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Abstract
In the natural world, the properties of interacting oscillatory systems are not constant, but evolve
or fluctuating continuously in time. Thus, the basic frequencies of the interacting oscillators are
time varying, which makes the system analysis complex. For studying their interactions we
propose a complementary approach combining wavelet bispectral analysis and information theory.
We show how these methods uncover the interacting properties and reveal the nature, strength,
and direction of coupling. Wavelet bispectral analysis is generalized as a technique for detecting
instantaneous phase-time dependence for the case of two or more coupled nonlinear oscillators
whereas the information theory approach can uncover the directionality of coupling and extract
driver-response relationships in complex systems. We generate bivariate time-series numerically
to mimic typical situations that occur in real measured data, apply both methods to the same time-
series and discuss the results. The approach is applicable quite generally to any system of coupled
nonlinear oscillators.

I. INTRODUCTION
The study of coupled oscillatory systems has become a very active area of research, either
through mathematical modeling or novel experimental applications in fields such as physics,
chemistry, biology, or economics. Applications include modeling of networks of coupled
oscillators [1,2], engineering structures such as bridges [3], the flashing of male fireflies [4],
the mammalian cardio-respiratory system [5,6], neurophysiology [7], physics of plasmas [8],
fluid dynamics [9], laser arrays [10], and chaos [11]. To understand their nature fully, we
need to identify and characterize the coupled dynamics. Difficulties arise when extracting
this information from measurements of oscillator coordinates. Mostly, this problem has been
tackled by applying methods of nonlinear dynamics using techniques originally developed
for multivariate data analysis. For cases where we can measure the coordinates of each of a
pair of interacting oscillators (bivariate data), we can obtain information on the phase
relationships by using recently developed methods of synchronization analysis between
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periodic, chaotic and/or noisy systems. From this we can detect interactions [12], and
determine the strength, direction [13-16], and nature [17] of the oscillations.

In natural systems, the properties of interacting oscillatory systems are not constant, but
evolve or fluctuate in time. Mutual interaction among subsystems, their frequencies and
amplitudes, are all time varying. Frequency and phase couplings can occur temporarily, and
the strength of coupling between a pair of individual oscillators may change with time. The
assumption of stationarity for systems under study can no longer be presumed, making the
system analysis complex. In recent years an enormous amount of effort has been devoted to
the development and for diagnostic applications of time-series analysis to study the
dynamics of the human cardiovascular system [6] and brain [18,19] and to such possibilities
for diagnostic applications. Studies have included the strength and nature of interactions
among its subsystems [20], and the direction of coupling [18]. The systems under study can
be regarded as collections of interacting oscillators whose basic frequencies are not constant,
but rather time varying. This makes it difficult to extract their interactions. In this work we
combine wavelet bispectral analysis with the information theoretic approach to tackle the
problem.

In our earlier work [17,21] we extended bispectral analysis to wavelets incorporating
instantaneous frequency (phase) couplings among interacting nonlinear oscillators. The
advantage of this method is that it allows an arbitrarily large number of interacting
oscillatory processes to be studied. It can be applied to both univariate data (a single signal
from the coupled system), and to multivariate data (a separate signal from each oscillator).

When studying interacting systems it is not only important to detect interactions and
synchronized states, but also to identify causal driver-response relationships between the
systems studied. Among several approaches proposed for this task, that based on
information theoretic functionals has enjoyed an important position in detecting
relationships between complex systems. This is partly due to the nonparametric nature of the
functionals, which makes them widely applicable [22,23].

In this paper, we combine the two complementary methods, wavelet bispectrum analysis and
information theoretic approach and tackle the problem of extraction coupling properties
when the interacting oscillators have basic frequencies which are significantly time-varying.
With numerically generated time series we mimic typical situations that occur in real
measured data (time-varying basic frequencies of the interacting oscillators, time-varying
coupling strength, and intermittent interactions) and show the results for bivariate data with
one of the oscillators driving the other one. Application to more challenging problems posed
e.g., by the cardiovascular system itself, or by brain waves, will be described elsewhere.

In Sec. II, we summarize the complementary methods of wavelet bispectral analysis and the
information theoretic approach. In Sec. III, we apply the methods to a model of coupled-
oscillator systems. Finally, in Sec. IV, we discuss the results obtained and draw conclusions.

