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Abstract
Unlike the typical analysis of single markers in genome-wide association studies (GWAS), we
incorporated Gene Set Enrichment Analysis (GSEA) and hypergeometric test and combined them
using Fisher's combined method to perform pathway-based analysis in order to detect genes’
combined effects on mediating schizophrenia. A few pathways were consistently found to be top
ranked and likely associated with schizophrenia by these methods; they are related to metabolism of
glutamate, the process of apoptosis, inflammation, and immune system (e.g., glutamate metabolism
pathway, TGF-beta signaling pathway, and TNFR1 pathway). The genes involved in these pathways
had not been detected by single marker analysis, suggesting this approach may complement the
original analysis of GWAS dataset.
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1. Introduction
Genome-wide association studies (GWAS) have become a powerful approach to searching for
common genetic variants which increase susceptibility to complex diseases or traits. So far,
the search for common susceptibility variants has been less successful in schizophrenia than
in many other complex diseases/traits (O'Donovan et al. 2009). Among several recent
schizophrenia GWA studies, essentially no marker or gene has achieved genome-wide
statistical significance level in any single study (Purcell et al. 2009; Shi et al. 2009; Stefansson
et al. 2009; Sullivan et al. 2008), although combining data from several studies suggested the
MHC region on chromosome 6p and a few other genes (e.g., NRGN and TCF4) might be
promising for future validation (Purcell et al. 2009; Shi et al. 2009; Stefansson et al. 2009).
Although it is commonly accepted that schizophrenia may result from many genes or genetic
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variants, each of which makes a small risk contribution, and through interactions with each
other or environmental factors to cause this disorder, the genetic signal has always been
examined at single marker level in the schizophrenia GWA studies.

Here we examined the association signal of GWAS markers in a set of genes categorized by
biological pathways, assuming a complex disease such as schizophrenia may result from a
number of genes which disrupt one or more pathways. To reduce bias, we applied two statistical
methods to identify overrepresented pathways in a single GWAS dataset. The first method is
Gene Set Enrichment Analysis (GSEA), which was initially developed for microarray gene
expression analysis (Subramanian et al. 2005) but was recently adapted to GWA studies. The
second method is the hypergeometric test which identifies pathways overrepresented with
significant genes. We identified 4 pathways that had P value <0.05 by both methods. We further
combined the P values using Fisher’s method (Fisher 1932) to assess the consistency of
evidence. Importantly, these pathways are related to glutamate metabolism, the process of
apoptosis, inflammation, and the immune system, implicating their involvement in the
underlying pathology of schizophrenia.

2. Methods and Materials
2.1 GWAS Data Preparation

We used GAIN (Genetic Association Information Network) GWAS dataset for schizophrenia
since most other schizophrenia GWAS datasets (e.g., ISC GWAS) have not been publicly
available to general investigators (Manolio et al. 2007). The data access was approved by the
GAIN DAC through National Human Genome Research Institute and was recently used in our
candidate gene selection for schizophrenia (Sun et al. 2010; Sun et al. 2009). The data was
extracted from the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gap).
Unrelated European ancestry samples (1158 schizophrenia cases and 1378 controls) were used
in this analysis. We excluded SNPs whose missing genotype rate was >0.1, minor allele
frequency (MAF) was <0.01, or Hardy-Weinberg equilibrium (HWE) was ≤0.001. This
resulted in a total of ~725,000 SNPs. According to previous analysis, there was no significant
stratification found in the GAIN samples of European ancestry (Shi et al. 2009); thus, we used
basic allelic test (chisquare, 1df) to compute the association of each SNP with schizophrenia.
Supplementary Figure 1 provides the corrected quantile-quantile (Q-Q) plot of all the SNPs
we used. All P values were corrected for λ. The red line indicates the expectation if the observed
distribution did not deviate from the expected distribution.

We mapped a SNP to a gene if it was located within the gene or 20 kb immediately upstream
or downstream of the gene. The most significant SNP of the gene was chosen to represent the
association of the gene in the follow up analysis. Canonical pathways were downloaded from
MSigDB (Subramanian et al. 2005), which included major pathways from the several public
resources such as KEGG (http://www.genome.jp/kegg/) and BioCarta
(http://www.biocarta.com/genes/index.asp) databases. To avoid stochastic bias or testing too
general biological process, we discarded pathways that contained less than 10 or more than
250 genes. After this SNP-gene and gene-pathway mapping process, we had 369,808 SNPs
mapped to 19,896 protein-coding genes, which were involved in 511 biological pathways.

2.2 Gene Set Enrichment Analysis (GSEA)
The original GSEA algorithm was introduced in Subramanian et al (2005). Briefly, it is a
weighted Kolmogorov-Smirnov-like test to examine if two datasets differ significantly. There
are three main steps, as described in Wang et al. (2007).
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1) For each SNP, we first calculated its χ2 statistic value by a case-control basic allelic
association test and then selected the SNP that had the largest χ2 value in a gene region (denoted
as r) to represent the extent of association of gene with the disease (i.e., schizophrenia). We
next sorted all the genes by their χ2 value so that genes with stronger association were ranked
on the top of the list.

