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Summary
We introduce a method of estimating disease prevalence from case-control family study data. Case-
control family studies are performed to investigate the familial aggregation of disease; families are
sampled via either a case or a control proband, and the resulting data contain information on disease
status and covariates for the probands and their relatives. Here, we introduce estimators for overall
prevalence and for covariate-stratum-specific (e.g., sex-specific) prevalence. These estimators
combine the proportion of affected relatives of control probands with the proportion of affected
relatives of case probands and are designed to yield approximately unbiased estimates of their
population counterparts under certain commonly-made assumptions. We also introduce
corresponding confidence intervals designed to have good coverage properties even for small
prevalences. Next, we describe simulation experiments where our estimators and intervals were
applied to case-control family data sampled from fictional populations with various levels of familial
aggregation. At all aggregation levels, the resulting estimates varied closely and symmetrically
around their population counterparts, and the resulting intervals had good coverage properties, even
for small sample sizes. Finally, we discuss the assumptions required for our estimators to be
approximately unbiased, highlighting situations where an alternative estimator based only on
relatives of control probands may perform better.
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1. Introduction
The gold standard approach to estimating prevalence involves first obtaining a cross-sectional
(or prevalence) sample from the population of interest, then assessing whether the disease is
present in the sampled individuals, and finally calculating the proportion of sampled
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individuals with the disease, often with individuals weighted to reflect the probability that they
were sampled and responded. Frequently, though, researchers do not have access to an existing
cross-sectional sample that is relevant to both the population and the disease of interest, and
the cost of collecting one would be prohibitive. However, if researchers do have access to a
case-control family sample that was originally collected to investigate familial aggregation of
the disease in the population of interest, we show here that it can be used to obtain valid
estimates of prevalence.

Case-control family studies are conducted to investigate the extent to which a disease
aggregates (with itself) within families, or co-aggregates with other diseases within families
(Hudson, Laird, and Betensky, 2001). In these studies, researchers select case probands who
are affected by the disease and control probands who are not, and then select relatives from
among the case and control probands’ family members (e.g., first-degree relatives). The
resulting data consist of information on disease status and covariates for the case and control
probands and their relatives. (When the data are used to investigate familial aggregation, the
most basic analysis entails comparing the proportion of affected relatives for case probands to
the proportion of affected relatives for control probands.) Here, we refer to an example that is
a case-control family study of major depressive disorder (MDD) conducted at Innsbruck
University Clinics in Innsbruck, Austria (Hudson et al., 2003). In the study, 64 adults with
MDD (case probands) were selected from the psychiatric unit, and 58 adults without MDD
(control probands) were selected from the surgical and ophthalmology units. Three hundred
and thirty of the probands’ adult first-degree relatives (parents, siblings, children) consented
to participate in the study. Table 1 presents the numbers of relatives with and without MDD,
by proband disease status and sex of the relative.

The probands provide no information on prevalence because the proportion of affected (or
case) probands is fixed by design. The relatives, on the other hand, do provide information on
prevalence, but the simple proportion of affected relatives is a biased estimate of prevalence
if the disease aggregates in families because, in that case, the relatives’ probability of selection
depends on their disease status, albeit indirectly (through the probands’ disease statuses).
However, by using only the relatives and conditioning on the disease status of the probands
through which the relatives were selected, we can obtain valid estimates and confidence
intervals for overall and stratum-specific (e.g., sex-specific) prevalence, provided that certain
commonly-made assumptions about sampling and the population structure hold. Under these
assumptions, our method yields estimates that are only slightly biased (typically, downwards)
for their population counterparts. Further, when these assumptions hold and familial
aggregation is non-negligible, our method, which combines the proportion of affected relatives
of control probands with the proportion of affected relatives of case probands, yields estimates
that are less downwardly biased than a preexisting method, known as the proband or propositus
method (Kendler and Eaton, 1988; Strömgren, 1948), that uses just the proportion of affected
relatives of control probands as an estimate of prevalence. (Note that the “proband method” as
described here refers to a method of prevalence estimation, not to the same-named method
used in segregation analysis to estimate segregation ratios—both methods make use of relatives
of probands, but use them to estimate different quantities.) Our method performs very well
when applied to case-control family study data sampled from fictional populations with various
degrees of familial aggregation: the resulting estimates vary closely and symmetrically around
their population counterparts, with only a very small downwards bias, and the resulting
intervals have good coverage properties, even for small sample sizes.

