monoacylgly-

cerol lipase (MAGL) accounts for 85% of the hydrolase

activity,11,17 with additional contributions from ABHD12

and a/b-hydrolase 6 (ABHD6).16 The apparent paradox of

a purported minor role of ABHD12 in 2-AG hydrolysis

versus the serious PHARC phenotype in the brain and

eye suggests either that ABHD12 is of crucial importance

only in certain cell types12 or that it is also acting on a hith-

erto unknown substrate other than 2-AG. The finding that

microglial cells have a particularly high expression of

ABHD12, but very low levels of MGLL (encoding MAGL)

and ABHD6 (Figure 2), indicates that the former alterna-

tive of differential cellular expression exists. Moreover,

microglia dysfunction is known to be involved in
er 10, 2010
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Figure 2. Gene Expression of ABHD12, ABHD6, and MGLL in Mouse Tissues
This is a replot of a subset of the GNF Mouse GeneAtlas V3 data, provided by Lattin et al.23 The data are published online in the BioGPS
database under the alias GeneAtlas MOE430, and the NCBI GEO accession number is GSE10246. There is high expression of ABHD12,
ABHD6, andMGLL (encoding MAGL) in different brain tissues (dark green bars). The highest level of ABHD12 is found in microglia (red
bar, lower panel), and the expression is also high in the related cell typesmacrophages (red bars) and osteoclasts (light green bar). There is
scarce expression of both ABHD6 (mid panel) and MGLL (upper panel) in microglia, macrophages, and osteoclasts. Bars represent the
mean of two biological replicates (RNA from two separate pools from independent mice), and error bars show standard error of the
mean. Regarding eye tissue, however, bars are the mean of two technical replicates (RNA from the same pool was split for two amplifi-
cations).
neurodegenerative diseases18 as well as in retinal dystro-

phies.19Whether ABHD12 acts onmore than one substrate

is currently unknown, but many hydrolases have overlap-

ping functions, including MAGL, which is involved in

lipolysis20 as well as in hydrolyzing 2-AG.

Despite great interest in manipulating 2-AG hydrolysis

in vivo,8,21 knockout animal models have not yet been
The American
developed, and only recently a blocker of MAGL with

substantial effect in vivo was reported.22 Notwithstanding

this, inhibition of endocannabinoid hydrolases, including

ABHD12, has been suggested as a potential therapy for

neurodegenerative diseases such as multiple sclerosis.21

However, the consequences of irreversible loss of ABHD12

function, as seen in our patients with PHARC, may serve
Journal of Human Genetics 87, 410–417, September 10, 2010 415



as a cautionary reminder that any potential drug inhibiting

this enzyme be thoroughly evaluated with respect to the

potential risk of severe long-term adverse effects.

In conclusion, mutations in the ABHD12-gene causes

PHARC, a disease with serious dysfunction of the central

and peripheral nervous systems, as well as hearing loss

and impaired vision. Our findings have implications for

clinicians working with both children and adults and

suggest disrupted endocannabinoid metabolism as a cause

of neurodegenerative disease.

Supplemental Data

Supplemental Data include four figures and can be foundwith this

article online at http://www.cell.com/AJHG/.
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Web Resources

The URLs for data presented herein are as follows:

BioGPS database, http://biogps.gnf.org

Database of Genomic Variants, http://projects.tcag.ca/variation/?

source¼hg18

NCBI Build 36.3, http://www.ncbi.nlm.nih.gov/mapview

NCBI Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/

geo/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/
Accession Numbers

Microarray data have been deposited in NCBI’s Gene Expression

Omnibus (GEO) and are accessible through GEO Series accession

number GSE23151.
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