II. METHODS
Details of time-bispectral analysis and wavelet-bispectral analysis can be found elsewhere
[17,21], while here we summarize the salient properties of the two approaches.

A. Wavelet bispectrum
Bispectral analysis belongs to a group of techniques based on high-order statistics (HOS)
that may be used to analyze non-Gaussian signals, to obtain phase information, to suppress

Jamšek et al. Page 2

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2010 September 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Gaussian noise of unknown spectral form, and to detect and characterize signal
nonlinearities.

The bispectrum involves third-order statistics. Spectral estimation is based on the
conventional Fourier type direct approach through computation of the third-order moments.
For the case of zero-mean signals, third-order moments are equivalent to third-order
cumulants [24].

The classical bispectrum estimate is obtained as an average of the estimated third-order

moments (cumulants) ,

(1)

where the third-order moment , is estimated by taking a triple product of discrete
Fourier transforms at discrete frequencies k, l, and k+l,

(2)

with i=1, … , K segments into which the signal is divided. The bispectrum B (k, l) is a
complex quantity, defined by a magnitude A=|B(k, l)| and phase 𝜙=∠B(k, l). Consequently,
for each (k, l), its value can be represented as a point in a complex space,  versus

, thus defining a vector. Its magnitude (length) is known as the biamplitude. The
phase, which for the bispectrum is called the biphase, is determined by the angle between
the vector and the positive real axis.

The generalization of the bispectrum based on the Fourier transform to wavelets can be seen
as a generalization of Fourier analysis [25] by adding time resolution, in a more fundamental
way than is permitted by the short-time Fourier transform [26].

Within wavelet transform, the window length is adjusted to the frequency currently being
analyzed. It is a scale-independent method. The window function is called the mother
wavelet or basic wavelet ψ(u). It can be any function ψ(u) that satisfies the wavelet
admissibility condition [25]. This function introduces a scale s (its width) into the analyses.
Commitment to any particular scale is avoided by using all possible scalings of ψ(u). The
mother wavelet is also translated along the signal to achieve time localization. Thus, a
family of generally nonorthogonal basis functions is obtained

(3)

The parameter p is the normalization choice and is an arbitrary non-negative number. As a
result of earlier energy density studies of measured cardiovascular signals, the wavelet
transform with the Morlet mother wavelet was chosen as being the most suitable [27]. A
simplified expression for the Morlet wavelet in the time domain is

(4)
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The corresponding wavelet family consists of Gaussians, centered at a time t with standard

deviation . In the frequency domain, we have Gaussians with a central frequency f=f0/s

and a standard deviation of .

The frequency resolution changes with frequency; at low frequencies (large scales), the
resolution is better than at the high frequencies (small scales). Correspondingly, the time
resolution is better at high frequency than it is for low-frequency components. Thus, for our
purpose, the best time-frequency localization within the limits of the uncertainty principle
can be achieved.

The definitions are completely analogous to the definitions used in bispectral analysis based
on Fourier transform [24,28]. The wavelet bispectrum (WB) BW is given by

(5)

where Wg(s, t) is the continuous wavelet transform of a signal g(t) defined as

(6)

and

(7)

The WB measures the amount of phase coupling in the interval T that occurs between
wavelet components of scale lengths s1 and s2 and s of signal g(t), in such a way that the
frequency sum rule is satisfied Eq. (7). It is a complex quantity, defined by magnitude A and
phase 𝜙

(8)

The instantaneous biphase is then calculated from Eqs. (5) and (8), it is

(9)

If two scale components s1 and s2 are scale and phase coupled, 1/s=1/s1+1/s2, it holds that
the biphase is 0 (2π) radians. For our purposes, the phase coupling is less strict because
dependent scale components can be phase-delayed. We consider phase coupling to exist if
the biphase is constant (but not necessarily=0 radians) for at least several periods of the
highest scale component.

Simultaneously, we observe the instantaneous biamplitude from which it is possible to infer
the relative strength of the interaction

(10)

Similarly, as in the case of the Fourier cross bispectrum, one can define a wavelet cross
bispectrum as
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(11)

For ease of interpretation, the WB is plotted in the (f1, f2) plane, rather than in the (s1, s2)
plane. It has the same symmetries in the frequency domain as in the case of Fourier based
bispectrum. The nonredundant region is the principal domain of the WB. Similarly, the
principal domain can be divided into two triangular regions in which the WB has different
properties, the inner triangle (IT) and the outer one. The IT of our interest is defined in [24].