The paper is organized as follows. Section 2 introduces our estimators for overall prevalence
and stratum-specific prevalence, as well as the assumptions on which they rely. In Section 3,
we apply our estimators (and corresponding confidence intervals) to the data from the Austrian
case-control family study of MDD. Section 4 presents the results of simulation experiments,
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and Section 5 is a discussion of the advantages and limitations of the method that highlights
situations where the proband/propositus method may perform better. Web Appendices A and
B contain proofs that the overall and stratum-specific estimators, respectively, are
approximately unbiased for their population counterparts. Finally, Web Appendix C introduces
standard errors and confidence intervals for overall and stratum-specific prevalence.

2. Estimation
Before presenting estimators for overall and stratum-specific prevalence, it is necessary to
introduce some notation, as well as several assumptions. These assumptions are commonly, if
implicitly, made when analyzing data from case-control family studies; here, they are used to
guarantee that the proposed estimators will be approximately unbiased. The assumptions
describe a simplified model for the underlying population and for the ascertainment of case-
control families from it. Although not a perfect representation of reality, this simplified model
is an adequate approximation to reality when the size of the population is sufficiently large
(relative to the sizes of the families that comprise the population and relative to the number of
probands ascertained in the study). Further, the results of the simulation experiments in Section
4 suggest that our method is robust to violations of some of the assumptions underlying the
simplified model.

We will assume that the population of interest is finite (but very large) and that it can be
partitioned into F mutually exclusive and exhaustive families. These families are indexed by
i. Family i has Ni members, who are indexed by ij, where j = 1, …, Ni. For individual ij, we
use Yij to denote disease status, with 1 corresponding to presence of the disease and 0
corresponding to absence of the disease. The population prevalence, π, is defined as f(Yij = 1),
where individual ij is randomly selected from the population. Similarly, the stratum-specific
prevalence, πx, is defined as f(Yij = 1|Xij = x), where Xij is a categorical variable whose levels
define covariate strata of interest (e.g., males and females); x is a particular value of Xij (e.g.,
the female stratum); and individual ij is randomly selected from the population in stratum x.
Note that Xij may result from coarsening the values of a continuous variable (e.g., age) or from
crossing the levels of multiple categorical variables (e.g., sex and race).

Families are ascertained for the case-control family study via FA unrelated probands with the
disease and FU unrelated probands without the disease. Once families have been ascertained,
they are renumbered, as are their members. The re-numbered families are now indexed by i*,
where, for the sake of convenience, the values i* = 1, …, FA refer to families ascertained via
case probands, the values i* =FA + 1, …, FA +FU refer to families ascertained via control
probands, and the values i* = FA + FU + 1, …, F refer to unascertained families. For ascertained
family i*, disease status and covariate information is obtained for only ni* −1 of the Ni* − 1
remaining (i.e., non-proband) family members. The re-numbered members of ascertained
family i* are now indexed by i*j*, where j* = 1 refers to the proband, j* = 2, …, ni* refer to the
sampled relatives, and j* = ni* + 1, …, ni* + Ni* refer to the unsampled relatives. The original
index j, which refers to an individual as a member of a family in the population, has a 1:1
mapping to the index j*, which refers to the individual as a member of his or her family once
it has been ascertained. We use ri(j) to refer to the renumbered index for the jth member of the
ith family in the population once his or her family has been ascertained.

Below, we show how data from a case-control family study can be used to obtain estimates of
overall prevalence and stratum-specific prevalence. Several more assumptions must hold for
the proposed estimators to yield approximately unbiased estimates:

i. Availability of Relatives: Each member of the population of interest has at least one
living relative.
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ii. Family Size and Disease Status are Uncorrelated: , where

, the number of affected members in family i.

iii. Sampling of Probands: The case probands are randomly sampled from the affected
members of the population, and the control probands are randomly sampled from the
unaffected members of the population.

iv. Single Ascertainment: The number of case (control) probands is sufficiently small
relative to the number of affected (unaffected) members of the population to guarantee
that no family will be selected via more than one proband.

v. Sampling of Relatives: Given that family i has been ascertained, the probability that
individual i*j* (j* ≠ 1) is included in the study is a constant (referred to as s) and, thus,
does not depend on Yi*j* (his or her disease status), Xi*j* (his or her covariates),
Yi*(−j*) (the disease statuses for the other members of the family), Xi*(−j*) (the
covariates for the other members of the family), or on Ni* (the family’s size).

