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Abstract

Elevated blood glucose is a key initiator of mechanisms leading to diabetic neuropathy. Increases in glucose
induce acute mitochondrial oxidative stress in dorsal root ganglion (DRG) neurons, the sensory neurons nor-
mally affected in diabetic neuropathy, whereas Schwann cells are largely unaffected. We propose that activa-
tion of an antioxidant response in DRG neurons would prevent glucose-induced injury. In this study, mild ox-
idative stress (1 �M H2O2) leads to the activation of the transcription factor Nrf2 and expression of antioxidant
(phase II) enzymes. DRG neurons are thus protected from subsequent hyperglycemia-induced injury, as de-
termined by activation of caspase 3 and the TUNEL assay. Schwann cells display high basal antioxidant en-
zyme expression and respond to hyperglycemia and mild oxidative stress via further increases in these en-
zymes. The botanical compounds resveratrol and sulforaphane activate the antioxidant response in DRG
neurons. Other drugs that protect DRG neurons and block mitochondrial superoxide, identified in a compound
screen, have differential ability to activate the antioxidant response. Multiple cellular targets exist for the pre-
vention of hyperglycemic oxidative stress in DRG neurons, and these form the basis for new therapeutic strate-
gies against diabetic neuropathy. Antioxid. Redox Signal. 11, 425–438.
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Introduction

ONE OF THE MOST COMMON complications of diabetes mel-
litus is diabetic neuropathy, affecting �60% of the 20

million people with diabetes in the United States (6, 7). The
consequences of diabetic neuropathy, including chronic pain
or loss of sensation, recurrent foot ulcerations, and amputa-
tion, are responsible for a significant loss of quality of life
and high economic impact (6, 7). Currently, no effective treat-
ment is known for diabetic neuropathy beyond tight glyce-
mic control (71).

Although multiple mechanisms underlie the pathogenesis
of diabetic neuropathy, studies indicate that glucose-induced
oxidative stress is a key mediator in this process (8, 9, 22, 52,
77, 82). Peripheral nervous system DRG neurons, but not
Schwann cells, generate excessive reactive oxygen species
(ROS) in the mitochondria when exposed to elevated glu-
cose concentrations (19, 59, 79). ROS form additional free rad-
ical compounds that, over time, damage lipids, proteins, and
nucleic acids (22, 74). These ROS-induced modifications pro-

mote DRG neuron injury and impair nerve function, leading
to the signs and symptoms of diabetic neuropathy (8, 9, 22,
68, 86).

Many cells respond to ROS by activating an antioxidant re-
sponse (49, 73). Endogenous antioxidant enzymes important
for the detoxification of ROS in the nervous system include su-
peroxide dismutase (SOD) (88), heme oxygenase (HO-1) (24,
43, 54), catalase (61), glutathione S-transferase (GST) (32, 44),
and NAD(P)H:quinone oxidoreductase-1 (NQO1) (37, 49, 50).
The genes coding many cellular antioxidant enzymes, such as
GST and NQO1, contain a promoter–enhancer sequence
known as the antioxidant response element (ARE). The ARE
regulates transcriptional activity of these enzymes, known as
phase II enzymes, after cellular exposure to ROS (27, 49). Ac-
tivation of the ARE is primarily under the control of the tran-
scription factor Nrf2 (34, 48). The ARE has not been charac-
terized in DRG neurons and Schwann cells; however, we
previously observed the ability of these neurons to generate
intracellular antioxidants and increase antioxidant enzyme ex-
pression in the face of hyperglycemia (79).
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Our research focuses on understanding how glucose-me-
diated oxidative stress leads to injury in cells of the periph-
eral nervous system and on discovering treatments to pre-
vent this injury cascade (75, 78–81, 84). We anticipate that
treatments that diminish oxidative stress or neuronal sus-
ceptibility to oxidative stress or both could provide new ther-
apeutic options for diabetic neuropathy (78). Exogenous an-
tioxidants such as vitamin C, vitamin E, SOD mimetics, and
�-lipoic acid provide modest protection against the devel-
opment of diabetic neuropathy (75). However, a more robust
protection may result from exploiting the endogenous anti-
oxidant response. Botanical compounds that activate Nrf2
are actively being tested for their therapeutic efficacy in other
diseases involving oxidative damage, including cancer and
cardiovascular disease (2, 14, 28, 40, 49, 69). We recently iden-
tified a panel of compounds that prevent glucose-induced
mitochondrial oxidative stress and injury in DRG neurons
(78), but their effects on Nrf2 are not known.

The current study explores the antioxidant response in
DRG neurons after oxidative stress and compares this with
relatively glucose-insensitive Schwann cells (19). We char-
acterize the effects of the botanicals resveratrol and sul-
foraphane on the Nrf2-mediated antioxidant response in
DRG neurons and Schwann cells. In addition, we examine
the ability of other DRG neuron-protective agents identified
by a compound screen to activate the antioxidant response.
We find that resveratrol, sulforaphane, and the PPAR ago-
nist fenofibrate all protect DRG neurons against glucose-in-
duced injury in a time-dependent manner. These treatment
strategies stimulate Nrf2 translocation to the nucleus, ex-
pression of ARE-driven antioxidant enzymes, and mainte-
nance of cellular antioxidant potential. These data suggest
that pharmacologic activation of the antioxidant response as
an adjunct to other therapeutic strategies may provide sig-
nificant protection against diabetic neuropathy.

Materials and Methods

Materials

Falcon-brand tissue-culture supplies were purchased from
BD Biosciences, Bedford, MA. Chemicals were purchased
from Sigma-Aldrich Corp (St. Louis, MO) or Fisher Scientific
(Pittsburgh, PA).

