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Factor-1(APE/Ref-1): A Unique Target for the Prevention

and Treatment of Human Melanoma
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Abstract

Management of melanoma is a growing and challenging public health issue requiring novel and multidisci-
plinary approaches to achieve more efficient prevention and therapeutic benefits. The aim of this article is to
show the critical role of APE/Ref-1 on melanomagenesis and progression. APE/Ref-1 serves as a redox-sensi-
tive node of convergence of various signals as well as a DNA-repair enzyme, and its activation protects
melanocytes and melanoma cells from chronic oxidative stress and promotes cell survival via mediation of
downstream pathways. APE/Ref-1 is a strong candidate as a potential drug-treatable target for the prevention
and treatment of human melanoma. Lead compounds exhibiting inhibitory effects on APE/Ref-1 are also re-
viewed. We anticipate potential clinical benefit in the future through inhibition of APE/Ref-1 and/or Ref-1-
mediated signaling. Antioxid. Redox Signal. 11, 639–650.
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Introduction

HUMAN MELANOMA is the most serious skin cancer and is
among the most drug resistant of all malignancies. Al-

though in recent years, substantial successes in the therapy
for other advanced malignancies has been achieved, this has
not occurred for metastatic melanoma. This tumor is also one
of the few cancers with rapid increases in its incidence rate
over the past two decades (75, 98). Approximately 60,000
new cases of invasive melanoma and nearly 8,000 deaths are
reported in the United States each year, making this disease
an increasing public health concern (46). Ultraviolet radia-
tion (UVR), a well-known initiator and promoter of non-
melanoma skin cancers (14), has been implicated as a major
environmental contributor to the development of most cu-
taneous melanomas, although its mechanistic role in melan-
ocyte carcinogenesis remains poorly understood, and it is
likely that other etiologic factors remain to be discovered
(99). Basic research has produced some real advances in our
biologic understanding of cutaneous malignant melanoma
(8, 21, 93); however, this knowledge has not been success-
fully translated into significant clinical benefit. Currently,

limited therapeutic options exist for patients with metasta-
tic melanoma, and novel drug-treatable targets are in great
demand.

Abnormal Redox Status and Chronic Oxidative Stress
is Important in the Pathogenesis of Human Melanoma

Melanin, a unique product of melanocytes, is the major
pigment found in the hair and epidermis, as well as in the
brain and other highly nerve-active areas such as the retina
and middle ear. The predominant physiologic function of
melanin, which is closely linked to its redox potential, is to
protect skin from photochemical stress by serving as a dis-
posable buffer by neutralizing reactive oxygen species (ROS)
generated by UVR. Melanin synthesis represents a complex
series of tightly regulated steps involving the consumption
of oxygen and superoxide and the production and 
utilization of hydrogen peroxide, all carefully orchestrated 
within a well-organized organelle, the melanosome (37).
Melanosomes progressively become more structurally or
functionally disordered or both during melanomagenesis,
evoking more ROS production and leading to an ongoing
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peroxide stress within the melanoma cell, especially 
when bound to Cu (22, 28, 31, 96). Consistently, normal
melanocytes efficiently abrogate an exogenous peroxide
stress, whereas human melanoma cells are seriously im-
paired in their ability to do so and generate higher levels of
reactive oxygen species (ROS) (74). Contributions of other
investigators have also shown that melanoma cells are de-
pleted of cellular antioxidants (85), contain reduced glu-
tathione (GSH) levels (30), and have altered levels of 
catalase, SOD, and other antioxidant enzymes. These con-
siderations led us to propose a novel model for the etiology
and pathogenesis of melanoma (Fig. 1), in which the initial
step involved the conversion of melanin from its natural anti-
oxidant/reduced state to that of a superoxide-generating
prooxidant compound and the generation of excess (ROS), a
process enhanced by the binding to melanin of certain met-
als found in the environment (28, 75, 76) or represented
prominently in the normal melanin-synthesis pathway (i.e.,
Cu2� bound to tyrosinase).

