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Changes in glycosylation are common in malignancy, and
as almost all surface proteins are glycosylated, this can
dramatically affect the behavior of tumor cells. In breast
carcinomas, the O-linked glycans are frequently truncat-
ed, often as a result of premature sialylation. The
sialyltransferase ST3Gal-I adds sialic acid to the galactose
residue of core 1 (GalB1,3GalNAc) O-glycans and this en-
zyme is over-expressed in breast cancer resulting in the
expression of sialylated core 1 glycans. In order to study
the role of ST3Gal-1 in mammary tumor development,
we developed transgenic mice that over-express the sialyl-
transferase under the control of the human membrane-
bound mucin 1 promoter. These mice were then crossed
with PyMT mice that spontaneously develop mammary tu-
mors. As expected, ST3Gal-I transgenic mice showed
increased activity and expression of the enzyme in the preg-
nant and lactating mammary glands, the stomach, lungs
and intestine. Although no obvious defects were observed
in the fully developed mammary gland, when these mice
were crossed with PyMT mice, a highly significant decrease
in tumor latency was observed compared to the PyMT
mice on an identical background. These results indicate
that ST3Gal-I is acting as a tumor promoter in this
model of breast cancer. This, we believe, is the first
demonstration that over-expression of a glycosyltransfer-
ase involved in mucin-type O-linked glycosylation can
promote tumorigenesis.
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Introduction

Glycosylation is one of the most common forms of posttrans-
lational modifications. Glycans covalently attached to proteins
function in the correct folding of the protein, to acquire resis-
tance to proteases, to allow the protein to interact with its
ligands, to direct its location and to allow the correct recycling
(Hakomori 2002). Thus changes in glycosylation can dramati-
cally affect the function of glycoproteins and, as almost all
surface proteins are glycosylated, alter the behavior of cells.
Malignant transformation is accompanied by changes in both
N- and O-glycosylation of proteins. For example, 31,6GIcNAc
branching of N-glycans attached to Asn-X-Ser/Thr is often
increased (Guo et al. 2008) whereas mucin-type O-linked gly-
cans attached to Ser or Thr are generally reduced in length
(Burchell et al. 2001).

Glycosylation is determined by the expression and rela-
tive activities of glycosyltransferases in particular tissues
(Brockhausen 2006; Paulson et al. 2006; Brockhausen 2009).
In the mammary gland, mucin-type O-glycans added to pro-
teins are branched core 2-based structures (see Figure 1).
However, in the change to malignancy, simple unbranched gly-
cans such as Tn (GalNAc), STn (NeuAca2,6GalNAc) and T
(Galp1,3GalNAc) antigens are found attached to O-glycans,
with the core 2 structures being absent or reduced (see Figure 1).
A number of mechanisms have been shown to be responsible
for aberrant mucin-type glycosylation. In human cervical can-
cer, expression of Tn and STn has been shown to result from
mutations in Cosmc that encodes for a molecular chaperone
required for the active core 1 R3-Gal-transferase or T-synthase
(Ju et al. 2008). However, in breast carcinomas, changes in the
expression of glycosyltransferases appear to be the dominant
mechanism. Thus expression of STn has been shown to be
due to the activation of transcription of ST6GalNAc-I, which
has the ability to successfully compete with other glycosyl-
transferases that act on the same substrates (Julien et al.
2006; Sewell et al. 2006). Moreover, in breast carcinomas,
increased expression of ST3Gal-I is observed and this is cor-
related with increased tumor grade (Burchell et al. 1999).
ST3Gal-I competes for the core 2-initiating enzyme for their
common core 1 substrate (see Figure 1), therefore increased
expression of ST3Gal-I results in the expression of sialylated
core 1 (NeuAca?2,3Galp1,3GalNAc, also known as sialy-
lated T) rather than the normal branched core 2 glycans
(Dalziel et al. 2001).

The human membrane-bound mucin known as MUCI,
which is expressed by luminal mammary epithelial cells, is
highly upregulated in breast carcinomas and has often been
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Fig. 1. Initial steps of the biosynthesis of O-glycans in the mammary gland.
Enzymes responsible for the biosynthesis of various O-glycan structures are
indicated next to the arrows. Polypeptide GalNAc-transferase (ppGalNAcTs)
initiates O-glycosylation by transferring GalNAc to serine or threonine residues
(R). a6-Sialyltransferase (ST6GalNAc I) synthesizes the sialyl-Tn antigen by
adding a sialyla6 residue to GalNAc. Alternatively, core 1 33-Gal-transferase
(C1GalT) synthesizes core 1, the T antigen. The sialyl-T structure is
synthesized by a3-sialyltransferase ST3Gal-I. Further sialylation of sialyl-T
can include a6-sialylation of GaINAc to form the desialylated T antigen and/or
«2-8 sialylation of the a3-linked sialic acid residue. In the normal mammary
gland, core 2 B6-GlcNAc-transferase (C2GnT) can introduce a branch, both
arms of which can be further elongated and sialylated or fucosylated.