vi. Disease Status is Independent of Other Family Members’ Covariates: For individual
ij, Yij (his or her disease status) is independent of Xi(−j) (the covariates for the other
members of the family), conditional on Xij (the individual’s covariate)

We can use Assumption (i) about the availability of relatives to expand the definition of
prevalence as follows

(1)

where j′ ≠ j and where individual ij′ is randomly selected from among Yij’s relatives with disease
status Yij′. We can rewrite Equation (1) as

(2)

which can then be rearranged to give

(3)

where πU ≡ f(Yij = 1|Yij′ = 0) and πA ≡ f(Yij = 1|Yij′ = 1). Replacing the parameters on the right-
hand side of Equation (3) with estimators yields the following estimator for overall prevalence:

(4)

where pA is the proportion of case probands’ relatives who are affected,
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(5)

and pU is the proportion of control probands’ relatives who are affected,

(6)

If Assumptions (i)–(v) hold, then the estimator in Equation (4) is approximately unbiased at
the first-order for the overall prevalence of disease in the population (see Web Appendix A for
a proof). Further, we can show that the slight bias introduced by the second-order terms is
downward when FA ≈ FU (the number of case probands is approximately equal to the number
of control probands) and when E(1 − pU) > E(pA) (the expected proportion of control probands’
relatives who are unaffected is greater than the expected proportion of case probands’ relatives
who are affected).

Note that the estimator in (4) adjusts pU, an estimate of prevalence based on relatives of control
probands only, by the factor 1/(1 − pA + pU). Since E(pA) > E(pU) for diseases that aggregate
in families, this adjustment will usually have the effect of moving the prevalence estimate
upwards from pU. As a result, if the disease aggregates in families and the above assumptions
hold, using pU alone as an estimate of overall prevalence—an approach that, as noted above,
is referred to as the proband or propositus method and that has been widely used in genetic-
epidemiologic studies of psychiatric disorders (Kendler and Eaton, 1988;Strömgren, 1948)—
will result in greater downward bias than using the estimator in (4). Thus, the proband/
propositus method, unlike our method, requires the additional assumption that the disease of
interest does not aggregate in families in order for the estimator to be approximately unbiased.
However, the proband/propositus method, unlike our method, does not use case probands and
thus does not require that the case probands be representative of affected members of the
population (the first part of Assumption (iii)). Therefore, in situations where familial
aggregation is small and where the first part of Assumption (iii) appears to be violated, the bias
of the proband/propositus method may be smaller than the bias of (4), a point that we discuss
further in Section 5. As for using pA alone as an estimate of overall prevalence, similar
arguments reveal that doing so overestimates prevalence when the above assumptions hold and
disease aggregates in families.

Next, if Assumptions (i)–(vi) hold, then the following estimator is biased only slightly at the
first-order for the prevalence of disease in stratum x (see Web Appendix B for a proof):

(7)
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where  is the proportion of case probands’ relatives who have covariate value x and are
affected

(8)

and  is the proportion of control probands’ relatives who have covariate value x and are
affected

(9)

Further, we can show that the slight first-order bias is downwards when, again, FA ≈ FU and
E(1 − pU) > E(pA). Note that, as above, an examination of Equation (7) reveals that using only
the relatives of control probands to estimate stratum-specific prevalence results in more serious
underestimation than using the estimator in (7) when the above assumptions hold and disease
aggregates in families.

In Web Appendix C, we provide approximate standard errors and confidence intervals for π̂
and π̂x. The standard errors and confidence intervals are appropriate for dependent observations
since disease status will be positively correlated within families when the disease aggregates
in families. The confidence intervals are based on the same concept as the Agresti-Coull
(1998) interval, which modifies the standard Wald interval for binomial proportions so that it
will attain actual coverage levels near the nominal coverage level even for small proportions.
The modification, which has strong roots in the work of Wilson (1927), involves replacing the
maximum likelihood estimate of the proportion used to calculate the center and standard error
of the Wald interval with an estimate that is smoothed towards the uniform probability
distribution by adding a small number (e.g., two) of successes and the same number of failures
to the observed data. Because the Agresti-Coull interval appears to perform well for small
independent samples (Agresti and Coull, 1998) and, more relevantly for our data, medium-
sized dependent samples (Miao and Gastwirth, 2004), we use a similar approach to form

confidence intervals: the intervals’ center and spread are calculated using p̃A, p̃U, , and ,
which smooth pA, pU, , and , respectively, towards the uniform distribution by adding two
failures and two successes for every 100 observations.