In addition to its beneficial health effects, such as vitamin
D3 formation, UVR also produces many acute and chronic
detrimental cutaneous changes, which are associated with
the development of skin malignancies (107). Elevated ROS
(i.e., H2O2) and reactive nitrogen species (RNS) levels were
evident after UVR (10, 39, 103), which adds an oxidative bur-
den to melanocytes. ROS induces various oxidative DNA
damage such as 8-oxo-dihydro-2�-deoxyguanine (8-oxo-dG),
which is a mutagenic lesion that is directly repaired by the
DNA base excision–repair pathway (35, 70). It is also well-
documented that active dietary antioxidants than can scav-
enge ROS exhibit promising cancer chemopreventive activ-
ities (50). For the process of melanomagenesis, extensive
epidemiologic observations support the idea that the effects
of UVR on the skin are complex (2, 9). A striking feature in
melanoma has been the general inability to detect thymine
dimers or other classic UVR-induced mutations in primary
or metastatic melanomas, even in genes of interest (9), de-
spite convoluted explanations of why this might be so (110).

Increase of APE/Ref-1 as an Adaptive Response to
Oxidative Stress

APE/Ref-1 is a node of convergence for various redox-
sensitive signals as well as being important in DNA repair.

As the major AP endonuclease in human cells, APE/Ref-1
accounts for �95% of the total AP endonuclease activity and
is essential for the protection of cells against the toxic effects
of several classes of DNA-damaging agents. Recently, many
studies demonstrated that many survival, proliferation, or
antiapoptosis signalings are activated by APE/Ref-1–medi-
ated transcription factors such as AP-1, NF-�B, and p53,
whose regulation occurs in both a redox-dependent and a
redox-independent manner (27, 118). It is well documented
that elevated APE/Ref-1 is associated with chemo- and ra-
dioresistance in a number of cellular systems (11, 77, 102).
Knockdown of APE/Ref-1 efficiently induced apoptosis or
sensitization or both to chemical treatments in many cancer
cells (57, 115, 116, 120).

APE/Ref-1 is uniquely sensitive to both intracellular and
extracellular alterations of redox status. ROS not only can in-
hibit APE/Ref-1 activities by direct oxidation of amino acid
residues (49), but also affects the expression level and sub-
cellular localization of APE/Ref-1 (44, 88, 91, 109). Further-
more, it is well documented that both UVA and UVB cause
skin inflammation with release of inflammation mediators
like cytokines (IL-1 and IL-6), which further produce more
ROS and increase oxidative stress (29, 107). Activation of NF-
�B and AP-1 play a critical role in regulating the transcrip-
tion of numerous genes involved in the immune and in-
flammatory response (45, 101), in which DNA-binding
activity is markedly enhanced by APE/Ref-1 (27). In addi-
tion to indirect regulation of inflammation, many studies
also revealed distinct induction of APE/Ref-1 in response to
inflammatory stresses such as infection and asthma (3, 80,
83). For example, Helicobacter pylori–induced IL-8 gene tran-
scription is also dependent on APE/Ref-1. As two sides of
the same coin, APE/Ref-1 has beneficial effects and protects
cells from ROS toxicity, but conversely, consistent induction
or activation of APE/Ref-1 in response to prolonged oxida-
tive stress switches the cellular signaling to a prolifera-
tion/antiapoptosis phenotype.

In melanoma cells, certain metals in combination with
UVR, generates low-grade redox cycling with ongoing
ROS generation, resulting in progressive and diffuse ge-
netic and other cellular damage. The imbalance between
pro- and antioxidants results in the activation of redox-sen-
sitive signal transcriptions, such as AP-1 and NF-�B (15).
AP-1 specifically regulates transcription of tetradecanoyl-
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FIG. 1. A model for chemoprevention of
early melanoma progression. Oxidation of
melanin leads progressively to generation of
a redox-active tautomer (quinone-imine), in-
tracellular redox cycling (enhanced by met-
als or other substances bound by melanin)
with melanosomal and DNA damage, tran-
scription factor activation and enhancement,
leading to the development of natural anti-
apoptotic (drug-resistant) phenotype of the
melanocyte. Antioxidants include a number
of cellular antioxidants (ascorbic acid, �-to-
copherol, and glutathione), whereas up-