2) For each pathway (i.e., gene set S), a running sum statistic (enrichment score, ES) was
computed according to the following formula:

where N is the total number of genes included in a GWA study, i is the position in the gene list
N, j is the position before i in the gene list N, rj is the χ2 statistic value of gene j, g denotes a

gene , is the number of genes in a pathway of interest. Of note, when m equals to
0, ES(S) reduces to Kolmogorov-Smirnov test. We set m = 1, as used in the original GSEA
application, to weigh the genes by their association level (rj). ES measures the maximum
deviation of the pathway departing from random walk (Subramanian et al. 2005; Wang et al.
2007).

3) Permutation was performed on the original GWAS data by swapping the labels of cases and
controls while maintaining the same case/control ratio. In this way, the structure between SNPs
and genes can be maintained while status of phenotypes is randomized. This step aims to test
if an enriched pathway is also significantly associated with the disease and makes ES(S) of
different pathways comparable. We performed 10,000 times of permutation. For each
permutation (π), we calculated ES(S) and denoted as ES(S, π). Then, for each pathway, the
original ES(S) was normalized according to the 10,000 ES(S, π), which generated an NES(S)
by

In this way, for each pathway, ES(S) and ES(S, π) are compared in the same background
distribution in terms of pathway size, gene length, SNP density, etc. Specifically, this approach
effectively avoids the gene length bias from brain- or neuro-related genes, which tend to be
large. In normalization process, comparison of ES(S) and ES(S, π) is based on the same gene
set; thus there is no bias towards gene length or SNP density. The resultant NES(S) were
normally distributed and comparable to each other with no bias, especially for pathways with
long genes and having dense number of SNPs. A nominal P was computed for each pathway
by counting the number of permutations that had ES(S, π) greater than or equal to the real case
and then divided by the total number of permutations.

2.3 Hypergeometric Test
To test if a gene set is overrepresented in the GWAS dataset by using hypergeometric
distribution, we first defined “interesting genes”. A gene was selected to be of interest if any
GAIN marker mapped to the gene had P < 0.01. This P-value cutoff is arbitrary but has appeared
to be useful as a first step. Assuming that 1) L is the total number of genes considered in a
genome (i.e., represented by GWAS data and having pathway annotations) and M is the number
of interesting genes out of L and, 2) for a gene set (i.e., a pathway), S is the number of genes
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within L and x is the number of genes within M, P value based on hypergeometric distribution
could be computed as:

This P value indicates the probability of observing at least g genes in the current gene set.
Similarly to the GSEA, we performed permutation, estimated nominal P values, and performed
multiple testing correction using Benjamini-Hochberg method (Benjamini and Hochberg
1995).

2.4 Fisher’s Method
Fisher’s method to combine multiple P values from different tests is

where Pi is the P value for the ith test and k is the total number of tests (Fisher 1932). Χ2 has
a chi-square distribution with 2k degrees of freedom. We used Fisher’s method to combine the
nominal P values for each pathway computed by each method to identify pathways that show
consistent significance by both methods.

3. Results and Discussion
We found 6 pathways having significant nominal P values (P <0.05) by the GSEA method,
and 10 by the hypergeometric test. The following four pathways had nominal P values <0.05
by both methods: CARM_ER pathway (BioCarta), glutamate metabolism (BioCarta), TNFR1
pathway (BioCarta), and TGF beta signaling pathway (KEGG). Table 1 lists these
overrepresented pathways ordered by GSEA NES value. There were additional 7 pathways
having nominal P value <0.05 by either method (Supplementary Table 1). When we used
Fisher's method to combine the nominal P values of GSEA and hypergeometric test, we found
9 out of these 11 pathways had combined P value <0.05 and one (glutamate metabolism) passed
Benjamini-Hochberg multiple testing correction (Supplementary Table 1). Overall, the results
based on these methods were consistent.

Specifically, the glutamate metabolism pathway had a nominal P value 0.004 by GSEA, a
nominal P value 0.004 by hypergeometric test, a Fisher’s combine P value 1.75 × 10−4, and a
Benjamini-Hochberg correction P value 0.018 (Supplementary Table 1). This pathway directs
glutamate metabolism, a pathway that has been linked to schizophrenia based upon the ability
of NMDA receptor antagonists such as phencyclidine, ketamine and MK-801 to mimic the
cognitive impairment and some symptoms of schizophrenia. Glutamate is the primary
excitatory neurotransmitter in the central nervous system (CNS). Glutamate can be synthesized
from glutamine by glutaminase (GLS) and can be metabolized to GABA by glutamate
decarboxylase 1 (GAD1). GABA, the main inhibitory neurotransmitter has also been identified
as a susceptibility factor for schizophrenia; it can be further metabolized by 4-aminobutyrate
aminotransferase (ABAT) and aldehyde dehydrogenase 5 family, member A1 (ALDH5A1).
Additionally, glutamate can be converted to glutathione (GSH) by glutamate-cysteine ligase,
catalytic subunit (GCLC). Both genetic and functional studies have revealed an impairment in
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glutathione synthesis might be associated with schizophrenia (Gysin et al. 2007). Among the
24 genes in this pathway examined in the GAIN GWAS, ten had P value <0.05 based on the
original association analysis (Table 2). The gene-wise P values, measured by the most
significant SNP in each gene region, were within a range of 0.002–0.037. The similar P value
ranges were observed in other three top ranked pathways (Supplementary Table 2), suggesting
that multiple moderate-risk genes may interact with each other to increase risk of complex
disease. Interestingly, the informative genes, as defined by the gene-wise P value <0.01, in this
overrepresented pathway included GLS, GCLC, CPS1, ALDH5A1, GMPS, and GAD1.

