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Abstract

Nitric oxide (NO) is an important messenger molecule in a variety of physiological systems. NO, a gas, is pro-
duced from L-arginine by different isoforms of nitric oxide synthase (NOS) and serves many normal physio-
logic purposes, such as promoting vasodilation of blood vessels and mediating communication between ner-
vous system cells. In addition to its physiologic actions, free radical activity of NO can cause cellular damage
through a phenomenon known as nitrosative stress. Here, we review the role of NO in health and disease, fo-
cusing on its role in function and dysfunction of the nervous system. Substantial evidence indicates that NO
plays a key role in most common neurodegenerative diseases, and, although the mechanism of NO-mediated
neurodegeneration remains uncertain, studies suggest several possibilities. NO has been shown to modify pro-
tein function by nitrosylation and nitrotyrosination, contribute to glutamate excitotoxicity, inhibit mitochondr-
ial respiratory complexes, participate in organelle fragmentation, and mobilize zinc from internal stores. In this
review, we discuss and analyze the evidence for each of these mechanisms in different neurodegenerative dis-
eases and propose future directions for research of the role of NO in neurodegeneration. Antioxid. Redox Sig-
nal. 11, 541–553.
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Introduction

IN RECENT YEARS, studies have implicated nitric oxide (NO)
as a key mediator of neurodegeneration in numerous dis-

eases of the nervous system, including Parkinson’s disease
(PD), Alzheimer’s disease (AD), amyotrophic lateral sclero-
sis (ALS), Huntington’s disease (HD), and ischemic brain in-
jury (stroke) (4, 7, 51, 67, 68, 73, 95, 115, 119, 124, 129, 140,
151). In addition to its many physiologic functions (for ex-
ample, as a neurotransmitter, neuromodulator, and mediator
of blood vessel dilation), NO can convert into highly reactive
and toxic molecules that readily react with proteins, DNA,
and lipids to alter their function (96). This dual action of NO,
as both an important player in normal physiology and a con-
tributor to pathophysiology, makes developing effective
treatments to target NO toxicity particularly challenging.

Here, we review the current status of the NO-linked neu-
rodegeneration field, focusing both on the progress that has
been made and on identifying areas for future study. First,
we present background information on NO, its reactions, its
associated reactive species, and its normal physiologic func-
tions. Next, we present the evidence of the participation of
NO in neurodegenerative diseases and discuss the proposed

mechanisms of NO-mediated neurotoxicity in different dis-
eases. Because significant overlap exists between many pro-
tein targets of NO and different neurologic disorders, we or-
ganized this section by potential mechanism of pathology
rather than by individual disease.

Nitric Oxide Production in Normal Physiology

Nitric oxide (NO) is a gas synthesized from L-arginine in
mammals by enzymes known as nitric oxide synthases
(NOSs) (88, 109, 116). NO and NOS have been identified in
many organ systems including liver, lungs, vascular tissue,
skeletal muscle, and smooth muscle (114). In addition, NOS
produces NO in all brain cells—both neurons and glia (109,
116). Studies have confirmed the identity of three isoforms
of NOS—neuronal NOS (nNOS), endothelial NOS (eNOS),
and inducible NOS (iNOS)—expressed in different cell types
and under different cellular conditions (114). More recent
studies also suggest the existence of a novel, fourth NOS, mi-
tochondrial NOS (mtNOS) (61).

The NOS isozymes have both similarities and differences
in expression pattern and characteristics of enzymatic activ-
ity (See Table 1). nNOS is predominantly active in central
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and peripheral neurons, where production of NO is impor-
tant for cell communication (114). eNOS produces NO
mainly in endothelial tissue of blood vessels, where NO
causes vasodilation and endothelial relaxation of muscles
and soft tissue (107). iNOS is found primarily in immune
cells and glial cells (astrocytes and microglia) and is activated
in response to pathogen recognition and cytokine release
(104, 107, 114). The primary function of iNOS is to use the
oxidative stress of NO to defend against pathogens (114). For
example, activated microglia in the nervous system express
iNOS, causing neuronal cell death in vivo in mice (41) and in
vitro in rat hippocampal cultures (93). Because the NOS iso-
forms have different physiologic functions, characteristics of
their enzymatic activity and subcellular localization also dif-
fer. For example, nNOS and eNOS, constitutively active iso-
forms, produce low concentrations of NO over long periods
and are activated by calcium ions (Ca2�) through transient
binding to the calcium-binding protein calmodulin, whereas
iNOS, the inducible isoform, produces high concentrations
of NO for short periods and is Ca2� independent because
calmodulin remains tightly bound to the protein (20, 38, 107).
In addition, nNOS and iNOS are both cytosolic, whereas
eNOS associates with the membranes of endothelial cells (28,
102, 106).