stream inhibitors of oxidation might include such drugs as inhibitors of cholesterol synthesis or inhibitors of mitochondr-
ial activity. Metals come from either xenografted overload or internal release induced by UV radiation and sunburn. The
uptake into cells is regulated by metallothioneins, and polymorphisms should contribute to differential uptake and risk.
ROS, reactive oxygen species. [Reproduced with permission from Meyskens et al. (75)].



phorbol 13-acetate (TPA)-responsive element (TRE)-con-
taining genes by acting on their promoters (25), such as cy-
clin D1 (104) and p21 (20), which are important regulators
of the cell cycle. AP-1 target genes are differentially regu-
lated by distinct AP-1 dimers. In melanoma cells, expres-
sion of both c-Jun and JunD is evident (60, 121). Our stud-
ies suggest that JunD may be more mitogenic (121), which
might be due to its cooperation with NF-�B signaling (92,
111). An activated NF-�B pathway is clearly important in
melanomagenesis also (55, 67, 90), not only because this
transcription factor regulates many genes (such as PTEN
and FLIP) that are critically involved in apoptosis (24, 64),
but also because NF-�B can be activated by antiapoptotic
Bcl-2 overexpression, which suggests the existence of a for-
ward-feedback loop (97). Our previous extensive studies
have shown that in human melanoma cells, abnormal re-
dox status is present compared with normal tissue, and ac-
tivated ROS-mediated signaling was prominent (i.e., AP-1
and NF-�B) (67, 68, 73, 76, 121).

Our previous studies also demonstrated a remarkable
increase of APE/Ref-1 expression levels in all tested mel-
anoma biopsies and cell lines (Fig. 2), which was predom-
inantly localized in the nucleus and contributed to the
binding and activation of AP-1 and NF-�B (120). We char-
acterized the APE/Ref-1 response in a series of JB6 cells
(122) and found that elevated APE/Ref-1 was associated
with decreased intracellular ROS levels as well as reduced
oxidative DNA-damage lesions (Fig. 3). Also, depletion of
APE/Ref-1 resulted in apoptosis with more ROS produc-
tion and markedly reduced AP-1 transcription activities
(122). Our studies also suggested that, as an adaptive re-
sponse, induced APE/Ref-1 counteracts ROS stress not
only by efficiently repairing oxidative DNA damage, but
also through regulating redox-sensitive signaling (such as
AP-1 and NF-�B).

Effects of Metals Involved in Melanomagenesis on
APE/Ref-1 and APE/Ref-1–Mediated Signaling

Metals also likely play a crucial role in melanomagenesis
(Fig. 4). Natural melanins are associated with a number of
metal ions and have the capacity to accumulate metals. As
characterized in our previous publications, we postulate that
metals play an important role in converting melanin from a
normal reducing status to a prooxidant state. Many metals
bind to melanin with high affinity, especially certain heavy
metals with redox potential, such as Cu(II) and Fe(III) (43).
Additional studies also showed that Cu(II)- and Fe(III)-
loaded melanin generally caused more DNA damage than
Mg(II)-, Ca(II)-, or Zn(II)-loaded melanin (42). The literature
indicates that supplemental copper and iron facilitate tumor
growth, especially melanoma (52, 86).

Very interestingly, three large epidemiologic studies of the
risk of cancer after hip replacements have been reported (81, 83,
113). Remarkably, patients with prior metal-on-metal hip re-
placements were identified at increased risk for cutaneous mel-
anoma, prostate, and possibly kidney malignancies in all three
studies. However, no increased risk was noted for patients with
polyurethane-on-metal hip replacements. Other notable features
of these studies were that the risk for melanoma increased with
follow-up time in the two cohort studies. Other investigations
have shown that serum and urine Co and Cr levels are markedly
elevated (threefold to 10-fold) in patients with metal-on-metal
hip replacements compared to controls (105). Consistent with
these findings, substantial evidence shows that Co and Cr ions
accumulate in melanin. Bogacz measured the affinity of various
heavy metal ions for melanin in vitro, and ranked Fe3� � Cr3� �
Co2� � Zn2� � Mn2� (13). Interestingly, Co and Cr affect the
chemical properties of melanin and cell pigmentation (6, 84).