Cell isolation and culture

Dissociated DRG neurons were isolated from E15
Sprague–Dawley rat embryos or the adult dams. Cells were
plated on collagen-coated tissue-culture plates or collagen-
coated glass coverslips. Embryonic cells were cultured in
Neurobasal media supplemented with B27 (without antioxi-
dants), 10 ng/ml 2.5S nerve growth factor (NGF), 30 �M
FUDR and penicillin/streptomycin/neomycin (5,000 U/5
mg/10 mg/ml, respectively) and 1.4 mM L-glutamine. After
24 h, cultures were refed with fresh Neurobasal media with
all the same supplements except B-27 or L-glutamine. Adult
cultures are grown in a 1:1 mix of low-glucose DMEM:F-10
containing 1 � B27 additives, 40 �M fluoro-2-deoxyuridine
(FUDR), and 1,000 U/ml penicillin/streptomycin/neomycin.
Cultures were used for experiments after 3 days in culture,
at which time �95% of the cells are DRG neurons. Glucose,
H2O2, or tert-butylhydroquinone (BHQ), an alternative
prooxidant, was applied as a single bolus directly to the cul-

ture media. Standard Neurobasal media contains 25 mM glu-
cose, and hyperglycemia was simulated by adding 20 mM
glucose to the media, producing 45 mM final glucose con-
centration (78–81, 83). In adult DRG cultures, basal glucose
was 5.7 mM; so 20 mM added glucose yields 25.7 mM final
glucose concentration. Schwann cells were isolated from sci-
atic nerves of P3 rat pups. Sciatic nerves were dissected from
perineurium in ice-cold L15 and cells dissociated in 1 ml 1%
collagenase, and then 1 ml 2.5% trypsin at 37 °C for 30 min.
Cells were plated on poly-L-lysine-coated plates in
DMEM/10% FBS. At confluence, fibroblasts were removed
by complement lysis by using thy1.1 antibody and rabbit
complement. Schwann cells were maintained in low glucose
(1 g/L) DMEM containing 10% heat-inactivated FBS, 2 �M
forskolin, 20 �g/ml bovine pituitary extract, and peni-
cillin/streptomycin/neomycin. Before experiments, Schwann
cells were switched to defined media for 24–48 h [1:1 mix of
low glucose (1 g/L) DMEM and Ham’s F12 media contain-
ing 10 �g/ml transferrin, 10 �M putrescine, 20 nM proges-
terone, and 30 nM sodium selenite].

TUNEL analysis

Apoptosis was assessed by counting the number of
TUNEL-positive cells, identified by using the ApopTag Per-
oxidase In Situ Apoptosis Detection Kit as previously de-
scribed (76, 78, 80, 81).

Western immunoblotting

Western blot analyses were performed as previously de-
scribed (81). Cell lysates were collected by using modified
RIPA buffer containing 20 mM Tris pH 7.4, 150 mM NaCl,
1% sodium deoxycholate, 10 �g/ml leupeptin, 10 �g/ml
aprotonin, and 100 �g/ml PMSF. Five micrograms of pro-
tein was loaded and subjected to SDS-PAGE. After transfer
to nitrocellulose membranes (Hybond; Amersham Bio-
sciences Corp., Piscataway, NJ), membranes were incubated
in a blocking solution composed of 5% milk [Carnation, non-
fat dry, dissolved in tris-buffered saline (TBS) containing
0.1% tween-20 (TBST) for 2 h at 22°C or for 16 h at 4°C]. Blots
were incubated with anti-NQO1 (Abcam, Cambridge, MA),
anti-catalase (Rockland, Gilbertsville, PA), or anti-Nrf2
(Santa Cruz Biotechnology Inc., clone 722, Santa Cruz, CA).
Primary antibodies were used at 1:1,000 dilution in blocking
solution for 2 h at 22°C or for 16 h at 4°C. After extensive
washing in TBST, blots were incubated with horseradish per-
oxidase conjugated goat–anti-mouse IgG or goat–anti-rabbit
IgG secondary antibody (Santa Cruz Biotechnology, Inc.;
1:1,000) for 1 h at room temperature. Blots were developed
with the Phototope-HRP Western Blot Detection Kit (Cell
Signaling Technology, Inc.) according to the manufacturer’s
instructions, and exposed to Hyperfilm-ECL film (GE
Healthcare Bio-Sciences Corp., Piscataway, NJ). Blots shown
are representative of at least three independent experiments
performed.

Immunohistochemistry

Immunohistochemistry was performed as previously de-
scribed (12, 13, 38) by using an anti-Nrf2 antibody (Santa
Cruz Biotechnology). Nuclei were stained with bis-benz-
imide (Sigma Corporation) by following the manufacturer’s
protocol. Samples were mounted in ProLong antifade
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mounting media (Invitrogen, Carlsbad, CA) and examined
by using an Olympus FluoView 500 confocal microscope
with a 60 � 1.2 numerical aperture water-immersion objec-
tive at a resolution of 800 � 600 pixels.

Catalase activity

Catalase activity in DRG neuron lysates was determined
by assessing the ability of lysates to prevent hydrogen per-
oxide–induced oxidation of Amplex Red, per the protocol
published by the manufacturer (Molecular Probes, Eugene,
OR) (79).

GST and reduced glutathione (GSH)

Concentrations of GSH or activity of GST were measured
in cell lysates by use of substrate recycling kits according to
the manufacturer’s protocols (Cayman Chemical, Ann Ar-
bor, MI).