The WB is sensitive to time variability of the frequency components. First, we obtain
instantaneous frequencies f1(t) and f2(t) forming the bifrequency being studied. Definition of
the instantaneous frequencies can be found in [15,21]. Furthermore we calculate the
instantaneous biphase and instantaneous biamplitude for the instantaneous bifrequency
(f1(t), f2(t)). In this way we can obtain better results for the biphase and biamplitude time
dependance. In what follows we use the abbreviated expressions biphase and biamplitude
instead of instantaneous biphase and biamplitude, respectively.

B. Information theoretic approach
For nonlinear systems, methods based on information theory have been shown to be widely
applicable, especially when the estimators of the relevant information theoretic functionals
are nonparametric and thus applicable to any probability distribution functions (PDFs)
usually under some mild technical assumptions. Details of the information theoretic
approach can be found elsewhere [14,22,23,31], while here we summarize its salient
properties.

Most methods available for the inference of the directionality of coupling detection are
based on the Granger causality concept [29]. If the time-series generated by one process
provides us with information on the time-series generated by another process at some point
in the future, the first process influences the second process. If only two processes are
involved, and coupling is detected exclusively in one direction, it is inferred that the first
process has causally influenced the second process.

Let us consider discrete random variables X and Y with sets of values Ξ and Υ respectively,
PDFs p(x), p(y), and the joint PDF p(x, y). The Shannon entropy H(X) is defined as

(12)

The joint entropy H(X, Y) of X and Y is

(13)

for discrete sets Ξ and Υ. The conditional entropy H(Y | X) of Y given X is

(14)

The average amount of common information contained in the variables X and Y is
quantified by the mutual information I(X ; Y) defined as [14,30]

(15)
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The conditional mutual information (CMI) I(X ; Y | Z) of the variables X, Y, if the variable
Z is given, is

(16)

It characterizes the net dependence between X and Y without the possible influence of
another variable Z.

Entropy and mutual information are measured in bits if the base of the logarithms in their
definitions is 2. In this work the natural logarithm is used and therefore the estimates are
given in nats.

Let X and Y denote two stationary ergodic processes with time-series x(t) and y(t). The
method presented for detecting coupling directionality uses CMI as an indicator of the
presence of a net information flow between the two systems, characterized by their
respective time series [22]. The net information flow, I(X ; ΔτY | Y), where ΔτY is an
observable derived from the state of the process Y τ steps in the future, is defined as the
mutual information between X, Y, and ΔτY that is not a result of the action of the history of
process Y on itself excluding I(Y ; ΔτY), and is also not the result of the common history of
the two processes captured by I(X ; Y). A statistically significant information flow thus
indicates that information is being transferred from the process X to the process Y at some
later point in time. This can readily be interpreted as the influence of the process X on the
process Y in the future.

The directionally detection criterion is based on two indices IXY (how the system X drives
the system Y), and IYX, e.g., I[x(t) ; ΔτY(t) | y(t)] and I[y(t) ; Δτx(t) | x(t)] where the
notation I[x(t) ; ΔτY(t) | y(t)] denotes mutual information between x(t) and ΔτY(t)
conditioned on y(t). The operator Δτ represents either the difference Δτx(t)=x(t+τ)−x(t), or
simply a time-advanced series Δτx(t)=x(t+τ). The series x(t) and y(t) can contain the values
generated by the respective systems or values, which have been derived from the original
time-series.

In practical evaluation we do not use CMI for a particular time lag τ, but an average over a
range of time lags. In this way we decrease the variance of the estimate [31] which is
important when assessing the statistical significance of the estimated CMI values (see
below).

It has been shown [14] that, using CMI, the coupling directionality can be inferred from
time-series measured from coupled, but not yet fully synchronized, systems. In the special
case when the systems generating the time-series x(t) and y(t) can be modeled by weakly
coupled oscillators, then their interactions can be inferred by analysis of the dynamics of
their instantaneous phases 𝜙1(t) and 𝜙2(t) [15,16]. We can simply replace the series x(t) and
y(t) with the phases 𝜙1(t) and 𝜙2(t) (which are confined within the interval [0, 2π) or [−π,
π)), and then consider either the time-advanced phase