Depending on the system and experimental condition used,
arguments both support and counter the importance of ROS
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FIG. 2. (A) Increased expression
of APE/Ref-1 protein in nucleus
of different human melanoma
cell lines compared with cultured
normal melanocytes. [Repro-
duced with slight modification
with permission from Yang et al.
(120)]. Nuclear proteins were iso-
lated from different melanoma cell
lines. All results are presented as
folds of the expression levels in
normal melanocytes and normal-
ized by tubulin expression levels.
(B) Resistance of human mela-
noma cell lines to H2O2 treatment.
After 72-h incubation with H2O2 at
different doses, cells were col-
lected. The total number of viable
cells was counted by Trypan Blue
dye exclusion assay. Values repre-
sent the mean of three separate ex-
periments.



in Cr genotoxicity (16, 112). In welding workers, who are ex-
posed to high amount of vaporized Cr as well as other heavy
metals, skin irritations and malignant melanoma were reported
(72). Cobalt is a nonessential metal for which sufficient evi-
dence for carcinogenicity exists in animals (IARC), with a high
level of DNA-damaging capacity (38). Cobalt also induces ROS
production through the Fenton reaction to generate hydroxyl

radicals (�OH) in a perinuclear iron-dependent manner. The
study of Leonard et al. (1998) showed that cobalt induced a sig-
nificant increase in the generation of a whole spectrum of ROS
(58). Although Co(II) does not react with hydrogen peroxide
by the classic Fenton reaction at physiologic pH values, Co (I)
mediates a Fenton-like reaction producing �OH, which was in-
creased remarkably in the presence of Fe2�.
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FIG. 3. (A) Relative intracellular oxidative DNA damage levels in different JB6 series cells. [Reproduced with slight
modification with permission from Yang et al. (122)]. Relative oxidative DNA damage product (8-oxo-dG) was detected by
Advin-FITC by using flow cytometry; APE/Ref-1 levels were determined by immunoblotting with whole-cell lysates. (B)
Tumor promoter TPA-induced anchorage-independent transformation of JB6P� cells is inhibited by APE/Ref-1 knock-
down. The si-NS or si-APE/Ref-1 (60 nM) transfected cells were used to assess colony formation in a cell anchorage–inde-
pendent assay. For TPA-induced transformation, JB6P� cells (8 x 103 per ml) were exposed to TPA (20 ng/ml) in 1 ml of
0.33% basal medium Eagle agar containing 10% FBS. (C) Elevation of intracellular ROS levels after APE/Ref-1 depletion.
Cells were seeded overnight at the density of 60% for transient transfection of APE/Ref-1 siRNA (60 nM). At 48 h later,
cells were collected and stained with DCF fluorescence probe for flow cytometry, as described in Materials and Methods.
Data are represented as the fold of si-NS control.



Moreover, Co also mediates ROS generation in an indirect
way. CoCl2 treatment is a classic model widely used to mimic
the effects of hypoxia (89). Hypoxia-inducible factor-1 is a ma-
jor oxygen- and metal-responsive transcription factor, which
is also a key factor in mediating keratinocytes response to UVB
exposure (95). Cobalt efficiently induces the activation of HIF-
1 by the production of superoxide (65). Of great interest are
studies that show APE/Ref-1 is a critical component of the
hypoxia-inducible transcriptional complex that interacts with

HIF-1 and p300 (33, 128). In addition, APE/Ref-1 was essen-
tial for the full activity of the C-terminal region of HIF-1, which
contains its transactivation domain (56). However, no signif-
icant changes of APE/Ref-1 expression levels were evident
with exposure to CoCl2 (50 �M) in melanoma cells (unpub-
lished data). Whether such an effect occurs in normal
melanocytes will be important to determine.