NQO1

The NQO1 activity of cell lysates was determined from the
reduction of 2,6-dichloroindophenol with and without
dicumarol (10 �M), and the NQO1 activity was taken as the
dicumarol-sensitive fraction, as described in (31). Between 1
and 3 �g/ml protein was added to a solution containing fi-
nal concentrations of 0.04 mM 2,6-dichloroindophenol �
0.01 mM dicumarol in 25 mM Tris-HCl buffer (pH 7.4). The
reaction was initiated by the addition of NAD(P)H (100 �M)
and FAD (50 �M) in a final volume of 200 �l. The absorbance
at 590 nm was measured at 15-sec intervals over a period of
5 min at room temperature, monitored by using an Ascent
Multiskan spectrophotometer (Labsystems, Helsinki, Fin-
land). All reactions were carried out in 96-well plates, and
each sample was measured in triplicate. The concentration
of oxidized 2,6-dichloroindophenol remaining at each time
point was calculated from a molar extinction coefficient of
21 ml/�mol/cm. The reaction rate in nanomoles of 2,6-
dichloroindophenol reduced per minute per milligram of to-
tal protein was calculated from a plot of A590 against time.

HO-1

The activity of HO-1 was determined by the change in ab-
sorption due to oxidation of ferric heme by DRG neuron
lysates (46). Reaction mixtures contained DRG neuron lysate
(1–3 �g/ml protein), 10 �M hemin, 0.15 mg/ml BSA, 50
�g/ml spinach ferredoxin-NADP, 5 mM ascorbate, 2 mM
desferrioxamine in 100 mM HEPES-NaOH buffer, pH 7.2.
The reaction was started by adding 0.1 mM final concentra-
tion NADPH. Absorbance was read at 750 nm every 60 sec
for 10 min. The final hemin absorbance after 5 min indicated
the rate of oxidation. Higher absorbance indicates less hemin
oxidation and a lower activity of HO-1 in the sample. The
values were corrected for the protein concentration.

MitoSOX

MitoSOX (Molecular Probes, Eugene, OR) is a cell-perme-
able probe that accumulates specifically in mitochondria and
becomes fluorescent after oxidation by superoxide. MitoSOX
was dissolved in DMSO immediately before use, and then
applied to DRG neurons at a final concentration of 4 �M with
DMSO diluted to �0.1%. After 15 min, medium was re-

moved and replaced with 100 �L Hepes-buffered saline so-
lution (HBSS: 10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM
KCl, 1 mM MgCl2, 1.8 mM CaCl2); then red fluorescence was
read at 485 nm excitation and 590 nm emission (Fluoroskan
Ascent II plate reader; LabSystems).

Statistical analyses

All quantitative assays were subjected to one-way
ANOVA analysis with a Tukey’s posttest, performed by us-
ing GraphPad Prism 4 software (GraphPad Software, Inc.,
San Diego, CA). Mean values of at least three independent
experiments were included in the analyses. Error bars indi-
cate standard error of the mean (SEM) for all graphs.

Results

Oxidative preconditioning protects against hyperglycemia

DRG neurons exposed to hyperglycemic conditions pro-
duce high levels of reactive oxygen species (ROS) and un-
dergo apoptosis (59, 60, 79, 80, 86). One intriguing finding
from our previous work was a rapid but transient induction
of antioxidant enzymes, including SOD, within 1–3 h of hy-
perglycemia and before significant development of apopto-
sis (79). Because oxidative stress is a key component of the
mechanisms that cause hyperglycemic DRG injury, we pos-
tulated that this reactive induction of antioxidant enzymes
in DRG neurons might confer protection against hyper-
glycemia.

The initial experiment was designed to determine whether
mild stress could induce a protective response in DRG neu-
rons. DRG neurons were exposed to 20 mM added glucose
per our previous studies (59, 78–81, 83), or a range of doses
of H2O2. Cell injury was assessed by using the TUNEL as-
say (Fig. 1). Although DRG neurons are exquisitely sensitive

ANTIOXIDANT RESPONSE AS A THERAPY 427

0

M H2O2�

P
er

ce
nt

 T
U

N
E

L 
P

os
iti

ve

10

20

30

40

50

60

70

80

90

100

Ctrl Gluc 1 10 100

*

�

*

1 �
Gluc

FIG. 1. Mild prooxidant stress prevents dorsal root gan-
glion (DRG) neuron injury in subsequent exposure to hy-
perglycemia. DRG neurons were exposed to a range of con-
centrations of H2O2 (1–100 �M) and then examined for cell
injury by TUNEL after 24 h. Hyperglycemia was modeled
by adding 20 mM glucose, giving a final concentration of 45
mM glucose (Gluc). In the last bar, DRG neurons were prein-
cubated with the nontoxic concentration of H2O2 (1 �M) for
3 h before hyperglycemia. Values are expressed as mean �
SEM. *p � 0.01 versus control (Ctrl). �p � 0.05 versus Ctrl.



to high concentrations of H2O2, the 1 �M dose did not in-
duce injury. Therefore, we next exposed DRG neurons to 1
�M H2O2 for 3 h, followed by 20 mM added glucose, and as-
sessed injury after 24 h (last bar, Fig. 1). Pretreatment with
1 �M H2O2 for 3 h before the application of 20 mM glucose
completely prevented glucose-induced DRG neuron injury.