Three pathways related to apoptosis, inflammation, and the immune system were identified
overrepresented by both GSEA and hypergeometric methods: the TGF-beta pathway (nominal
PGSEA = 0.034 and nominal Phypergeometric = 0.009), the TNFR1 pathway (nominal PGSEA =
0.042 and nominal Phypergeometric = 0.030), and the TOB1 pathway (nominal PGSEA = 0.070
and nominal Phypergeometric = 0.036). For the TOB1 pathway, while its nominal GSEA P value
was slightly larger than 0.05, its nominal Phypergeometric was 0.036 and Fisher’s combined P
value was 0.018. Therefore, we cited it together with the TGF-beta and TNFR1 pathways here.
The TGF-beta signaling pathway is involved in many cellular processes including neuronal
protection against both apoptosis and excitotoxicity (Vivien and Ali 2006). The TNFR1
signaling pathway controls the binding of TNF-alpha to the TNF receptor 1 and triggers cell
apoptosis and, thus, neuronal cell death. TNF-alpha, a proinflammatory cytokine, is involved
in several CNS functions (e.g., synaptic scaling (Stellwagen and Malenka 2006) and
glutamatergic synaptic transmission (Beattie et al. 2002). Importantly, this result supported
recent finding of involvement of the immune system in schizophrenia by combined GWA
studies (Purcell et al. 2009; Shi et al. 2009; Stefansson et al. 2009). Informative genes included
MYC, SMAD5, BMP7, TGFB1, CREBBP, IFNG, THBS2, PPP2R2B, ZFYVE16, ACVR1B,
E2F4, SMAD9, BMP5, CDKN2B, TGFBR2, and SMAD6. Supplementary Figure 2 depicts the
TGF-beta signaling pathway by highlighting the informative genes.

It is also worth noting the androgen and estrogen metabolism pathway, which had the smallest
nominal P value (0.003) in GSEA, the smallest P value (0.003) in Fisher’s method, and nearly
passed Benjamini-Hochberg multiple testing correction (PBH =0.088) (Supplementary Table
1). Estrogen may be protective in schizophrenia as men develop schizophrenia at an earlier age
and with greater severity than women (Palha and Goodman 2006; Rao and Kolsch 2003).
Interestingly, β-estradiol links to TNF and insulin (Guo et al. 2009), providing further support
for the hypothesis that the immune system and apoptosis are important in schizophrenia
pathophysiology.

There were a few recent reports of gene set based analysis in psychiatric GWA studies. Using
SNP ratio test (SRT) on the ISC GWAS as the discovery dataset and GAIN GWAS as the
validation dataset, O’Dushlaine et al. (2010) found that five pathways were significantly
associated with schizophrenia; they were glycan structures biosynthesis 1, cell cycle, SNARE,
cell adhesion molecules (CAMs), and tight junction. One of these pathways (CAMs) could
pass multiple testing correction based on the validation GWAS dataset. These pathways were
not found significant in our GSEA or hypergeometirc test. O’Dushlaine et al. also found the
CAM pathway was significant with bipolar disorder (P =0.026) using the Welcome Trust Case
Control Consortium (WTCCC) bipolar disorder dataset. In another study, Holmans et al.
(2009) performed a Gene Ontology (GO) analysis of a bipolar disorder meta-analysis dataset
(including the WTCCC data) and identified a list of significant GO terms. Almost all those
GO terms (e.g., hormone activity, transcription factor activity) were general and not
specifically related to neurodevelopment, as commonly hypothesized for psychiatric disorders.
The overall inconsistent findings might be due to the complex genetic structure of the diseases,
different datasets, or different statistical methods. Although caution needs to be taken in these
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results, the gene set analysis, especially pathway-based, is potentially effective for detecting
genetic signal beyond the typical single marker analysis in the original GWA studies.

In this study, we primarily used GSEA and hypergeometric test to analyze the GWAS dataset.
These two methods have been used in the analysis of both microarray gene expression and
GWAS datasets. There are some other available methods such as SUMSQ (Dinu et al. 2007)
and MAXMEAN (Efron and Tibshirani 2007) that have been reported with better performance
(Tintle et al. 2009); however, it seems not convenient in linking them to PLINK for permutation
analysis, which is computationally intensive. Such methods can be applied in future work.

In summary, we examined GWAS data from the GAIN study to identify genetic associations
with schizophrenia at the pathway level rather than the SNP level. The genes involved in these
pathways had not been detected by single marker analysis. Confirmation of these genes in
replication studies would warrant more extensive applications of pathway-based approaches
in the studies of complex disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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