(17)

or the phase increments

(18)

and write CMI [31] as I[𝜙1(t) ; Δτ𝜙2 | 𝜙2(t)] and I[𝜙2(t) ; Δτ𝜙1 | 𝜙1(t)].
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The phases 𝜙1, and 𝜙2 can be estimated from the measured time-series x(t) and y(t),
respectively, by the marked events method, by application of the discrete Hilbert transform
[12], or by the wavelet transform [27,32]. The Hilbert transform is used here in applications
of the conditional mutual information. Then the statistical significance of the CMI can be
tested using so-called permutation surrogate data [31]. Using the Hilbert phases of the
original data, whole cycles in the phase representation (i.e., the phase 0–2π “teeth”) are
randomly permuted in the temporal order. The original intracycle dynamics is preserved, but
the intercycle dependence, or dynamics is destroyed. Consequently, possible causal
relationships between the original phase series are destroyed in the surrogate phases.
Computing CMI from a set of 30 realizations of the permutations surrogate data we obtain a
range of CMI values that can be obtained from particular data with the same sample
distribution of cycles without any dependence. A deviation of the CMI, obtained from our
test data, from the surrogate range means that the CMI values reflect a causal relationship in
the data and not just a numerical and/or statistical fluctuation [31].

III. NUMERICAL EXAMPLES
We have generated time-series numerically to mimic typical situations that occur in real
measured data, e.g., cardiovascular signals. Namely, the characteristic frequencies of heart
beat or respiration fluctuate in time even in relaxed healthy subjects. One of the mechanisms
of variability is the well known respiratory sinus arrhythmia, which is in fact modulation of
the cardiac frequency by respiration. In addition, other mechanisms that regulate blood
pressure and flow in the cardiovascular system, such as neurogenic, myogenic, and
endothelial function also modulate the cardiac frequency [6,2]. In general, coupled self-
sustained oscillatory systems interact continuously and mutually adjust their rhythms.

We show results for two different examples. In the first, we concentrate on detecting the
phase/frequency couplings, and their strength, and we indicate the detection of direction of
coupling, whereas in the second example we concentrate exclusively on detecting the
direction of coupling for the case of a time-varying coupling strength. We demonstrate that
complementary information can be obtained by combining the two methods. Their
individual advantages and disadvantages are discussed elsewhere [14,17,20-22,31].

A. Temporal coupling, time variable basic frequency, and time variable strength of
coupling

With the first example we mimic real couplings that are generally short-lasting.
Furthermore, the strength of the coupling between the oscillators is not constant in time but,
varies. Finally we add variability of the basic frequency of one of the interacting oscillators.
To illustrate the capabilities of the methods for this kind of real world situation, we use a
generic model of two interacting systems whose basic unit is the Poincaré oscillator

(19)

The activity of each subsystem is described by the two state variables, xi and yi, where i=1,
2 denotes the subsystem, αi, ai, and ωi are constants η2 is the coupling amplitude. The
parameters of the model are set to α1=1, a1=0.5, and α2, a2=1. Here ζ(t) is zero-mean white

Gaussian noise ζ(t) =0, ζ(t), ζ(0) =Dδ(t) and D=0.08 is the noise intensity.
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We analyze the variable x1A(t) of the first oscillator, recorded as a continuous time-series as
shown in Fig. 1(a). Similarly we denote by x2A(t) the variable of the second oscillator (not
shown). Prior to analysis, the time series was first normalized between 0 and 1 and its mean
value was subtracted. For the first 400 s an intermittent quadratic coupling was introduced.
The coupling strength η2 was gradually increased from 0 to 0.2 by a step of 0.05 and was
switched off every 50 s. Note that η2=0.2 can be considered to be a weak coupling. After a
further 400 s, the coupling was removed by setting η2=0. During the last 400 s, the coupling
was increased again to a continuous η2=0.2, Fig. 1(b). In the latter case the characteristic
frequency of the second oscillator was both modulated and linearly increased from f2=0.25
Hz to f2=0.35 Hz, as shown in Fig. 2(b). The first 15 s of each of the three coupling modes
are shown in Fig. 1(a), with the corresponding power spectra in Fig. 1(b).