Oxidative preconditioning involves activation of Nrf2

After we established that low-dose oxidative stress in-
duces a protective response in DRG, we tested the hypoth-
esis that the mechanism involved activation of the ARE. We
first examined the expression of Nrf2, the transcription fac-
tor associated with proteins containing the ARE promoter
(44). DRG neurons were treated with mild prooxidant stress
(1 �M H2O2) for 30 min to 3 h, and Nrf2 levels were assessed
with Western immunoblotting. Any increase in DRG Nrf2
expression after prooxidant treatments was insignificant and
inconsistent (data not shown). In Schwann cells, however,
which are resistant to 20 mM added glucose (10), a basal ex-

pression of Nrf2 rapidly and robustly increased with expo-
sure to either 20 mM added glucose or 1 mM H2O2 (Fig. 2A).

We next examined the localization of Nrf2 in Schwann
cells and DRG neurons (Fig. 2B, C). In Schwann cells, basal
Nrf2 (red) is almost entirely localized in the cytoplasm, but
prooxidant treatment led to rapid and marked translocation
of a portion of the Nrf2 to the nucleus (pink appearance of
red Nrf2 overlaid with blue nuclear stain, Fig. 2B). In un-
treated control neurons, little Nrf2 was localized in the cy-
toplasm, but in DRG neurons treated for 1 h with prooxi-
dant BHQ or 1 �M H2O2, a number of cells displayed a
portion of Nrf2 localized in the nucleus (white arrows). Low
levels of nuclear Nrf2 are occasionally observed in glucose-
treated DRG neurons (Glu). We observe a greater increase
in red Nrf2 staining in all treatment conditions compared
with the staining in the control that is not supported by a
large increase in the Western blot. This is most likely due to
some epitope masking when Nrf2 is bound in its inactive
form in the cytoplasm and not a significant increase in Nrf2
protein (30).
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FIG. 2. Prooxidants induce Nrf2 accumulation in the nu-
cleus. (A) Expression of Nrf2 was assessed in Schwann cells
with Western blotting. Actin was used as a loading control
(Ctrl). Schwann cells were exposed to 20 mM added glucose
(Gluc) or 1 �M H2O2 for 10, 30, or 60 min. A positive con-
trol (�) was compared with the primary cell samples. (B, C)
The nuclear localization of Nrf2 was assessed by staining red
with an antibody for Nrf2 and counterstaining the nuclei blue
by using bis-benzimide. In all conditions shown, cells were
fixed and stained after 30-min treatment. Colocalization of
Nrf2 with nucleus appears pink and is indicated with white
arrows. Representative images of Schwann cells are shown in
(B), and dorsal root ganglion (DRG) neurons, in (C). (D) Red
arrow, A DRG neuron undergoing programmed cell death,
with condensed and fragmented chromatin.

FIG. 3. Mild prooxidant stress activates antioxidant en-
zymes. Dorsal root ganglion (DRG) neurons or Schwann
cells were exposed to hyperglycemia (20 mM added glucose),
mild prooxidant [1 �M H2O2 or 10 �M tert-butylhydro-
quinout (BHQ)], or the antioxidant (AO) �-lipoic acid (100
�M) for 3 h. H2O2 � glucose indicates 3-h H2O2 followed by
3-h glucose. After 3 h, antioxidant enzyme activities were
measured: (A) Catalase, (B) HO-1. �p � 0.05 compared with
control (Ctrl). *p � 0.01 compared with Ctrl.



Catalase activity is increased after activation of Nrf2

We next determined the activity and expression of Nrf2-
regulated enzymes subsequent to Nrf2 translocation to the
nucleus after exposure to 1 �M H2O2. First, we examined
catalase, an important antioxidant, but not reported to be
regulated by Nrf2. Similar to previous studies (79), we found
that exposure to 20 mM added glucose for 3 h produced a
1.5-fold increase in catalase activity in DRG neurons and
�1.6-fold in Schwann cells (Fig. 3A). In DRG neurons, a 3-h
pretreatment with 1 �M H2O2 produced a threefold increase
in catalase activity. Similar results were obtained when a 3-
h exposure to 1 �M H2O2 was followed by 20 mM added
glucose. Increases in catalase in response to 1 �M H2O2 were
more modest in Schwann cells, but basal catalase is already
higher in Schwann cells than induced levels in DRG neu-
rons. Exposure to the more potent prooxidant 10 �M BHQ
produces a robust induction of catalase in the Schwann cells.
This level of prooxidant leads to cellular breakdown in the
sensitive DRG neurons, and enzyme activity cannot be mea-
sured in these samples.

Heme oxygenase (HO-1) activity is increased after
activation of Nrf2

The enzyme HO-1 is known to be regulated by Nrf2. HO-
1 activity can be quantified by measuring hemin levels in cell
lysates. The level of hemin remaining after a 5-min reaction
with DRG neuron or Schwann cell lysates is plotted in Fig.
3B. Higher levels of hemin represent lower heme oxygenase
activity. Basal activity is markedly higher in Schwann cells
compared with DRG neurons. Treating DRG neurons with
an antioxidant (100 �M �-lipoic acid) for 3 h further de-
creased basal HO-1 activity. However, exposure to 1 �M
H2O2 or 20 mM added glucose for 3 h increased HO-1 com-
pared with control, suggesting that mild prooxidant stress
increases the activity of this enzyme. In Schwann cells, ex-
posure to 20 mM glucose tended to increase, but did not sig-
nificantly alter, HO-1 activity over a 3-h period. Exposure to
the prooxidants H2O2 (1 �M) or BHQ (10 �M) significantly
induced HO-1 activity.