Although the existence of nNOS, iNOS, and eNOS is well
documented, whether other NOS isoforms exist and are ac-
tive in mammals remains a topic of debate. Because the link
between mitochondria and NOS activity is well established
(60), mitochondria have been an area of intense interest in

the search for new NOS isoforms. Consequently, Ghafouri-
far et al. (61) first reported the presence of constitutively ac-
tive mtNOS in mitochondria from rat liver. mtNOS associ-
ates with the matrix face of the mitochondrial inner
membrane and seems to play a role in Ca2� regulation (61).
Ca2� increases NO formation by mtNOS, which reversibly
decreases mitochondrial membrane potential and oxygen
consumption (61). Decreased membrane potential increases
Ca2� release from the organelle, which inactivates mtNOS,
completing the feedback loop. Although studies have begun
to clarify the functions of mtNOS, its identity and relation to
other NOSs remain unclear (61).

Reactive Nitrogen Species (RNS) Formation and
Nitrosative Stress

NO readily reacts with various molecules within the cel-
lular environment, and the products of these reactions can
damage the cell through a variety of mechanisms. The all-
encompassing term nitrosative stress describes this ability of
NO and its derivatives to damage cellular components such
as proteins and DNA. A primary reaction in the production
of RNS is the combination of NO and superoxide anions
(O2

�) to form peroxynitrite (ONOO�) (See Table 2), a highly
reactive neurotoxin (15, 43). Mitochondria provide both re-
actants necessary for the formation of ONOO�, NO from
mtNOS and O2

� from the electron-transport chain. About
15% of superoxide produced by mitochondria goes toward
the formation of peroxynitrite (the other 85% forms hydro-
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TABLE 1. NITRIC OXIDE SYNTHASE (NOS) ISOFORMS

Characteristics
Cytosolic/membrane- of enzymatic

NOS isoform Location Function associated? activity

Endothelial Endothelial Vasodilation Membrane-associated Produces low
NOS (eNOS) tissue of and relaxation concentrations

blood of muscles and of NO over
vessels soft tissue long periods

Neuronal Central and Cell-to-cell Cytosolic Produces low
NOS (nNOS) peripheral communication concentrations

neurons of NO over
long periods

Inducible Immune cells Mediate cell Cytosolic Produces high
NOS (iNOS) and glial death in concentrations

cells response to of NO over
pathogens short periods

Mitochondrial Mitochondrial Ca2� regulation Membrane-associated Part of Ca2�

NOS (mtNOS) inner feedback loop
membrane

TABLE 2. NO-RELATED CHEMISTRY

Reaction name Reaction formula

NO formation L-Arginine � O2 � (Calmodulin) ——→ NO � (Citrulline)
Peroxynitrite formation NO � O2

� → ONOO�

Nitrosylation RS(H) � X-NO → RS-NO � X� � (H�)
Nitrotyrosination Tyr � ONOO� → Tyr-NO2

NOS



gen peroxide) (29, 118). Importantly, ONOO� formation in
mitochondria induces cytochrome c release, an indicator of
mitochondrial distress and potential inducer of cell death
(62), and also irreversibly blocks the respiratory chain by
competing with molecular oxygen (107).

Two other reactions that involve NO modification of pro-
teins, nitrosylation and nitrotyrosination (See Table 2), are
important both to the physiologic and pathophysiologic roles
of NO. Nitrosylation is the reaction of NO with the amino
acid cysteine to form nitrosothiols on interacting proteins
(137, 138). Whereas the precise physiological mechanism of
nitrosylation is unclear, it has been hypothesized that NO re-
acts with oxygen to form N2O3, which reacts with glutathione
to form the S-nitrosoglutathione (GSNO) group, which is an
important intermediate in S-nitrosylation signal transduc-
tion (35). Nitrotyrosination is the reaction of the amino acid
tyrosine in target proteins with ONOO� to form 3-nitroty-
rosine, which may impair cellular function through an as-
yet-uncertain mechanism (76). Nitrotyrosination has been
used as a marker in neurodegeneration models (9, 18, 135).