3. Austrian Case-Control Family Study Example
To illustrate the use of our method, we apply it to the data from the Austrian case-control family
study.
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We begin by addressing whether the six assumptions enumerated in Section 2 are valid for our
example. Regarding Assumption (i), the proportion of individuals in the Tyrol (the region
including Innsbruck) who are without any first-degree relatives is unknown, but expected to
be small. Further, violations of this assumption are not problematic unless Assumption (ii) is
also violated. To examine Assumption (ii), we compare the sizes of the families identified
through case probands versus control probands. Control families are slightly larger, but only
by 0.5 relatives on average, a non-significant difference. Regarding Assumption (iii), we utilize
additional data on whether individuals also have a comorbid anxiety disorder to examine
whether case probands represent particularly severe cases of MDD, a potential concern because
the case probands were sampled from a psychiatric clinic rather than from the community.
Approximately 41% of case probands have comorbid anxiety disorders, compared with 52%
of affected (with MDD) relatives of case probands and 25% of affected (with MDD) relatives
of control probands; the first proportion does not differ significantly from the second or third.
This suggests that case probands are not significantly more severe, at least with respect to
anxiety comorbidity. Regarding Assumption (iv), no families were multiply ascertained in the
Austrian study. As for Assumption (v), its validity is difficult to assess without follow-up data
on non-interviewed relatives. Finally, regarding Assumption (vi), in a logistic regression using
the data, the disease status of relatives is not associated with (odds ratio = 1.0) the sex of their
other family members, conditional on the sex of the relatives themselves.

When we apply our method to the data, Equations (4) and (C.3) yield an estimate of 8.8% and
a 95% confidence interval of [5.9%, 15%], respectively, for the overall lifetime prevalence of
MDD in the Tyrol region. Equations (7) and (C.4) yield an estimate of 6.0% and a 95%
confidence interval of [2.3%, 13%] for male lifetime prevalence, and 11.3% and [6.4%, 20.0%]
for female lifetime prevalence. Note that our overall, male, and female prevalence estimates
are slightly larger than the proportions of all control relatives, male control relatives, and female
control relatives who are affected (7.9%, 5.5%, and 10.1%, respectively), which are the
estimates produced by the proband/propositus method. In contrast, our overall, male, and
female prevalence estimates are considerably smaller than the proportions of all case relatives,
male case relatives, and female case relatives who are affected (18.5%, 11.0%, and 23.8%,
respectively). It is difficult to validate the estimates produced using our method because no
comparable estimates of the lifetime prevalence of DSM-IV MDD in the Tyrol Region of
Austria could be located in the English or German literature. However, our estimate of 8.8%
is approximately half the National Comorbidity Survey Replication (Kessler et al., 2005)
estimate (= 16.6%) for the lifetime prevalence of MDD in the United States, a fact that is
noteworthy in light of the findings of an earlier study that the prevalence of MDD in the Upper
Bavarian Region of Germany was approximately half the comparable rate in the United States
(Fichter et al., 1996).

4. Simulation Results
We conducted simulation experiments in order to investigate how well the estimators from
Section 2 and the confidence intervals from Web Appendix C perform in practice. The
experiments were designed to mimic the Austrian case-control family study of MDD, which
is at the very small end of case-control family studies.

We created four fictional populations, each with a different level of disease aggregation within
families. The populations contained approximately 500, 000 individuals each, a number that
corresponds to the number of people between 18 and 70 years old reported to be living in the
Tyrol region of Austria in 2003, the catchment area for the Austrian study (Statistik Austria,
2003). To create populations of this size, we generated data for approximately 125, 000
families, which involved three steps: (a) generating family sizes (from 2 to 9 members) based
roughly on the distribution of family sizes in the Austrian data; (b) generating the sexes of and
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relationships between (e.g., siblings, parents, etc.) family members based on the percentage of
females between 18 and 70 years in the Tyrolean population in 2003 (=50.5%) and the
distribution of family relationships and sex in the Austrian data, and; (c) generating lifetime
disease statuses for the family members conditional on their sexes and relationships, based on
parameter estimates from the Austrian data.