Oxidative preconditioning promotes the ability of DRG
neurons to generate GSH

The ability to regenerate GSH is important for neurons to
defend against oxidative stress. Treatment with the prooxi-
dants 10 �M BHQ, 1 �M H2O2, or 20 mM added glucose sig-
nificantly increased the activity of GST over a 3-h period
compared with untreated control DRG neurons (Fig. 4A).
The impact of increased GST on cellular antioxidant status
during oxidative stress was assessed by measuring GSH un-
der different treatment paradigms. DRG neurons were ex-
posed to 1 �M H2O2 for 3 h, and then to 20 mM added glu-
cose for 1, 3, or 6 h. DRG neurons (no pretreatment) also
were exposed to 20 mM added glucose over the same time
course. Treatment with 1 �M H2O2 alone for 3 h did not
markedly alter the cellular levels of GSH (compare bars at 0
h). Exposure to glucose alone produced a modest decrease
in GSH after 1 h that returned to control levels by 3 h. In
DRG neurons pretreated with prooxidant (1 �M H2O2) be-
fore glucose exposure, the levels of GSH were significantly
increased at every time point, with the largest peak at 1 h.

These levels of GSH reflect the increased activity of GST in
prooxidant-treated DRG neurons (Fig. 4A).

Resveratrol and sulforaphane activate the 
antioxidant response

Prooxidants such as H2O2 or BHQ are not viable treatment
options in the peripheral nervous system in vivo. Therefore,
we examined other compounds known to activate the anti-
oxidant response in other cell types. The botanicals resvera-
trol and sulforaphane are recognized for their ability to in-
duce Nrf2 activity (29, 40, 44), although this effect has not
been tested in DRG neurons. We therefore assessed the abil-
ity of resveratrol or sulforaphane to induce an antioxidant
response in DRG. Nuclear localization of Nrf2 was assessed
after 1-h exposure to 1–25 �M resveratrol or sulforaphane.
Similar to the prooxidant treatments, nuclear Nrf2 was ob-
served in 30–50% of DRG neurons after resveratrol or sul-
foraphane treatment (Fig. 5A).

The effect of the botanical compounds on DRG neuron
antioxidant enzyme expression was confirmed by measur-
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ing the activity of GST and NQO1. A dose-dependent in-
crease in both GST activity (Fig. 5B) and NQO1 expression
(Fig. 5C) was observed 3 h after exposure to resveratrol or
sulforaphane. In Fig. 5C, data for resveratrol are shown, and
similar results were obtained by using sulforaphane (data
not shown).

Similar to findings of other glial studies (10, 18), 10 �M
resveratrol induced a robust antioxidant response in the
Schwann cells as evidenced by Nrf2 translocation to the nu-
cleus and by a greater than twofold increase in NQO1 ac-
tivity (Fig. 5D).

Activation of the antioxidant response by botanicals
protects against hyperglycemia

We next determined whether the botanical activators of
Nrf2 could confer protection against DRG injury in the pres-
ence of hyperglycemia. Note, as stated earlier, that Schwann
cells are resistant to hyperglycemic injury. DRG neurons
were exposed to increasing concentrations of either resvera-
trol or sulforaphane for 3 h, followed by 20 mM added glu-
cose. After 24-h glucose treatment, DRG neurons were as-
sessed for cell death by the TUNEL assay (Fig. 6A). Botanical
doses as low as 1 �M significantly decreased subsequent glu-
cose-induced DRG neuron death. Resveratrol (1 �M) de-
creased death from �70% in glucose-treated neurons to 50%.
Increasing the concentration of resveratrol to 25 �M further
decreased DRG neuron death to �42%. Similar results were
observed with the same concentrations of sulforaphane (Fig.
6A).
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FIG. 5. Botanical compounds activate Nrf2 translocation
and the antioxidant response. DRG neurons were exposed
to 1 or 10 �M resveratrol (RES) or sulforaphane (SUL), and
then the antioxidant response was assessed. (A) 1 h after ex-
posure to 10 �M compound, the neurons were fixed and la-
beled for Nrf2 (red) or nuclei (bis-benzimide, blue). Nuclear
Nrf2 is indicated with white arrows. (B) The activity of GST
was determined after 3 h. *p � 0.05 compared with control
(0 �M). (C) The expression of NQO1 protein was determined
with Western blotting after 3-h RES. The prooxidant BHQ
(10 �M) was included for comparison. Pixel density of the
NQO1 band in each condition was normalized to the corre-
sponding GAPDH band. (D) Schwann cell antioxidant re-
sponse to resveratrol (10 �M) was assessed. Nrf2 localiza-
tion after 1 h (left) and NQO1 expression after 3 h (right).
Corrected mean pixel density represents the mean � SEM
for each condition from three replicate blots. †p � 0.01 and
*p � 0.05 versus untreated control (C).
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To determine whether the effects of resveratrol and sul-
foraphane result from a direct effect on the glucose-in-
duced injury mechanism or a change in protein expression
or modification, increasing concentrations of sulforaphane
were applied to DRG neurons either 2 min before (Co-
treat), or 3 or 6 h before the application of 20 mM glucose
(Fig. 6B). In the co-treatment group, no difference was
noted in the degree of DRG neuron death between the glu-
cose alone and any dose of sulforaphane. Instead, the
greatest protection was observed after 3-h pretreatment.
The protection afforded by either the 6-h pretreatment or
the 3-h pretreatment was similar. The data suggest that suf-
ficient time for a change in protein expression exists, and
the duration of the protective response suggests that new
protein expression is involved.