Physiologic Functions of NO

Although the primary focus of this review is the patho-
logic role of NO in neurologic diseases, it is important to un-
derstand how NO functions in normal physiology in healthy
humans. Studies identifying NO as the endothelium-derived
relaxing factor (EDRF) that mediates blood vessel dilation
and relaxation were the first to ascribe a physiologic func-
tion to NO (55, 74, 75, 117). Studies have also linked NO to
neurotransmission and immune cell response (57, 71, 72, 89,
136). These critical functions of NO make combating the neg-
ative effects of nitrosative stress difficult because, to be ef-
fective, potential treatments must selectively disrupt the
pathologic actions of NO.

NO is an unconventional neurotransmitter because it is a
gas, is not stored in synaptic vesicles, and is synthesized on
demand by neurons (57, 89, 136). NO has many potential
roles in the nervous system, some of which are not well un-
derstood. For example, NO is likely involved in nerve-me-
diated relaxation of the gut during digestion (136). Studies
have shown that NO-producing agents mimic neuronal re-
laxation (11, 26), and NOS inhibitors prevent nerve-mediated
gut relaxation (11, 26, 46). NO is also likely involved in in-
nervating neural blood vessels, including cerebral arteries
(19, 20) and penile arteries in males (27). Finally, modifica-
tion of cysteine residues by NO in several key proteins,
known as S-nitrosylation, enhances neuronal survival. For
example, S-nitrosylation of NMDA (N-methyl-D-aspartate)
glutamate receptors in neurons increases neuronal survival
by locking the receptors in the “closed” position, thus pre-
venting excitotoxicity (34, 82, 96, 97). NO also S-nitrosylates
and inhibits caspases, cysteine proteases that play a critical
role in apoptosis (83, 94, 100), suggesting that apoptosis may
not be a major pathway of neuronal death in NO-linked neu-
rodegenerative diseases.

Another important physiologic function of NO is as a toxic
agent in the immune cell response to pathogens. Macro-
phages activated by bacterial endotoxin show high levels of
NOS activity, which is necessary for tumoricidal and bacte-
ricidal actions of the macrophages (71, 72, 136). In addition,
glial cells of the nervous system, both astrocytes and mi-

croglia, rely on NO to perform their immune-like activities
(114). In both macrophages and glia, iNOS becomes active
on pathogen-mediated activation, and the nitrosative stress
created by NO helps defend against pathogens (104, 107,
114).

NO and Neurodegenerative Disease

Although NO has many important and beneficial physio-
logic functions, it can also play a role in neurodegenerative
disease pathology. In this section, we present some of the ev-
idence linking nitrosative stress to various neurodegenera-
tive diseases, including PD, AD, ALS, HD, and stroke. We
also discuss the potential mechanisms of NO-related neuro-
toxicity, such as protein nitrosylation and nitrotyrosination,
excitotoxicity, mitochondrial respiratory complex inhibition,
organelle fragmentation, and liberation of zinc (Zn2�) from
intracellular stores.

Evidence of NO-mediated neurodegeneration

Studies have provided a considerable link between NO
and many prevalent neurodegenerative diseases, including
PD, AD, ALS, HD, and stroke. First, animal models of 1-
methyl 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-in-
duced neurotoxicity have shown that inhibition of NOS
slows progression of disease pathology (67, 95, 119, 129).
MPTP is a neurotoxin that inhibits complex I of the mito-
chondrial respiratory chain and mimics the symptoms of PD
by killing substantia nigra neurons (92). Of note, 7-nitroin-
dazole (7-NI), a selective inhibitor of nNOS, blocks MPTP-
mediated decrease in striatal dopamine levels in mice (129)
and baboons (67) and protects against MPTP-induced neu-
ronal death in mice (119). 7-NI also protects against motor
deficits and cognitive decline in the MPTP baboon model
(67). In addition to the role of nNOS in MPTP-induced neu-
rotoxicity, iNOS appears to play a role. MPTP treatment of
mice causes massive gliosis, a proliferation of glial cells, and
upregulation of iNOS, and iNOS-deficient mice are more re-
sistant to MPTP (95). It is important to remember when eval-
uating the importance of the referenced studies that MPTP
neurotoxicity is a phenotypic model of PD based on the clin-
ical observation that MPTP contamination of the designer
opioid 1-methyl-4-phenyl-4-propionoxypiperidine (MPPP)
caused PD-like symptoms in drug users (91). Thus, the MPTP
model of PD does not necessarily have a mechanistic link to
sporadic PD in humans. Evidence of nitrosative stress in hu-
man PD patients would of course be more convincing, and
we highlight a few such studies in the mechanism part of
this section.