1. Bispectral analysis—A quadratic nonlinear interaction between linear or weakly
nonlinear oscillatory systems generates higher harmonic components in addition to their
characteristic, basic frequencies [20,33]. Figure 1(c) illustrates the changes in the power
spectra caused by the coupling. The peaks at f1=1.0 Hz and f2=0.25 Hz correspond to the
first and second oscillators, respectively. These frequencies are deliberately chosen to have
an integer ratio 1:4 to ensure frequency coupling. The test signal x1A clearly has richer
harmonic structure in the presence of nonlinear coupling. In addition to the characteristic
frequency of the first oscillator, it contains components with frequencies 2f1, 2f2, f1+f2, and
f1−f2. As well as having a particular harmonic structure, the components of the signal x1A
also have related phases, 2𝜙1, 2𝜙2, 𝜙1+𝜙2, and 𝜙1−𝜙2.

The wavelet bispectrum was calculated from the whole signal as a single entity, after
transients caused by the changes in coupling strength had been removed. First the WB was
estimated, as shown in Figs. 3(a) and 3(b). Close inspection shows that all the peaks
expected to arise from bispectral analysis of nonlinear interaction between the two
oscillators f1 and f2 are indeed present. Quadratic coupling and how to detect it has already
been discussed in detail in [17] and is not a subject of this paper.

Bifrequencies where peaks provide evidence of possible frequency interactions are then
further studied by calculation of the biphase and biamplitude as functions of time. The
instantaneous frequencies f1(t) and f2(t) [Figs. 2(a) and 2(b)] were both obtained using the
marked-events method; alternatively they could have been calculated using Hilbert
transformation as discussed in detail in [21]. Diagonal elongation of peaks in the bispectrum
demonstrates time-variability of the corresponding frequency components.

Our primary interest lies in the bifrequency (f1, f2). The time evolution of its biphase and
biamplitude are shown in Figs. 3(c) and 3(d). The results for nonzero coupling are
remarkably different from those where coupling is absent (intermittent in the first 400 s and
during the whole second 400 s). The coupling period can be clearly seen from biamplitude
and biphase time evolution in the first 400 s. The biphase is constant in the presence of
quadratic coupling (first 400 s) and the biamplitude is above zero. In the first 400 s, each
time the coupling strength η2 is gradually increased, a distinguishable increase in the linear
biamplitude value can be noticed.

During the second 400 s there is no coupling as the biamplitude is zero (below-average
biamplitude value in the inner triangle [17]) and the biphase is linearly increasing.

During the final 400 s when there is a large time-frequency variation of the second
oscillator’s frequency, f2, which varies within 0.25–0.35 Hz, the biphase is constant and the
biamplitude value is high, as shown in Figs. 3(c) and 3(d), and the coupling can easily be
resolved.
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2. Information theoretic approach—For the same signals in Fig. 1(a) the phases 𝜙1(t)
and 𝜙2(t) were obtained using the discrete Hilbert transform, and the CMI I[𝜙1(t) ; Δτ𝜙2 |
𝜙2(t)] and I[𝜙2(t) ; Δτ𝜙1 | 𝜙1(t)] were applied with Δτ𝜙1,2 according to Eq. (17), unless
stated otherwise. In order to infer the direction of coupling, we compare the CMI obtained
from original data (black) with the CMI calculated from the surrogate data (gray), as shown
in Fig. 4. In Fig. 4(a), we can see the influence of the second oscillator, as presented by its
time-series x2A, on the evolution of the first oscillator, presented by time-series x1A. The
opposite influence, i.e., x1A→x2A, is depicted in Fig. 4(b).

Let us now concentrate on interactions in the three segments, (1), (2), and (3), with different
type of couplings. As shown in Fig. 4(a), for segment (3), the CMI is clearly above the
surrogate range, i.e., the second oscillator influences the first one. The opposite CMI, as
shown in Fig. 4(b), segment (3), is within the surrogates, i.e., there is no influence in the
direction x1A→x2A. Thus in the case of variable basic frequency the causality is inferred
correctly. The same holds for the segment (2): in both cases the CMI lies within the
surrogate range, i.e., there is no interaction in any direction, again in agreement with the
reality.

Using phases with Δτ𝜙1,2 according to Eq. (17) we obtain misleading results for the first
400 s. In Fig. 4, segment (1), we see that CMI does not cross the surrogate ranges. Here in
fact the interaction exists, but we cannot get it from the phases in this way, probably because
they are 1:4 locked. Using a synchrogram (not shown) we obtain phase synchronization
between the two interacting oscillators. This is the case when phases do not bear information
about the causality and, therefore, the direction of coupling cannot be inferred [14].