To generate the disease statuses in step (c), we used the ACE (A = additive genetic effects, C
= common or shared family environment, and E = unique environment) model for case-control
family data (Javaras, Hudson, and Laird, 2009). In this model, a subject is affected if his or her
‘liability to the disease’ exceeds a threshold that corresponds to disease prevalence for the
relevant covariate stratum. The liabilities for subjects from family i are modeled by an Ni-
variate normal distribution with mean vector set to zero and correlations that are a function of
a2 (the percentage of variation in liability due to A) and c2 (the percentage of variation in
liability due to C). In our experiments, we set a2 and c2 to different values for each of the four
populations: for the ‘No Aggregation’ population, we set a2 to 0.0 and c2 to 0.0; for the ‘Low
Aggregation’ population, we set a2 to 0.10 and c2 to 0.10; for the ‘Medium Aggregation’
population, we set a2 to 0.40 and c2 to 0.10; and for the ‘High Aggregation’ population, we set
a2 to 0.70 and c2 to 0.10. Note that the Medium Aggregation population most closely resembles
the level of familial aggregation (â2 = 0.44 and ĉ2 = 0.07) found when the ACE model was
fitted to the actual MDD data (Javaras, Hudson, and Laird, 2009, Section 6). In all four
populations, we set lifetime disease prevalence among males to 5.9%, and lifetime disease
prevalence among females to 11.5%. Note that the male and female prevalences, along with
the proportion of females, determine the overall lifetime prevalence of disease (= 8.7%) for
the fictional populations.

Next, we sampled 1, 000 small case-control family datasets from each of the fictional
populations. Each dataset was formed by selecting FA = 64 case probands and FU = 58 control
probands, and then including all of the probands’ family members (s = 1). (FA, FU, and s were
set equal to their values in the Austrian study.) For each sampled dataset, Equation (4) was
used to estimate overall prevalence, and Equation (7) was used to estimate the male and female
prevalences. In addition, we used Equation (C.3) to form 95% confidence intervals for the
overall prevalence, and we used Equation (C.4) to form 95% confidence intervals for the male
and female prevalences.

In the 4, 000 case-control family datasets sampled, the number of included individuals
(relatives plus probands) ranged between approximately 450 and 550. Even for this relatively
small study size, the population was not sufficiently large to ensure that Assumption (iv) about
single ascertainment held. (In contrast, all other assumptions listed in Section 2 held in the
simulation experiments.) Assumption (iv) was only violated to an extremely small extent,
however: of the almost 500, 000 families sampled, only approximately 0.05% were multiply
ascertained. In multiply-ascertained families, the first family member selected as a proband
was retained as the sole proband for his or her family, and all other family members were
treated as relatives. This simple approach is, in general, not an appropriate one for handling
multiple ascertainment. However, due to the extremely small extent of multiple ascertainment
in the simulation experiments, the reported results from this simple approach were identical to
those from a more complicated approach (results not reported), where, in multiply-ascertained
families, all family members selected as probands were retained as probands, and the remaining
family members were treated as relatives and counted multiple times (once for each proband)
in the relevant numerators and denominators of pA, pU, , and , as is done in the proband
method for estimating the segregation ratio (see Sham, 1998).

For each of the four populations, Figure 5 presents boxplots of the 1, 000 values of π̂, as well
as boxplots of the 1, 000 values of pU and pA that went into estimating π̂. Similarly, for each
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of the four populations, Web Figures 1 and 2 present boxplots of the 1, 000 values of the male
and female π̂xs, respectively, as well as boxplots of the 1, 000 values of  and  that went
into estimating the male and female π̂xs. The plots reveal that, for all four populations, π̂ and
π̂x vary symmetrically and closely around the corresponding population prevalences, which
are indicated by vertical red lines. Their estimated downward bias (presented in Table 2) is
extremely small, especially relative to the length of the confidence intervals. Although π̂ and
π̂x do become slightly more downwardly biased when the disease aggregates in families, the
downward bias is very small even for the High Aggregation population. In contrast, pU and

 become considerably more downwardly biased as familial aggregation increases; for
medium and high levels of familial aggregation, they are considerably more downwardly
biased than π̂ and π̂x, respectively.

Table 2 also presents lengths and coverage probabilities for the 95% confidence intervals for
overall, male, and female prevalences in all four populations. Although the confidence intervals
are fairly wide, especially for such small estimates, this is to be expected due to the positive
correlation of MDD status within families and the small number of case and control probands
used in the simulation experiments. Note that the confidence intervals attain actual coverage
levels very close to the nominal level of 95%.