In addition to the extensive research of NO in PD models,
a proteomic study has found a correlation between �-amy-
loid deposition and nitration in a number of proteins in AD
patients (140). Multiple proteins in the AD hippocampus, an
area of intense �-amyloid deposition, are nitrated (140). In
addition, familial ALS patients with a mutant superoxide dis-
mutase-1 (mSOD1) gene, sporadic ALS patients, and mutant
SOD1 transgenic mice show high rates of 3-nitrotyrosination
in spinal cord motor neurons (7, 51, 124). Furthermore, mu-
tant huntingtin (mtHTT), the pathologically mutated protein
in HD, can complex with glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) and seven in absentia homolog 1
(SIAH1), a protein complex that reacts with NO (68), in cell
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cultures (4). Finally, studies have shown that inhibition of
nNOS activity is protective against ischemic stroke injury in
vivo (73, 115, 151). Taken together, these findings suggest that
NO may be involved in many neurodegenerative diseases.

Potential mechanisms of NO-mediated neurodegeneration

As we discussed earlier, two important properties of NO
that may contribute to its pathologic functions are its ability
to modify proteins through nitrosylation and nitrotyrosina-
tion and its ability to react with oxygen to form RNS. Ac-
cordingly, studies indicate that nitrosylation and nitroty-
rosination of many different proteins play a role in the
pathology of multiple neurodegenerative diseases. In addi-
tion, NO and RNS appear to play a role in glutamate-medi-
ated excitotoxicity in nerve cells, mitochondrial respiratory
complex inhibition, organelle fragmentation, and release of
Zn2� from intracellular stores, all of which have been linked
to neurodegenerative disease.

S-Nitrosylation

Nitrosylation of proteins is a well-established mechanism
of protein modification and regulation (137). Studies have
identified dozens of proteins that become S-nitrosylated
(137), several of which are associated with neurodegenera-
tive diseases such as PD, AD, and stroke (See Fig. 1). First,
Chung et al. (36) reported that Parkin, an E3 ubiquitin ligase
mutated in some familial forms of PD, is S-nitrosylated in
an MPTP in vivo mouse model of PD and in postmortem PD
patient brain samples, but not in normal, age-controlled
brains (36). However, whereas Yao et al. (149) also reported

nitrosylation of Parkin, they found an initial increase in E3
ubiquitin ligase activity before a significant decrease in ac-
tivity. Thus, the ultimate effect of nitrosylation on Parkin and
its role in PD pathogenesis remains a subject for further in-
vestigation.

Next, peroxiredoxin 2 (PRX2), the member of a family of
abundant antioxidants most commonly found in neurons
that reduce intracellular peroxides, becomes S-nitrosylated
by reaction with NO (50). S-nitrosylation of PRX2 prevents
its reaction with peroxides and inhibits its enzymatic activ-
ity and protective function against oxidative stress (50). Stud-
ies of human postmortem brains revealed an increase in S-
nitrosylated PRX2 in human PD patients (50). A third
nitrosylated protein linked to both PD and AD is protein-
disulfide isomerase (PDI). PDI is an endoplasmic reticulum
(ER)-associated chaperone protein that prevents neurotoxic-
ity caused by ER stress and protein misfolding (143) and can
also function as an NO receptor or donor, depending on the
cellular context (134). Both PD and AD patient postmortem
brains exhibit increased levels of nitrosylated PDI as com-
pared with normal-aged brains (143). PDI nitrosylation pre-
vents PDI-mediated ER stress reduction and allows protein
misfolding (143). Heat-shock protein 90 (HSP90), a chaper-
one protein and coactivator of eNOS, is another protein as-
sociated with AD that undergoes nitrosylation (103). Post-
mortem brain samples from patients with AD exhibit
increased levels of HSP90 (48, 80), and it has been suggested
that inactivation of HSP90 may allow accumulation of tau
and amyloid-� aggregates in the AD brain (113). Accord-
ingly, S-nitrosylation of HSP90 abolishes ATPase activity
that is necessary for its chaperone function (103).