However, using the phase increment according to Eq. (18) in CMI I[𝜙1(t) ; Δτ𝜙2(t) | 𝜙2(t)]
and I[𝜙2(t) ; Δτ𝜙1(t) | 𝜙1(t)], we have a more sensitive measure. Results for the first 400 s
are shown in Fig. 5. The CMI is clearly above the surrogate range in the case when the
second oscillator influences the first one, Fig. 5(a), whereas the opposite CMI is within the
surrogates, Fig. 5(b). In spite of the presence of phase synchronization and intermittent
coupling the causality is inferred correctly.

B. Opposite coupling direction and modulation
To illustrate the essence of the method, we again use a generic model of two interacting
systems whose basic unit is the Poincaré oscillator

(20)

The activity of each subsystem is described by the two state variables, xi and yi, where i=1,
2 denotes the subsystem, αi, ai, and ωi are constants, η1,2 is the coupling amplitude and ηm
is the strength of parametric frequency modulation. The parameters of the model are set to
α1=1, a1=0.5, and α2, a2=1, the same as in the case considered in Sec. III A. Here ζ(t) is

zero-mean white Gaussian noise ζ(t) =0, ζ(t), ζ(0) =Dδ(t) and D=0.08 is the noise
intensity.

The time-series is the variable x1B(t) of the first oscillator, as shown in Fig. 6(a). Prior to
analysis, the signal was first normalized between 0 and 1 and its mean value was subtracted.
In the first 400 s the coupling is unidirectional, the second oscillator is forcing the first one
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with the coupling strength η2=0.2. After a further 400 s, the forcing was removed by setting
η2=0 and switching on frequency modulation of the first oscillator f1=1.0 Hz by the second
one f1=0.25 Hz with parametric frequency coupling, ηm=0.1. During the last 400 s, the
frequency modulation is removed by setting ηm=0, whereas unidirectional quadratic
coupling is present and the coupling direction is reversed. The first oscillator is forcing the
second one with the coupling strength η1=0.2, Fig. 6(b). The first 15 s of each of the three
coupling modes is shown in Figs. 6(a), with the corresponding power spectra shown in Fig.
6(c).

Complementary analysis—We start with the bispectral analysis. The whole signal x1B
is again analyzed as a single entity, as in the case of test signal 1, x1A. Auto-WB is shown in
Figs. 7(a) and 7(b). Instantaneous biphase and biamplitude for bifrequency (f1, f2) are shown
in Figs. 7(c) and 7(d). From the constant biphase and above zero biamplitude during the first
400 s we can conclude that nonlinear coupling is present only during first 400 s.

We then applied CMI to the oscillator phases. Obtained results are shown in Fig. 8. During
the second 400 s (2), the second oscillator x2B influences the first oscillator x1B Fig. 8(a),
whereas during the third 400 s (3), the first oscillator drives the second one [Fig. 8(b)], as
the CMI is outside the surrogate range.

The information theoretic approach gives us the correct results for the directionality of
interoscillator interactions, whereas it cannot resolve the nature of the interaction. In the
second 400 s interval (2), parametric frequency modulation of the first oscillator by the
second one is present. CMI cannot distinguish between modulation and nonlinear
interaction. To gain additional driver-response information we apply bispectral analysis.

First we calculate the cross-wavelet bispectrum BWc121, where the index c stands for cross
and the 1, 2 denote state variables of the first and the second oscillators, i.e., x1B and x2B,
that were used for BWc calculation, shown in Figs. 9(a) and 9(b). The x1B signal tells us
primarily about the activity of the first oscillator and x2B about the second one. The phase of
the first oscillator, f1, in the triplet (f1, f2, f1+f2) is thus directly extracted from the x1B
signal. Similarly extracted are the phase of the second oscillator and the component at the
harmonically related position f1+f2. Nonlinear coupling is still present meaning that the
second oscillator is driving the first one. One can also verify the results by calculating
BWc122 (not shown). If the second oscillator is the driver, the nonlinear coupling is no longer
present as the third component in the triplet, f1+f2. Likewise, it is not present in the signal
x2B, but only in the driven one x1B. WBC121 for the last 400 s shows no interaction as the
biamplitude is zero and the biphase is not constant, as expected, Figs. 9(a) and 9(b). Note
that for the second 400 s the biamplitude is above zero and the biphase is constant. Since
auto-WB does not show any interaction during this interval we can conclude that the second
oscillator is modulating the first one during the second 400 s. See [17] for further details
regarding the detection of parametric frequency modulation.