Another very interesting metal that is likely involved in
melanomagenesis is iron. It is well documented that on ex-

NEW TARGET FOR HUMAN MELANOMA 643

FIG. 4. (A) Metal interactions with APE/Ref-1 and potential role in melanomagenesis. (B) Schematic diagram of in-
volvement of iron in melanomagenesis occurring after sunburn. The UVB rays are the most potent rays that reach the earth,
whereas UVA, having less energy, can penetrate deepest into the dermis, where blood vessels are located. Exposure to sun-
burn-dosage of UVR induces remarkable inflammation responses, resulting in cytokine release, dermal edema, and perivas-
cular neutrophilic infiltration. Red blood cells (RBCs) are the major source of iron, which is released to the skin. Subse-
quently, Fe initiates or facilitates a chronic redox cycling when bound to melanin, and is associated with more ROS
generation.



posure to UVR, an increase in ferric/ferrous iron occurs in
the skin, and topical application of iron chelators reduces
UVR-induced ROS production and skin damage, indicating
a role of iron in photodamage (5, 47, 78, 94, 119). As shown
in Fig. 4B, we postulate that photo-induced release of a pool
of iron cations in response to blistering sunburn and the
binding of Fe2� and/or Fe3� and binding to at-risk melanin
(i.e., pheomelanin and certain types of eumelanin, especially
when partially oxidized), initiate low-level oxidative stress.
Iron not only directly evokes ROS production by the Fenton
reaction, but also potentiates Co-mediated generation of �OH
at physiologic pH values (58). Korytowski et al. (1987) stud-
ied the reactive species produced on irradiation of melanin
with UVR and visible light (53). Their study showed that the
production of ROS increased when melanin was complexed
with iron in the presence of EDTA. Notably, melanin in the
presence of low-dosage iron is associated with a low level of
hydroxyl radical production; however, when melanin is sat-
urated with Fe(III), ROS production occurs in a dose-de-
pendent manner (87, 124). In addition, a recent study also
demonstrated the pro-inflammatory activity of iron in the
lung injury, at least in part, because of its induction of re-
dox-sensitive factors (for example, TRX, APE/Ref-1, and NF-
�B) (32).

The endonuclease activity of APE/Ref-1 has been shown
to be affected by many factors, including different metals.
The divalent metal ion soaked with the protein crystals
(Sm2� for APE-1) was found specifically to associate with
the glutamate residue. Biochemical studies have shown that
an APE-1 mutant with E96A change displays a significantly
reduced DNA-repair activity in Mg2� when compared with
the wild-type protein (7), further supporting the notion that
this amino acid contributes to metal coordination. Of con-
siderable interest is that in in vitro studies with fibroblasts,
Co does not enhance UVR-induced cyclobutane pyrimidine

dimers (CPD) and 8-oxo-dG lesions formation but rather in-
hibits their repair (34, 48). However, dimer removal was not
affected by Pb(II), Cr(VI), Fe(III), or Sn(III) (106). Controver-
sially, another study demonstrated the inhibitory effects of
Pb(II) and Fe(II) on APE/Ref-1 activity but not Co(II) (66).

Interestingly, CoCl2 (500 �M) is essential for AP endonu-
clease assay. Levin et al. (1991) showed that the activity of
Escherichia coli endonuclease IV after exposure to EDTA, a
strong nonspecific metal chelator, was restored by incuba-
tion with CoCl2 (500 �M) and to a lesser extent by MnCl2
(59). In another study, NiCl2 and CoCl2 at 1 mM concentra-
tions stimulated both NF-�B and AP-1 activities (114), which
might be mediated by APE/Ref-1 activation. These studies
suggested that the effects of Co on APE/Ref-1 are concen-
tration dependent.