Multiple mechanisms of antioxidant protection via different
bioactive compounds

We recently completed a screen of 1,040 compounds for
the ability to prevent glucose-induced mitochondrial super-
oxide during hyperglycemia (78). We identified 25 com-
pounds that prevented both mitochondrial superoxide and
DRG neuron injury. In the present study, we selected four
compounds of interest and explored their protective mech-
anisms in adult DRG neurons. First, we repeated the pre-,
co-, and posttreatment paradigms with respect to addition
of 20 mM glucose (Fig. 7). All of the compounds were used
at the screening concentration of 1 �M. All four of the drugs
prevented glucose-induced DRG neuron injury per the
screening paradigm (78), but the experiment demonstrated
differences among the compounds.

Aspirin

Aspirin significantly decreased glucose-induced DRG
neuron injury when applied 3 h before, or at the same time
as the 20 mM glucose insult (Fig. 7A). However, when 20
mM glucose was applied first and the aspirin added after 1
h, DRG neuron injury significantly increased compared with
glucose alone.

Carnitine

Carnitine significantly decreased glucose-induced DRG
neuron injury when applied 3 h before, or at the same time
as the 20 mM glucose insult (Fig. 7B). When carnitine was
applied 1 h after the glucose insult, the protection was lost,
and DRG neuron survival was similar to that with glucose
treatment alone.

Caffeine

Caffeine was highly protective in the pretreatment para-
digm, but protection was lost when the compound was
added at the same time as the glucose (Fig. 7C). When caf-
feine was applied 1 h subsequent to glucose, DRG neuron
death was significantly increased compared with that with
glucose alone.

Fenofibrate

Fenofibrate significantly promotes DRG neuron survival
when applied in any of the treatment paradigms (Fig. 7D).
Even when applied 1 h after the glucose load, significant pro-
tection was afforded, although the degree of protection was
less than the co- and pretreatment paradigms.

Caffeine induces mitochondrial superoxide, and protection
appears to be mediated via the antioxidant response

Further to explore the different mechanisms of action of
these compounds, we examined their ability to alter mito-
chondrial superoxide generation. Aspirin and carnitine are
known antioxidants, so these were not further assessed in
this system. Increasing concentrations (0.008–625 �M) of caf-
feine were applied to adult DRG neurons in the presence or
absence of 20 mM added glucose, and mitochondrial super-
oxide was assessed after 1 h (Fig. 8). Only the 0.008 �M dose
did not alter DRG neuron mitochondrial superoxide in the
presence or absence of glucose. Caffeine produced a dose-
dependent increase in mitochondrial superoxide up to 1 �M
that declined and leveled off at higher concentrations of 
caffeine. In the presence of glucose, an intermediate level of
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mitochondrial superoxide generation was lower than caf-
feine alone, but higher than glucose alone. At high concen-
trations of caffeine (125 and 625 �M), application of 20 mM
glucose led to a synergistic increase in mitochondrial super-
oxide to 12-fold higher than control levels.

Fenofibrate both is a direct antioxidant and activates the
antioxidant response

Fenofibrate decreases glucose-induced DRG neuron injury
even when applied 1 h subsequent to the glucose (Fig. 7D),
suggesting that it operates as a direct antioxidant. To test this
possibility, DCFDA oxidation in the presence of ABAP was
used as a cell-free prooxidant system to test the ability of
fenofibrate to block oxidation (Fig. 9A). A control sample
containing 2 �M BSA (no drug) was used as a comparison.
The 2 �M fenofibrate completely blocked DCFDA oxidation
to fluorescent DCF by ABAP. Fenofibrate antioxidant ca-
pacity was dose dependent, with 1 �M fenofibrate decreas-
ing ABAP-induced DCFDA oxidation by �50%. Because
DRG neuron protection against hyperglycemia is greater
with earlier (co-treatment or 3-h pretreatment) paradigms,
this suggests that direct antioxidant capacity may not be the
only mechanism of action. We examined activation of Nrf2
by fenofibrate to assess its effect on the antioxidant response
(Fig. 9B). Up to 50% of DRG neurons demonstrated some nu-
clear localization (pink overlay of red Nrf2 and blue nucleus)
of Nrf2 within 5–15 min after application of fenofibrate. 
By 30 min, most DRG neuron nuclei had no evidence of nu-
clear Nrf2.

We assessed Nrf2 expression in the fenofibrate-treated
DRG neurons (Fig. 9C). Similar to the earlier studies de-
scribed for Fig. 2, changes in Nrf2 expression in DRG neu-
rons were small and inconsistent. In the single representa-
tive blot (Fig, 9C), a modest increase in Nrf2 expression
increased further by 6 h.

Compounds that prevent mitochondrial superoxide have
variable effects on antioxidant enzyme expression

To assess the effects of our four lead compounds on the
antioxidant response, we measured the expression of NQO1.

Lysates were prepared from adult DRG neurons 3 h after ap-
plication of 1 �M drug or 1 �M H2O2 (Fig. 10A) and im-
munoblotted for NQO1 protein. Aspirin did not increase
NQO1 expression but tended to decrease it. Both fenofibrate
and carnitine modestly increased NQO1 expression. The in-
crease was statistically significant (p � 0.05). Caffeine
markedly increased NQO1 expression to a level higher than
that with H2O2 treatment.

Because fenofibrate appears to have a mild, positive effect
on the antioxidant response, we further characterized the
time course and extent of this response. We measured the
expression of NQO1 (Fig. 10B) and activity of GST (Fig. 10C)
up to 6 h after the application of 1 �M fenofibrate. Increases
in NQO1 activity remained modest. The representative blot
indicates a mild increase in NQO1 expression by 3 h that was
sustained up to 5 h. GST activity significantly increased by
3 h and increased further by 5 h.