GAPDH, another protein that may play a role in multiple
neurodegenerative diseases, also undergoes S-nitrosylation
in neurons (68). In addition to its well-known role in gly-
colysis, GAPDH contributes to nuclear signaling in apopto-
sis (77, 125). S-nitrosylation of GAPDH terminates its enzy-
matic activity and allows binding of GAPDH to SIAH1, an
E3 ubiquitin ligase. SIAH1 has a nuclear localization signal
and carries GAPDH to the nucleus. GAPDH stabilizes SIAH1
in the nucleus and allows degradation of nuclear proteins
through ubiquitination (68). Interestingly, deprenyl, a drug
that slows the progression of early-stage PD (113), prevents
S-nitrosylation of GAPDH, binding of GAPDH to SIAH1,
and nuclear translocation of GAPDH in an MPTP mouse
model of PD (69). This action of deprenyl may account for
its neuroprotective properties. Another potential link be-
tween GAPDH and neurodegenerative disease is the ob-
served complex between mtHTT and GAPDH/SIAH1 in cell
cultures (4). Furthermore, GAPDH accumulates in the nu-
cleus of HD mice, suggesting a relation between the
mtHTT–GAPDH–SIAH1 complex and the ability of mtHTT
to enter the nucleus and kill neurons (131). Thus, the
GAPDH/SIAH1 pathway of ubiquitination and cell death
may be a common pathway in the pathology of multiple neu-
rodegenerative diseases.

Finally, matrix metalloproteinase-9 (MMP-9), a protein in-
volved in degradation of extracellular matrix proteins, is the
target of S-nitrosylation during ischemic brain injury (stroke)
(65). Studies have found increased expression of MMP-9 dur-
ing ischemic stroke in the human brain (108, 123). MMP-9
colocalizes with nNOS in cerebral ischemia, facilitating acti-
vation of the enzyme activity (65). S-nitrosylation and fur-
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FIG. 1. NO S-nitrosylates multiple proteins in neurode-
generative diseases. NO S-nitrosylates Parkin and peroxire-
doxin 2 (PRX2) in PD (shown in blue); protein-disulfide 
isomerase (PDI) in PD and AD (shown in green); glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH) in PD and
HD (shown in red); matrix metalloproteinase-9 (MMP-9) in
stroke (shown in yellow); and heat-shock protein 90 (HSP90)
in AD (shown in pink). (For interpretation of the references
to color in this figure legend, the reader is referred to the
web version of this article at www.liebertonline.com/ars).



ther irreversible oxidation of the protein thiol activates
MMP-9 and activates its pathologic function in ischemic
stroke (65).

3-Nitrotyrosination

When ONOO�, formed from the reaction of NO and O2
�,

attacks proteins, it often results in 3-nitrotyrosination of ty-
rosine residues (8, 122). As discussed earlier, ALS patients
and transgenic mice exhibit increased concentrations of 3-ni-
trotyrosine in spinal cord neurons (7, 51, 124). In addition,
postmortem human AD brain samples show increased lev-
els of 3-nitrotyrosinated proteins (135), and nitrotyrosination
is a common event in the MPTP mouse model of PD (3).

Glutamate excitotoxicity

Glutamate excitotoxicity is caused by overstimulation of
synaptic glutamate receptors that results in excessive Ca2�

influx and subsequent neuronal injury (98). Excitotoxicity is
a common event in many neurodegenerative disorders, in-
cluding ischemic stroke, HD, ALS, and perhaps AD (98).

As mentioned earlier, NO can protect cells from excito-
toxicity by blocking NMDA-receptor opening (34, 82, 96, 97).
This protective function of NO requires its conversion to the
nitrosonium ion (NO�) by the loss of one electron (96). (See
Fig. 2) However, under different conditions, NO can also ex-
acerbate neuronal injury resulting from excitotoxicity (44,
45). Increased intracellular Ca2� levels, resulting from acti-
vation of glutamate receptors such as NMDA receptors, stim-
ulate nNOS to produce more NO (44). (See Fig. 2) High con-

centrations of NO can interfere with S-nitrosylation of
NMDA-receptor thiols (114). Thus, the continual influx of
Ca2� through the open NMDA receptors compounds the
stress on mitochondria, which attempt to sequester and
buffer Ca2�. As mitochondrial membrane potential de-
creases because of the overflow of Ca2� (2, 22, 23, 101), mi-
tochondria reverse their ATP synthase in an attempt to re-
store it (2). Eventually, the excess Ca2� uptake causes
mitochondrial membrane potential loss, mitochondrial
swelling, opening of the mitochondrial permeability transi-
tion pore, outer membrane rupture, and spill of Ca2� and
apoptogenic factors into the cytoplasm, which ultimately re-
sults in neuronal death (114).