Novel Strategies Targeting APE/Ref-1 to Prevent/Treat
Human Melanoma

A variety of observational and experimental studies gen-
erated interest in the role of APE/Ref-1–mediated signaling
in cancer, especially human melanoma. First, APE/Ref-1 is
very sensitive to redox-status alterations. ROS regulates its
activity and expression on both transcriptional and post-
transcriptional levels. Coupled with the observation that
melanoma cells exhibit abnormal redox status, induction of
APE/Ref-1 as an adaptive response to prolonged oxidative
stress likely plays an important role in human melanoma-
genesis. Our previous studies consistently demonstrated ab-
normally elevated nuclear APE/Ref-1 in human melanoma
cells compared with normal melanocytes, also associated
with drug resistance and proliferation. Recently, by using a
series of JB6 cells, we provided evidence that APE/Ref-1, in
combination with ROS, plays a key role in malignant cellu-
lar transformation (Fig. 3) (122). In addition, our recent find-
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FIG. 5. Model of resveratrol
docked to one of two drug-treat-
able pockets of APE/Ref-1. (A) The
structure of the human APE/Ref-1
protein is illustrated by a ribbon
schematic, by using a color gradient
from blue at the N terminus to red
at the C terminus. The shapes of
each druggable pocket, as identified
by ICM in the redox-regulating do-
main, are shown in green (left) and
in purple (right). A CPK space-fill-
ing model of resveratrol is docked
in the druggable pocket (right). (B)
A close-up view of the putative
binding site of resveratrol, repre-
sented by a stick model, is shown.
The resveratrol is mostly confined
to the spatial volume of the drug-
gable pocket, represented by the
purple 3-D mesh. (C) Molecular
structure of resveratrol. [Repro-
duced with slight modification with
permission from Yang et al. (120)].

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article at
www. liebertonline.com/ars).



ings strongly suggested that APE/Ref-1 is involved in the
regulation of metastatic potential in melanoma cells (un-
published data). Second, as discussed earlier, metals in-
volved in melanomagenesis, especially cobalt and iron, reg-
ulate APE/Ref-1 expression and activity directly and
indirectly. Third, the NF-�B pathway, regulated by
APE/Ref-1, is prominent in mediating cytokine activation of
leukocytes in inflammation. The involvement of APE/Ref-1
in the process of inflammation, which also occurs after sun-
burn, indicates interference with melanomagenesis by tar-
geting APE/Ref-1 as a potential preventive strategy. We pro-
pose that excess endogenous ROS in human melanoma cells
may also compromise the efficacy of alkylating agents–based
or radiation-based therapy by inducing APE/Ref-1 in hu-
man melanoma. Accumulating studies on the role of
APE/Ref-1 in promotion, progression, and drug resistance
in other types of tumors have consistently confirmed its po-
tential as an attractive target for the development of new can-
cer preventive and therapeutic strategies (36, 108).

In recent years, the rapid increase in the number of high-
resolution three-dimensional protein structures (1, 41), and
the improvements of docking-and-scoring technology, make
virtual screening (VS) an attractive and less-expensive alter-
native or complementary approach to the traditional meth-
ods of lead discovery and optimization (4, 51). Moreover, VS
enables diverse compounds that would seldom be tested in
a traditional laboratory high-throughput screen to be iden-
tified. The number of success stories from using VS in drug
discovery keeps growing (69, 80). Recently we applied this
docking strategy to the APE/Ref-1 receptor by screening
chemical libraries (Fig. 5). Interestingly, resveratrol was
found to dock into one of the two drug-treatable pockets lo-
cated in the redox domain and, in preliminary screens, ex-
hibited promising antimelanoma activities (120). The in-
hibitory effects of resveratrol on APE/Ref-1 occurred mostly
through its redox-regulating functions and might be the ma-
jor contribution to its pharmacologic activities, which are as-
sociated with significantly reduced AP-1 and NF-�B activi-
ties in many different human cancers (12, 54). Surprisingly,
all other resveratrol analogues that we tested exhibited a
lower docking score and lesser toxicity to human melanoma
cells. In addition to resveratrol, some active lead compounds
specifically targeting these two unique drug-treatable pock-
ets were discovered by our screening. Further confirmation
of these findings and chemical modifications are under way,
and our early findings are discussed later. It is notable that
APE/Ref-1 contains three distinct functional domains: nu-
clear-localization signal, redox-regulation, and DNA-repair
domain. Limited experiments have been reported testing the
distinct role of different domains in APE/Ref-1–mediated
melanoma malignancies. These data would be critical for de-
veloping specific small-molecular inhibitors that interfere
with distinct functions.