Antioxidant response–mediated DRG neuron protection
involves protein synthesis

Finally, because our data demonstrate that DRG neuron
protection after mild prooxidant or our panel of drugs in-
volves transcription factor (Nrf2) activation, we assessed the
role of protein synthesis. Adult DRG neurons were pre-
treated for 3 h with 1 �M H2O2 or 1 �M antioxidant re-
sponse–activating drug in the presence or absence of 20
�g/ml cycloheximide (CHX), then exposed to 20 mM added
glucose for 24 h (Fig. 11). CHX alone produced a significant
increase in DRG neuron injury. Despite the toxicity of CHX,
the data clearly demonstrate that the DRG neuron protec-
tion of resveratrol, sulforaphane, fenofibrate, and 1 �M H2O2

all depend on protein synthesis to prevent glucose-induced
injury.

Discussion

The central role of excessive free radical generation in the
development of diabetes complications is a well-established
pathogenic mechanism (5, 9, 21, 35, 66, 74). As the field of
oxidative stress research has advanced, so has the accumu-
lation of evidence of free radical damage in complication-
prone tissues (82, 83). In particular, we previously charac-
terized glucose-induced injury in DRG neurons (79, 80).
Early during the course of hyperglycemic injury, we ob-
served an increase in SOD and catalase activities and pro-
posed that this was evidence of an antioxidant response (79).
However, in acute hyperglycemia, this response was too lit-
tle and too late to prevent DRG neuron injury. The current
study was designed to explore the potential significance of
the antioxidant response in DRG neurons. We compared the
antioxidant response of DRG neurons with Schwann cells
that are not injured by 20 mM added glucose (19) and ap-
pear resistant to oxidative injury.

Hyperglycemia rapidly leads to ROS formation in DRG
neurons that activates the antioxidant response. We initially
replicated this response by using exposure to a prooxidant.
Concentrations of H2O2 of 10 �M or more injured the DRG
neurons. Similarly, 10 �M BHQ destroyed the DRG neurons.
This concentration is relatively low compared with concen-
trations that injure other cell types in culture. In bone mar-
row (45) or epithelial (23) cells, at least 100–1,000 �M H2O2

must be applied to produce a cytotoxic response. This 10- to
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100-fold difference in susceptibility to prooxidants may un-
derlie the marked sensitivity of DRG neurons to hyper-
glycemia-induced injury (80). A lower concentration, 1 �M,
H2O2 did not injure the DRG neurons, but activated a pro-
tective mechanism (Fig. 1). The concept that low concentra-
tions of free radicals act as second messengers with positive
effects on cell survival is not new (16). This mechanism un-
derlies the well-established phenomenon known as isch-
emic/hypoxic preconditioning that significantly decreases
the effects of a stroke (41). However, this concept has not
been considered in diabetes, in which oxidative stress is a
significant contributor to the development of complications
(21, 25).

We hypothesized that H2O2-induced DRG neuron protec-
tion was mediated via activation of Nrf2. By using im-
munohistochemistry, we demonstrated that 1 �M H2O2 led
to rapid Nrf2 translocation from the cytoplasm to the nu-
cleus in DRG neurons. Schwann cells displayed basal ex-
pression of Nrf2 that was both increased and translocated to
the nuclei after exposure to 20 mM glucose or 1 �M H2O2.
Nrf2 plays a role in antioxidant gene expression in the brain,
but has not been demonstrated in other areas of the nervous
system. Our finding in Schwann cells was anticipated, be-

cause brain glial cells such as astrocytes respond to oxida-
tive stress by translocating Nrf2 to the nucleus and express-
ing �200 genes (65).

In our previous study, SOD and catalase activities in-
creased in DRG neurons in response to hyperglycemia (79).
This response peaked after 3 h of hyperglycemia, but sig-
nificant oxidative stress occurred within 1 h and was suffi-
cient to lead to loss of mitochondrial function and cell death.
Now we demonstrate that sublethal oxidative stress prevents
subsequent injury by increasing the ability to detoxify free
radicals. Increased DRG neuron protection by prooxidant
conditioning was associated with increased expression and
activity of the antioxidant enzymes catalase, HO-1, and GST.
Preactivation of an antioxidant response prevents cell injury
in many paradigms. The best-characterized examples of this
response are in the hypoxic/ischemic preconditioning that
provides cardiac protection during coronary artery occlusion
or decreases cerebral infarct areas after a stroke (17, 33, 53,
56, 57). Insults that lead to mild oxidative stress produce a
gene expression–dependent resistance to a subsequent
greater stress that would normally cause cell or tissue injury.

In Schwann cells, the basal activity of these enzymes was
similar to the maximum stimulated activities in the DRG
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neurons. Addition of prooxidants further increased these en-
zyme activities in Schwann cells. Our data demonstrate a
strong antioxidant capacity in Schwann cells that may un-
derlie their capacity to survive fluctuations in glucose con-
centration (19). These data do not suggest that Schwann cells
are unaffected by hyperglycemia. We demonstrate that
Schwann cell gene expression changes, and others suggest
that proliferation is altered (4), which may contribute to di-
abetic neuropathy.

Next, we sought an alternative approach to activation of
the antioxidant response that will be more readily translated
to in vivo models. Botanical compounds are therapeutic for

a wide variety of diseases through mechanisms that include
activation of phase II enzymes. In particular, resveratrol and
sulforaphane, isolated from red grapes and cruciferous veg-
etables, respectively, have entered clinical trials for cancer
and Alzheimer’s disease (26, 36, 42, 62, 89). Both these com-
pounds led to Nrf2 nuclear localization within 1 h in DRG
neurons and Schwann cells (Fig. 5).