A study by Marks and co-workers (101) recently showed
that developmental differences can determine whether NO
is protective or harmful to neurons after excitotoxic insults.
(See Fig. 2.) In immature hippocampal neurons (from post-
natal day 5 rats), Ca2� influx after NMDA-receptor activa-
tion results in increased NOS activity—hence increased NO
production and loss of membrane potential in mitochondria.
Loss of membrane potential decreases Ca2� uptake by mi-
tochondria, which decreases mitochondrial NO production,
salvages mitochondrial function, and protects neurons from
NMDA toxicity (101). However, in mature hippocampal neu-
rons (from postnatal day 19 rats), NO production after
NMDA activation does not depend on mitochondrial mem-
brane potential because the active NOS is localized to the cy-
tosol rather than the mitochondria. Thus, the feedback effect
of NO on mtNOS is not relevant and cannot protect the neu-
rons from Ca2� (101). These findings raise the question of
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FIG. 2. NO can both protect
and sensitize cells to excitotoxic
cell death through a mitochon-
drial pathway. (A) NO plays a
key role in excitotoxic pathways
mediated by NMDA Ca2� chan-
nels. Under normal physiologic
conditions, NO (after converting
to NO�) S-nitrosylates NMDA
receptors, blocks Ca2� influx, and
promotes cell survival. (B) When
mtNOS is responsible for the ma-
jority of NOS activity (as is the
case in immature neurons), Ca2�

enters mitochondria and stimu-
lates NO production by mtNOS.
NO inhibits the respiratory chain,
which reduces the mitochondrial
membrane potential, collapses
the ion gradient, and decreases
entry of Ca2� into the mitochon-
dria. Decreased Ca2� influx
causes a decrease in mtNOS ac-
tivity and NO production, pro-
moting cell survival. (C) When
cytosolic nNOS is the primary
producer of NO (as is the case in
mature neurons), Ca2� entry through overactive NMDA channels stimulates nNOS, and NO can then enter the mitochon-
dria and directly inhibit complex IV (cytochrome c oxidase; COX) of the respiratory chain, which leads to a block of ATP
production and eventual cell death due to energetic failure. In contrast to pathway B, no feedback loop is present to pro-
tect the cell from damage. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article at www.liebertonline.com/ars).



how cells regulate the different NOS enzymes at different
stages of development and potentially support the existence
of a mtNOS that is distinct from nNOS.

In sum, both the protective and detrimental effects of NO
in glutamate signaling are well established. This suggests
that, although blocking NOS activity (128) or selectively
downregulating NMDA receptors (113) might be potential
treatment options for neurodegenerative disease, the appli-
cation of such treatments will be very complex and will re-
quire a careful balancing act.

Mitochondrial respiratory complex inhibition

Because neurons have high energy demands and do not
readily use glycolysis, mitochondria must provide most of
the required energy through oxidative phosphorylation (87).
Thus, disruption of the mitochondrial respiratory chain that
causes decreased ATP production can be very damaging to
neurons. NO and ONOO� have been shown to inhibit mi-
tochondrial respiratory complexes, particularly complex IV
(also known as cytochrome c oxidase or COX), where NO
competes with O2 to bind at the enzyme active site, in many
cell types including neurons (14, 24, 25, 37, 130). (See Fig. 3.)
Interestingly, the cortex of human postmortem AD brains ex-
hibits a loss of COX activity (42, 84, 110) and increased lev-
els of iNOS (66, 70).

Studies also have shown inhibition of mitochondrial res-
piratory complex I in isolated brain mitochondria and intact
neurons by ONOO� under certain conditions (12, 30, 99,
121). In these studies, ONOO� did not inhibit complex I un-
less mitochondrial integrity was disrupted (121) or levels of
reduced glutathione (GSH) were low (5). This suggests a po-
tential role for GSH, a major antioxidant in mammalian cells,
in neuroprotection in PD (107). Interestingly, presympto-

matic PD patients are deficient in both GSH in the substan-
tia nigra (79) and complex I activity (126, 127).