The simulation experiments suggest that the prevalence estimators in (4) and (7) are
approximately unbiased and reasonably efficient, even when the population size is relatively
small and the assumption of single ascertainment does not hold. As would be expected, the
prevalence estimators are even more efficient in additional simulation experiments (not
described here) that are identical to those described above except for being based on a larger
number of case and control probands (150 of each) and a larger fictional population (over 2
million individuals).

5. Discussion
We have introduced a method of forming estimates and confidence intervals for overall and
stratum-specific prevalence based on case-control family data.

It is clear from the simulation experiments (Section 4) and proofs (Web Appendices A and B)
that the proposed estimators and intervals yield valid information about the prevalence of
disease. The ability to glean valid information about disease prevalence from case-control
family data is useful to medical investigators when no population-based data (from a cross-
sectional sample) are available for the population of interest. Knowledge of prevalence
augments epidemiological understanding of the disease and also informs resource allocation.
In addition, knowledge of prevalence makes it possible to estimate other parameters of
epidemiological interest. For instance, data from a case-control sample can be weighted to
create data representative of the population by using weights equal to the inverse sampling
probabilities for the cases and controls, the calculation of which requires knowledge of
prevalence. The weighted data that result can be used to obtain approximately unbiased
estimates of population parameters, such as the exposure-disease risk difference and the
exposure-disease risk ratio, that cannot be obtained from case-control studies unless the
sampling fractions of cases and controls is known. (In contrast, the exposure-disease odds ratio
can, of course, be obtained from case-control data without weighting them.)

Several limitations should be noted. For one, when the disease of interest aggregates in families,
disease status will be positively correlated for individuals within the same family, which will
have the effect of inflating the errors and intervals for π̂ and π̂x. Thus, in this case, the prevalence
estimators in Equations (4) and (7) will be less precise than corresponding estimators based on
the same number of unrelated individuals from a cross-sectional sample. Further, the estimators
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and intervals would probably not perform well in very small samples (or even in larger samples
if the true prevalence were very small), but these caveats would also apply to estimators and
intervals calculated from cross-sectional samples.

Second, the prevalence estimators may no longer be approximately unbiased if one or more of
the assumptions enumerated in Section 2 are violated. Beginning with Assumption (ii), one
example of a violation is when smaller families have a greater proportion of affected
individuals, a scenario that would result in prevalence being underestimated (Kendler and
Eaton, 1988). (In situations where smaller families have lower proportions of affected
individuals, one would expect the opposite: overestimation of prevalence.) The former scenario
is plausible for early-onset diseases that impair individuals’ ability to have children or for
diseases that result in early death. To investigate the impact of this violation on our estimators,
we performed a second set of simulation experiments identical to the first set described in
Section 4 except that families with three or fewer members had larger proportions of affected
members than families with four or more members. When smaller families had twice the
proportion of affected individuals as larger families, a very extreme scenario, our method
yielded estimates that were downwardly biased by approximately −25%. (Web Appendix A
contains a more detailed description of these experiments, but full results are not presented for
the sake of brevity.) Although Assumption (ii) pertains to the underlying population, the case-
control family data can be used to get a sense of whether the assumption is violated, for example
by comparing the distribution of family sizes for case probands to the distribution of family
sizes for control probands. If it is suspected that the assumption is violated, one option is to
use a multiple-outputation-based (Follman et al., 2003) variant of our method since multiple
outputation derives from a within-cluster resampling method (Hoffman et al., 2001) developed
for situations where cluster size is non-ignorable, as is the case when Assumption (ii) is
violated. In the multiple-outputation-based variant of our method, the estimator in (4) or (7) is
repeatedly applied to each of a large number of reduced samples that consist of only one
randomly-selected relative per proband; the resulting estimates are then averaged. When this
variant of our method (with 1000 resamples) was applied in the very extreme scenario described
above, the resulting estimates were downwardly biased by only small amounts similar to those
seen when Assumption (ii) holds (see Table 2), albeit at the expense of greater variance.