After botanical-induced Nrf2 translocation to the nucleus,
we observed increases in the antioxidant enzymes GST and
NQO1 after 3 h. NQO1 normally detoxifies ROS within cells
of the nervous system (3) and is one of the most highly in-
duced enzymes in response to resveratrol in other systems
(39). GST is essential for the generation of glutathione, the
major cellular antioxidant in DRG neurons (55). Thus, ap-
plication of botanicals induced the activities of key DRG neu-
ron defense mechanisms against oxidative stress.

The activation of the antioxidant response by resveratrol
or sulforaphane in DRG neurons led to their ability to with-
stand a hyperglycemic insult. The time dependence of the
protection conferred by these compounds supports our con-
clusion that protection is mediated via activation of the anti-
oxidant response. If sufficient time does not exist between
botanical treatment and exposure to stress, the protection is
lost (Fig. 6), suggesting that new gene expression is required.
We also note that increasing the pretreatment period to 6 h
rather than the optimum 3 h tended to decrease the protec-
tive effect, although the difference was small. Further stud-
ies are needed to assess the transience of the antioxidant 
response in DRG neurons and whether continual recondi-
tioning of the DRG neurons with botanicals is necessary and
possible.

The finding that increasing DRG neuron antioxidant po-
tential prevents glucose-mediated injury is supported by our
previous studies with exogenous antioxidants (79, 84). How-
ever, manipulation of the endogenous antioxidant response
is an attractive alternative target for DRG neuron protection
for many reasons. Bioavailabilty of oral antioxidants in spe-
cific cells may be low (74). Moreover, long-term use of sin-
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gle antioxidants such as vitamin E appears to cause an im-
balance in the antioxidant pool that decreases efficacy (85).

Both resveratrol and sulforaphane increase a spectrum of
antioxidant enzymes and small-molecule antioxidants in
many cell types (10, 20, 40). Sulforaphane has an additional
effect of promoting the cell-mediated immune response by
augmenting the proliferative effects of mitogens and the se-
cretion of cytokines (70, 87). Most notably, resveratrol effec-
tively protects endothelial cells against apoptotic damage
from oxidized low-density lipoproteins (15, 51). These oxi-
dized lipoproteins are particularly prevalent in patients with
type 2 diabetes, and thus resveratrol may provide added ben-
efit against complications. Recent intervention studies in di-
abetic rodents demonstrated in vivo that resveratrol may de-
crease microvascular complications (63, 64). Studies using
botanical compounds are ongoing, and we are continuing to
seek additional adjunct therapies to improve the manage-
ment of diabetic complications.

We identified compounds that prevent mitochondrial ox-
idative stress in DRG neurons exposed to hyperglycemia (78,
80, 81). Improved therapies for diabetic neuropathy may be
obtained by using combinations of compounds that operate
at different targets on the same pathway. Therefore, we fur-
ther explored the mechanisms of action of four lead com-
pounds. The major finding was that some compounds, no-
tably caffeine, activate the antioxidant response by
producing oxidative stress (Figs. 7C and 8). This would sug-
gest that the compound would not be useful for promoting
the antioxidant response in vivo because a cell that is already
subject to oxidative stress is likely to be injured by exposure
to a prooxidant. This conclusion is supported by our post-
treatment experiments in which the compound was applied
1 h subsequent to the glucose insult, and DRG neuron injury
was increased. A broad literature suggests that caffeine may
provide therapeutic benefit in neurodegenerative diseases
(47, 58). However, the data are inconsistent, and our demon-
stration of the prooxidant activity suggests why these data
conflict. Experimental results will depend on whether the
caffeine generates oxidative stress in a cell or tissue of in-
terest when additional stress is injurious.

Our most promising compound from these studies is
fenofibrate. In contrast to caffeine, fenofibrate decreased
DRG neuron oxidative stress both by operating as a direct
antioxidant and by activating the antioxidant response.
Fenofibrate is used in type 2 diabetic patients as an adjunct
to lipid-lowering therapy aimed at decreasing cardiovascu-
lar disease (72). Recent clinical trials demonstrated that
fenofibrate also may provide therapeutic protection against
retinopathy (1). In type 2 diabetic rats, fenofibrate decreased
evidence of nephropathy (11). Taken with our present study,
fenofibrate appears to be a strong candidate for the preven-
tion of macro- and microvascular complications in diabetes.
The ACCORD trial has many patients taking fenofibrate and
should provide valuable insight into the clinical benefits of
fenofibrate therapy (67). Fenofibrate, like resveratrol and sul-
foraphane, requires new protein synthesis to confer DRG
neuron protection against glucose (Fig. 11). The protein syn-
thesis–inhibitor study further supports the role of new pro-
tein expression, which we contend is mediated via Nrf2 ac-
tivation of the antioxidant response.

In summary, we report that activation of the antioxidant re-
sponse is a promising therapeutic option for the protection of

DRG neurons against glucose-mediated injury. This protection
involves the induction of ARE-containing enzymes such as
NQO1 and GST in an Nrf2-dependent manner. The mecha-
nisms by which compounds activate the antioxidant response
will be important. Specifically, the mechanism of fenofibrate
that activates the response without oxidative stress should be
explored. This study supports the concept that increasing the
antioxidant potential within neurons will promote resistance
to hyperglycemia and confirms the importance of further ex-
ploration of botanical and other compounds for therapeutic
strategies against diabetic neuropathy.
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