As APE/Ref-1 acts hierarchically to regulate many tran-
scription factors (i.e., AP-1 and NF-�B), direct interference
with APE/Ref-1 would be expected to result in a more-com-
prehensive effect than inhibition of just one downstream
pathway. A small-molecule PNRI-299 (Fig. 6C) was identi-
fied as selective APE/Ref-1 inhibitor and has shown selec-
tive inhibition on AP-1 transcription (79). With a generous
gift from Dr. Kahn, we tested the effects of PNRI-299 on hu-
man melanoma cells; however, at up to 100 �M concentra-

tion, no toxicity was evident in our test cell lines. One rea-
son might be its specific inhibition of AP-1, which is
markedly reduced in metastatic melanoma cells compared
with normal melanocytes (121). However, exposure to in-
tense bursts of sunlight, especially in childhood, is strongly
associated with an increased risk for melanoma, whereas
thick tumors (4 mm or greater), which have more metasta-
tic potential, have significantly increased in men aged 60
years or older (23, 100). The long latent phase and slow pro-
gression of melanomagenesis provide a good opportunity
for early intervention or chemoprevention. Specific
APE/Ref-1 inhibitors (i.e., resveratrol analogues and PNRI-
299), even without any direct melanoma cell–killing poten-
tial, might exert antiinflammation activities and be applied
as preventive or photoprotective agents and protect skin
from UV radiation–induced inflammation, which is medi-
ated by AP-1 (14, 19). More recently, Luo et al. (61) reported
that a small-molecule, 3-[5-(2,3-dimethoxy-6-methyl-1,4-ben-
zoquinoyl)]-2-nonyl-2-propionic acid (E3330), exhibited re-
markable inhibition of the redox function of APE/Ref-1 in
vitro, and the IC50 is 6.5 �M, whereas no effects on repair ac-
tivity of APE/Ref-1 were evident.

Lucanthone (Nilodin, Miracil D) was found to be an in-
hibitor of postradiation repair and is used as an adjuvant in
radiation therapy (Fig. 1). A recent study showed that lu-
canthone increased the frequency of abasic sites in HeLa cell
DNA, reflecting inhibition of APE repair activity, and en-
hanced the cell-killing effect of alkylating agents (62, 71). No-
tably, the APE/Ref-1 redox function or exonuclease activity
on mismatched nucleotides was not affected by this com-
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FIG. 6. Molecular structure of reported compounds ex-
hibiting APE/Ref-1 inhibitory effects (17, 62, 63, and 79).



pound. Additionally, by using fluorescence-based, high-
throughput screening, a European group has isolated a
small-molecule inhibitor, CRT0044876 (Fig. 6B), that binds to
the active site of APE/Ref-1 and effectively inhibits its AP
endonuclease, 3�-phosphodiesterase and 3�-phosphatase ac-
tivities at low micromolar concentrations (63). Studies of in
vivo efficacy and further chemical modification will be of
great interest.

In addition to these direct APE/Ref-1 inhibitors, possible in-
direct ways may be found to inhibit APE/Ref-1–mediated sig-
naling. Thioredoxin (TRX), a small cysteine-rich redox-active
protein, directly associates with APE/Ref-1 in the nucleus and
is essential for APE/Ref-1–mediated potentiation of AP-1 ac-
tivity (40, 117). Combined with other observations that oxi-
dized APE/Ref-1 lacks endonuclease activity (49), we propose
that agents that block TRX/Ref-1 dimerization would decrease
APE/Ref-1 nuclear translocation and induce APE/Ref-1 oxi-
dation, resulting in subsequent APE/Ref-1 dysfunction.