Organelle fragmentation

Fragmentation of two important cellular organelles, the
mitochondrion and the Golgi apparatus, may play an im-
portant role in neurodegeneration. To help maintain bioen-
ergetic functionality and to facilitate equal energy transmis-
sion throughout neurons, mitochondria are dynamic
organelles that actively migrate, divide, and fuse (86). A fam-
ily of large, dynamin-related GTPases directs mitochondrial
division (fission) and fusion. Three important members of
the mitochondrial fission and fusion machinery are dy-
namin-related protein 1 (DRP1), a fission protein, and mito-
fusins 1 and 2 (MFN1, MFN2), outer membrane fusion pro-
teins. (See Fig. 4)

To remain functional, cells must balance fission and fu-
sion events. It is becoming increasingly clear that a shift in
the fission/fusion balance toward continuous fission (frag-
mentation) can cause neurodegeneration, although the pre-
cise mechanism is unclear (16, 86). We recently showed that
NO triggers mitochondrial fission and cell death in cortical
neurons (6). In addition, NO causes spotlike cluster forma-
tion of the proapoptotic protein BAX on mitochondria at po-
tential fission sites (81, 152). The p38 mitogen-activating pro-
tein (MAP) kinase stimulates BAX translocation to neurons
(63). Occasionally, mitochondrial fission caused by NO was
reversible, and neurons survived (6, 152). Interestingly, fis-
sion can be asymmetric, in which one division product is in-
tact while its fission partner exhibits profound ultrastruc-
tural damage. Thus, mitochondrial fission caused by NO
may resemble a normal stress response and repair mecha-
nism. In support of this idea, we observed that autophago-
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FIG. 3. ONOO� directly inhibits the mitochondrial respiratory chain. NO combines with O2
� produced by the mito-

chondrial respiratory chain to form ONOO�, which inhibits the respiratory chain at complex IV, and when reduced glu-
tathione (GSH) levels are low, complex I. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article at www.liebertonline.com/ars).



somes engulf damaged mitochondria after fission caused by
NO. Whereas fission caused by NO alone did not cause cell
death, we found that fission associated with BAX cluster for-
mation on mitochondria triggered irreversible fission and
cell death (110). Thus, NO-mediated mitochondrial fission
and autophagy may be a neuroprotective mechanism, yet if
the induction of additional signal-transduction pathways
(such as BAX clustering to fission sites) overwhelms the fis-
sion and autophagy system, neuronal cell death can result.
Interestingly, expression of MFN1 and dominant-negative
mutant DRP1 inhibits fission and BAX foci formation on mi-
tochondria (6, 152). This builds on another study that found
that MFN2 protects cerebellar granule neurons against ox-
idative stress (78). Collectively, these studies suggest that mi-
tochondrial fragmentation initiates NO-mediated neurode-
generation.

The precise mechanism of NO-mediated mitochondrial
fission is presently unclear. Of note, dynamin, which is in-
volved in endocytosis, is activated by NO (144). Thus, one
can speculate that NO directly regulates DRP1 and/or
MFN1/MFN2 activity. Alternatively, it is becoming increas-
ingly clear that these large GTPases are regulated by phos-
phorylation and dephosphorylation (31, 39, 105, 142). Thus,
NO may regulate kinases and phosphatases that control
DRP1 and/or MFN activity. Studies have shown S-nitrosy-
lation of G protein–coupled receptor kinases (148) and pro-
tein tyrosine phosphatases (32). Whether kinases and phos-
phatases, which regulate mitochondrial fission and fusion
components, such as protein kinase A (PKA) and cyclin-de-
pendent kinase 1 (Cdk1), are targets of S-nitrosylation is a
subject for future investigation.

The Golgi apparatus is another cellular organelle that un-
dergoes fragmentation under both physiologic and patho-
physiologic conditions. Golgi disassembly and fragmenta-
tion is an important event in mitosis (as is mitochondrial
fission) (141, 145) and has been observed in vivo in AD and
ALS (64). In addition, NO induces Golgi fragmentation in
cortical neuron cultures, and nitro-L-arginine, an NOS in-
hibitor, significantly inhibited NMDA-induced fragmenta-
tion (112). Interestingly, addition of MFN1 or dominant-neg-

ative mutant DRP1 decreased Golgi fragmentation after
NMDA or NO exposure, suggesting that mitochondrial frag-
mentation occurs upstream of Golgi fragmentation (112).
Collectively, these studies suggest that the roles of Golgi and
mitochondrial fragmentation in NO-mediated neurodegen-
eration are important areas for further investigation.

Liberation of Zn2� from intracellular ligands

Similar to NO, Zn2� is a neuromodulator under normal
physiologic conditions. Zn2� is stored in presynaptic vesi-
cles of glutaminergic neurons and is released on action po-
tential firing. Zn2� can modulate glutamate receptors by
binding to the NR2A subunit (120) and thus plays a role in
long-term potentiation and memory. Most of the intracellu-
lar Zn2� is not free and is instead bound to high-affinity li-
gands, such as Zn2� finger–binding proteins or metalloth-
ionein.