Turning to Assumption (iii), one example of a violation is when probands are selected based
not only on disease status but also on measured covariates such as sex or age. However, in this
scenario, valid estimates of stratum-specific prevalence can still be obtained by applying
Equation (7) only to the relatives of those probands who belong to the stratum of interest.
Further, in some instances, the resulting stratum-specific prevalence estimates can be combined
with external data on the stratum frequencies in the population of interest to obtain estimates
of overall prevalence. A more concerning example of a violation of Assumption (iii) is when
case probands are selected based not only on their disease status but also on disease severity,
a scenario in which pA, and thus π̂, would be upwardly biased (Begg, 2002). To investigate the
impact of this type of violation on our estimators, we performed a third set of simulation
experiments similar to the first set described in Section 4 except that only affected population
members with very high underlying liabilities were chosen as case probands. When only
affected population members with liabilities greater than 0.5 were selected as case probands,
an extreme scenario, our method yielded estimates that were upwardly biased by approximately
50% for a population with medium familial aggregation. (Further details and results of these
experiments are not presented here for the sake of brevity.) Thus, in scenarios where case
probands are thought to be unrepresentative of affected population members with respect to
disease severity, using the proband/propositus estimator (pU) may be preferable because it will
have only slight downwards bias if the disease does not aggregate highly in families. Of course,
if control probands are also unrepresentative of controls with respect to underlying disease
liability, then pU, too, may be biased. One way to check whether case probands are
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representative of cases is to compare the case probands to the affected relatives in terms of
disease severity, risk factors for the disease, and other relevant variables that are measured. A
similar approach can be used for control probands by comparing them to unaffected relatives.

As for violations of Assumption (iv), the simulation experiments in Section 4 suggests that our
method is robust to at least small departures from single ascertainment. Next, if the affected
relatives of the probands are less likely to participate in the study, a violation of Assumption
(v), then prevalence will be underestimated. Finally, if the disease of interest is extremely
common or if it is somewhat common and aggregates extensively in families, then it may not
be true that E(1 − pU) > E(pA). It is easy to see why this inequality will not hold if the disease
in question is extremely common (prevalence over 50%), since in that case E(pA) will be large
and E(1 − pU) will be small even if the disease does not aggregate in families. Another case
where the inequality will not hold is when the disease aggregates in families to such an extent
that E(pA) is large and when the disease is common enough so that E(1 − pU) is not large.
However, for most diseases (including MDD), the inequality will hold. Further, since the
assumption that E(1 − pU) > E(pA) is required only to ensure that the bias in π̂ is downwards,
our method will still be approximately unbiased even when this assumption is violated.

In general, though, our method appears to be reasonably robust to at least some of the
assumptions. The most crucial assumption is likely to be the one about relative sampling, which
assumes that individuals with the disease are no more or less likely to be included in the sample
than individuals without the disease. This assumption would apply equally to cross-sectional
samples. The next-most crucial assumption is likely to be the assumption that case (control)
probands are sampled randomly from cases (controls), followed by the assumption that family
size and disease status are uncorrelated in the population of interest. If these crucial assumptions
hold, as they should in a well-executed case-control family study, then our method of estimating
disease prevalence from case-control family data is a useful tool, especially for diseases and
populations where no cross-sectional samples are available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Boxplots of overall π̂, pU, and pA values calculated for 1000 samples drawn from four different
populations with varying degrees of disease familiality.
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Table 1

Number of relatives with (without) major depressive disorder*

Proband disease status

Sex of relatives

Male Female

Case 8 (65) 25 (80)

Control 4 (69) 8 (71)

*
MDD was diagnosed by interviewing probands and their relatives using the German translation (Wittchen et al., 1996) of the Structured Clinical

Interview for DSM-IV (First et al., 1994).
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Table 2

Simulation experiment results for π̂ and π̂x

Mean of π̂ or π̂x Bias of π̂ or π̂x (%) 2-sided CI coverage (%) 2-sided CI length

Overall

 No aggregation 0.088 1.4 93.1 0.093

 Low aggregation 0.085 −2.4 94.7 0.097

 Medium aggregation 0.087 −0.7 94.8 0.104

 High aggregation 0.084 −3.5 94.5 0.112

Female

 No aggregation 0.115 1.1 95.4 0.150

 Low aggregation 0.113 −1.7 95.4 0.152

 Medium aggregation 0.113 −2.1 95.5 0.158

 High aggregation 0.110 −4.1 94.9 0.167

Male

 No aggregation 0.060 1.6 95.3 0.125

 Low aggregation 0.057 −3.7 96.9 0.125

 Medium aggregation 0.060 2.1 95.0 0.130

 High aggregation 0.058 −3.0 96.3 0.135
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