Similarly we can proceed to identify the reverse interaction, from the first oscillator to the
second one. First we calculate the auto-WB, BWc222. The biphase and biamplitude are
shown in Figs. 9(c) and 9(d). Constant biphase and above-zero biamplitude, in addition to
the distinctive position of the peaks in WB [17], demonstrates nonlinear coupling during the
last 400 s. This can be verified by further calculation of BWc212 and BWc211, however it is
not necessary due to symmetric properties of the bispectrum [33]. We can determine that the
first oscillator is driving the second one during the last 400 s.
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IV. SUMMARY AND CONCLUSIONS
In conclusion, wavelet bispectral analysis and information theory approach were combined
to investigate the reliability of detection of the nature, strength and direction of coupling of
interacting oscillators whose basic frequencies are time-varying. The Poincaré oscillator was
used as a generic model.

We generated two distinct numerical examples. With the first, we mimiced typical situations
that occur in real measured data, i.e., temporal coupling, time variable strength of coupling
and time variable basic frequency. It was shown that by using wavelet bispectral analysis it
is possible to resolve the nature and strength of the coupling, even when there are
considerable time variations of the basic frequency. Moreover, intermittent nonlinear
coupling can be accurately detected. This can be achieved by calculating the instantaneous
bifrequency and thus tracing the time variations of the oscillator’s characteristic frequencies
using a mother wavelet that allows for an optimal time-frequency resolution. It was shown
that by applying the information theory approach and calculating the CMI a possible
asymmetry in the coupling can be revealed and quantified. We noted that in the case of the
oscillators being synchronized the CMI can lead to incorrect inference of causality from
experimental bivariate time series. In this case we can attain information from wavelet
bispectral analysis to use the proper variable (state variable, phase, phase increment…) for
the CMI calculation to obtain the correct results.

With the second numerically generated example and the corresponding signal x1B we
reversed the coupling direction, the driver and the driven oscillator, adding frequency
modulation to mimic one of the most frequent mechanisms of interaction extracted from real
measured data. The CMI resolves the correct coupling direction. For the first 800 s the
second oscillator drove the first one and for the third 400 s it was vice versa. During the
second 400 s frequency modulation was present. We used bispectral analysis to identify it,
as with the CMI we cannot attain the answer regarding the nature of the coupling. Moreover,
using cross bispectral estimates it was also possible to identify the directionality of coupling
by determining the phase origin in the triplet. In this way we could additionally verify the
CMI results. We suggest the use of a complementary approach using wavelet bispectral
analysis and information theory. The former can resolve the nature and the strength of the
coupling, whereas the latter provides reliable information regarding the coupling direction.
CMI estimates do not provide the necessary time dependance of the driver response. This
can be insufficient when investigating real systems and their coupling dynamics. For this
purpose we suggest using the complementary wavelet bispectral analysis where time (and
frequency) resolution can be arbitrary set regarding the system dynamics.