Chelation therapy has been of great interest to medicine
for several hundred years, although beneficial effects have
been elusive in most cases. Adding to the potential mecha-
nistic role of transition metals in melanomagenesis, metal
particles are known to induce a vigorous macrophage–cyto-
kine response associated with local osteolysis, which could
serve as a promotional event for either melanoma or prostate
cancer (105). Theoretically, based on our hypothesis, specific
metal chelators could deplete metals and prevent the extra
loading to melanin with less ROS production, which alter-
natively eliminates the stimulation of APE/Ref-1. In previ-
ous studies, we demonstrated that the S-based chelator 
pyrollidine dithiocarbamate (pDTC) strongly induced apop-
tosis in melanoma but was not toxic to melanocytes up to 10
�g/ml (28). In addition, the metal chelators o-phenanthro-
line (OP) and deferoxamine (DEF) were selectively toxic to
human melanoma cells, whereas normal cultured
melanocytes were resistant to OP- and DEF-induced changes

(unpublished data). Notably, the alcohol-adversion drug
disulfiram (DSF) (Fig. 6A) is a Cu-chelator and induces sig-
nificant apoptosis in human melanoma at very low concen-
tration (IC50 �20–50 ng/ml or �50–125 nM) through a dis-
tinct mechanism. It is Cu dependent, and addition of CuCl2
significantly enhances the DSF-induced cell death with a
marked increase in intracellular Cu level and rapid ROS pro-
duction. The cell-killing effect of DSF might be due to the
extensive oxidation of protein initiated by Cu (17, 18). Re-
cently, caged-iron chelators that are activated by UV have
gained interests as an approach to protect against UV dam-
age with fewer side effects and higher local protection (123).

Conclusions

Over the past decade, we have conducted a series of his-
tologic, biochemical, chemical, and molecular experiments
with melanin and human melanoma to explore the molec-
ular mechanisms involved in melanomagenesis and mela-
noma progression. As summarized in Fig. 7, we proposed
that prolonged oxidative stress initiated by UVR and
melanin oxidation, a process enhanced by certain metals
(cobalt, copper) found in the environment, is an early or
primary event. The consequences of this phenomenon in-
clude many molecular changes, but as a key regulator,
APE/Ref-1 is markedly induced and efficiently protects
melanocytes from oxidative damage by inducing the anti-
apoptotic machinery and stimulating cell survival. Com-
bined with other alterations, such as the depletion of 
cellular antioxidants and widespread oxidation of macro-
molecules, APE/Ref-1 exhibits a critical role in melanoma-
genesis and melanoma progression. A number of lead com-
pounds show promising inhibitory effects on APE/Ref-1
and APE/Ref-1–mediated signaling, potentially with a
wide range of indications from asthma to cancer therapy.
The targeting of APE/Ref-1 may be a useful preventive
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FIG. 7. Schematic diagram of critical role of
APE/Ref-1 in melanomagenesis and mela-
noma progression. Exposure to UVR, espe-
cially at sunburn dosage, induces remarkable
production of ROS and leads to DNA damage
subsequently. As an adaptive response,
APE/Ref-1 is induced and translocated to the
nucleus and dimerized with thioredoxin
(TRX), creating a reducing environment that
facilitates the DNA binding of nuclear tran-
scription factor (i.e., AP-1 and NF-�B) and ef-
ficiently repairs damaged DNA. Second,
MMPs and Bcl-2 are induced as downstream
target genes, leading to a more invasive and
proliferative cell phenotype. Possible strate-
gies to inhibit APE/Ref-1–mediated signaling
include direct (i.e., APE/Ref-1 inhibitors and
APE/Ref-1/TRX binding blockers) and indi-
rect (specific metal chelators, and potential an-
tioxidants and NOS scavengers) interferences.
Through targeting APE/Ref-1 signaling, we
anticipate identifying new preventive and
therapeutic approaches and new agents.



and therapeutic strategy for the management of human
melanoma and perhaps other cancers.
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