Also similar to NO, Zn2� has been implicated in neu-
rodegenerative disorders, in particular acute brain injuries
such as ischemic stroke, prolonged seizures, and trauma (33,
53, 56, 90, 147). During these brain injuries, a dramatic in-
crease occurs in free Zn2�. It has been suggested that free
Zn2� then triggers neuronal death. Supporting this belief,
Zn2� was found to be particularly toxic to neurons (150).
However, the mechanism responsible for the massive accu-
mulation of Zn2� is unknown. One possible mechanism is
that Zn2� released from presynaptic vesicles crosses from the
synaptic cleft, through the plasma membrane, and enters the
postsynaptic neuron via voltage-gated ion channels (133, 139,
146). However, we and others have provided another possi-
bility for the accumulation of free Zn2� ions during brain in-
jury. Nitrosative stress or oxidative stress evokes the libera-
tion of Zn2� from its intracellular ligands, such as
metallothionein, which in turn blocks the mitochondrial elec-
tron-transport chain, decreases mitochondrial membrane po-
tential, increases free radical production, evokes cytochrome
c release, and eventually leads to neuronal cell death (1, 17,
40, 52, 54). (See Fig. 5.) Thus, these studies have established
an important connection between NO and Zn2� pathways
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in neuronal injury. In addition, Zn2� is a potent inhibitor of
proteins involved in energy production and defense against
oxidative stress, including pyruvate dehydrogenase, �-ke-
toglutarate dehydrogenase, and the Rieske Fe-S protein com-
plex (58, 59), and inhibition of these proteins may set off a
vicious cycle of free radical production and bioenergetic fail-
ure. Thus, chelation of free Zn2� might in part block NO-
mediated neuronal injury.

Nonneuronal Cell–Type Involvement

Whereas neurodegenerative disease research typically fo-
cuses on neurons, and rightfully so, because neuronal injury is
the ultimate cause of the disease symptoms, it is becoming in-
creasingly clear that other cells of the nervous system, includ-
ing astrocytes and microglia, also play important roles in dis-
ease pathology. For example, much of the recent research in
ALS has focused on the role of astrocytes in disease onset and
progression (85). Studies have reported that activated astrocytes
expressing the mutant superoxide dismutase 1 (mSOD1) gene,
which causes a form of familial ALS, release a soluble factor
that contributes to motor neuron degeneration and death (47,
111). NO is one candidate factor that activated astrocytes may
release. One important normal function of glial cells in the ner-
vous system is to protect neurons from NO (13, 49). For exam-
ple, concentrations of NO that are nontoxic to intact neurons
(i.e., with glial cells present) inhibit ATP synthesis in neurons
cultured alone (i.e., without glia) (21). Thus, the possibility of a
link between NO and astrocyte-mediated neuronal injury in
ALS is a question that deserves further exploration. More gen-
erally, how NO affects glial cells in other neurodegenerative
diseases is a question that requires more research.

Outlook

As the field of NO research continues to expand, a grow-
ing appreciation exists of the many and varied functions of

NO in human health and disease. Because NO activity is cru-
cial for normal physiologic function, particularly of the ner-
vous system where NO acts as a neurotransmitter and can
protect against excitotoxicity and caspase activation under
certain conditions, attempting to target selectively the dele-
terious actions of NO for treatment of neurodegenerative dis-
eases is a difficult task. The NO system has many “moving
parts,” many of which have likely yet to be identified, and
many of the reactions of NO and its reactive derivatives are
nonspecific. Thus, attempting to understand how NO will
behave, as a mediator of healthy function or as an inducer
of neurodegeneration by nitrosylating and nitrotyrosinating
proteins, increasing excitotoxic vulnerability, inhibiting mi-
tochondrial respiration, fragmenting organelles, or mobiliz-
ing intracellular Zn2� will require continued intensive and
painstaking research. For example, two recent studies found
that the antioxidant enzymes known as thioredoxins (TRX1
in the cytosol and TRX2 in mitochondria) denitrosylate cas-
pase-3 (10, 132) and other low-molecular-weight proteins
(132). Denitrosylation of caspase-3 activates the protease, and
this activation is a key event in the apoptotic cascade. Al-
though the link between caspase activation and neurode-
generative disease is controversial, this type of mechanistic
insight is crucial for our general understanding of NO-me-
diated pathology. We hope that further progress in unrav-
eling the mechanisms of NO reactions and identifying more
of the players involved will allow us to develop more spe-
cific and effective ways to treat neurodegenerative diseases
through the shared pathway of nitrosative stress.
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