The task of revealing coupling dynamics is quite general for any system of coupled
nonlinear oscillators where bivariate data can be obtained. It is a highly relevant problem in
numerous fields of research, e.g., cardiorespiratory interactions, brain oscillations, neuronal
systems, electronic systems, coupled lasers, chemical reactions, to mention only a few. The
proposed complementary analysis therefore provides a promising general-use tool for
studying the nature, strength and direction of coupling between two (or more) nonlinear
oscillators whose basic frequencies considerably change in time.
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FIG. 1.
Simulation results for a pair of quadratically coupled Poincaré oscillators in the presence of
additive Gaussian noise. (a) The test signal x1A(t) from the first oscillator, after
normalization and subtraction of its mean value. The first oscillator has a characteristic
frequency f1=1.0 Hz. That of the second oscillator is f2=0.25 Hz. The oscillators are
unidirectionally and quadratically coupled with three different coupling strengths η2(t) in
each (1)-(3) 400 s time epoch, shown in (b) as a function of time. In epoch (3) the
characteristic frequency of the second oscillator is linearly increased from f2=0.25 Hz to
f2=0.35 Hz while being at the same time modulated with Am sin(2πfmt), where
Am=6.7·10−6 is the modulation amplitude and fm=0.01 Hz is the modulation frequency, as
can be seen in Fig. 2(b). Each coupling lasts for 400 s. The sampling frequency fs=10 Hz.
Only the first 15 s are shown in each case. (c) The corresponding power spectra of x1A(t).
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FIG. 2.
Instantaneous frequencies of (a) the first oscillator f1 and (b) the second oscillator f2 in the
signal x1A and x2A.
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FIG. 3.
(a) The modulus of the wavelet bispectrum |BW| calculated for K=34 segments, 85%
overlapping, with Tm=8 s, Ge=0.00001, using a fixed Morlet wavelet length of THF=20 s for
calculation of the high frequencies. (b) A contour plot of the |BW|. For f2>0.9 Hz, the
wavelet bispectrum is removed because the triplet (1 Hz, 1 Hz, 1 Hz) produces a high peak
that is not physically significant. (c) The biphase 𝜙1 and (d) the biamplitude A1 for the
bifrequency (1 Hz, 0.25 Hz)-peak 1, calculated using a 0.1 s time step.
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FIG. 4.
(a) Conditional mutual information (CMI) as a function of time lag (black) together with the
surrogate ranges given by the surrogate mean ±1.96σ (gray) from 30 permutation surrogate
realizations. (1) denotes intermittent coupling, (2) no coupling and (3) coupling where the
characteristic frequency of the second oscillator, f2, is linearly increasing and being at the
same time modulated. (a) The CMI influences 2→1 and (b), the CMI influences 1→2. Lags
are from 1 to 100 and 8 quantized levels are used for CMI estimation.
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FIG. 5.
(a) The CMI as a function of time lag (black) together with the surrogate ranges given by the
surrogate mean ±1.96σ (gray) from 30 permutation surrogate realizations. For case (1), Fig.
4, the CMI is applied here with Δτ𝜙1,2 according to Eq. (18).
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FIG. 6.
Simulation results for a pair of quadratically coupled Poincaré oscillators in the presence of
additive Gaussian noise. (a) The time-series x1B(t) from the first oscillator, after
normalization and subtraction of its mean value. The first oscillator has a characteristic
frequency f1=1.0 Hz. That of the second oscillator is f2=0.25 Hz. The oscillators are
unidirectionally and quadratically coupled with three different coupling strengths η1 and η2
in each (1)-(3) 400 s time epoch, both shown on (b) as a function of time, where the solid
line represents η1 and the dotted line η2. In column (2) the first oscillator is frequency
modulated by the second one, ηm=0.1. Each coupling lasts for 400 s. The sampling
frequency fs=10 Hz. Only the first 15 s are shown in each case. (c) The corresponding power
spectra of x1B(t).
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FIG. 7.
(a) The modulus of the wavelet bispectrum |BW| calculated for K=34 segments, 67%
overlapping, with Tm=8 s, Ge=0.00001, using a fixed Morlet wavelet length of THF=20 s for
calculation of the high frequencies. (b) A contour plot of the |BW|. For f2>0.9 Hz, the
wavelet bispectrum is removed because the triplet (1 Hz, 1 Hz, 1 Hz) produces a high peak
that is not physically significant. (c) The biphase 𝜙1 and (d) the biamplitude A1 for the
bifrequency (1 Hz, 0.25 Hz)-peak 1, calculated using a 0.1 s time step.
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FIG. 8.
(a) CMI as a function of time lag (black) together with the surrogate ranges given by the
surrogate mean ±1.96σ (gray) from 30 permutation surrogate realizations. (1) denotes
unidirectional coupling, where the second oscillator drives the first one, (2) where the first
oscillator is frequency-modulated by the second one, and (3) denotes unidirectional
coupling, where the first oscillator drives the second one. (a) CMI influence 2→1. (b) CMI
influence 1→2. Lags are from 1 to 100 and 8 quant levels are used for CMI estimation. For
(3) (a) y axis values are multiplied by 100.
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FIG. 9.
The cross-wavelet bispectrum instantaneous biphase 𝜙1 and instantaneous biamplitude A1
for bifrequency (1 Hz, 0.25 Hz)-peak 1, calculated with K=34 segments, 67% overlapping,
Tm=8 s, Ge=0.001 and using fixed Morlet wavelet length of THF=40 s for high frequencies
calculation using a 0.1 s time step. (a) and (b) are for the case of BWc121 and (c) and (d) are
for the case of BWc222.
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