used as a model to study the changes in O-linked glycosylation
that occurs in breast cancer. Sialylated core 1 is a common O-
glycan, often found attached to glycoproteins carrying O-
linked glycans, for examples see Thomas and Winzler (1969)
and Moody et al. (2003), but it is not normally found on epi-
thelial mucins such as MUC]1 (Hanisch et al. 1989). Moreover,
at least 50% of the molecular weight of mucins is made up of
glycans and there are hundreds of sites for O-linked glycosyl-
ation (Hollingsworth and Swanson 2004). Thus the repetitive
nature of sialylated core 1 on mucins such as MUCI in breast
carcinomas may function quite differently to the more sparsely
spaced sialylated core 1 glycans normally found on nonmuci-
nous glycoproteins.

We have previously shown that murine mammary tumors
expressing MUCI carrying sialylated core 1 glycans grow sig-
nificantly faster in MUC]1 transgenic mice than the same
tumors expressing MUCI carrying the core 2 glycans (Mungul
et al. 2004). In the present study, we have developed transgenic
mice expressing ST3Gal-I running from the MUCI1 promoter
that allows upregulation of the sialyltransferase at pregnancy
and lactation, and in mammary tumors (Graham et al. 2001).
Although increased ST3Gal-I activity was detected in the
mammary gland, the ST3Gal-I transgenic mice showed no ob-
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vious defects in the pregnant mammary gland and were
capable of feeding their pups. However, when these mice were
crossed with mice transgenic for the polyomavirus middle T
antigen (PyMT) driven by the mouse mammary tumor virus
(MMTYV) promoter, over-expression of ST3Gal-I resulted in
a significant decrease in tumor latency indicating that
ST3Gal-I is acting as a tumor promoter in this model of breast
cancer. This, we believe, is the first demonstration that over-
expression of a glycosyltransferase involved in mucin-type
O-linked glycosylation can promote tumorigenesis.

Results
Generation of the human ST3Gal-I transgenic mouse

Human ST3Gal-I cDNA (889-1952, GenBank L29555) was
cloned into the pNASSPR vector downstream of the MUCI pro-
moter region (—1401 to +33) (see Figure 2A). This region of
the MUC1 promoter has been shown to be sufficient to direct
tissue-specific expression in vivo and to allow upregulation
during pregnancy and lactation, and in PyMT inducible mam-
mary tumors (Graham et al. 2001). Two mice were shown to
transmit the inserted gene and express hST3Gal-I in the ex-
pected tissues (Graham et al. 2001), and mice homozygous
for hST3Gal-I were generated by littermate mating.

As expected from the activity of the MUC1 promoter, im-
munohistochemistry showed that hST3Gal-1 was expressed
in the pancreas, salivary glands (data not shown), lung, stom-
ach, and pregnant and lactating mammary gland (see
Figure 2B). This corresponded to an increase in sialyltransfer-
ase activity in the tissues measured using Galp1-3GalNAco-
pnp as the acceptor substrate (see Figure 2C). Although
hST3Gal-I expression and sialyltransferase activity were
shown to be elevated in the mammary gland, the gland ap-
peared normal at pregnancy and mice homozygote for
hST3Gal-I were able to feed their pups which gained weight
in a manner comparable to wild-type C57/Bl6 mice (data not
shown).

Development of spontaneous mammary tumors
over-expressing ST3Gal-1

To investigate the effect of over-expressing ST3Gal-I on spon-
taneous mammary tumor development, female hST3Gal-I"*
mice were crossed with male MMTV-PyMT mice, these
mice were designated ST3Gal-I/PyMT. Female MMTV-
PyMT mice develop multifocal mammary tumors (Guy et
al. 1992) and have been used as a murine model resembling hu-
man breast cancer (Gendler and Mukherjee 2001; Maglione
et al. 2001). As the hST3Gal-I transgenic mice were devel-
oped on a pure C57/Bl16 background (see Materials and
methods), female offspring from male MMTV-PyMT crossed
with female C57/B16 mice were used as controls (control/
PyMT). Females from the ST3Gal-I/PyMT and the control/
PyMT all developed mammary tumors with a 100%
penetrance.

Expression of human ST3Gal-I was observed in tumors
taken from the ST3Gal-I/PyMT but not in tumors taken
from the control/PyMT (Figure 3A). This resulted in in-
creased ST3Gal activity in tumors from the ST3Gal-1/
PyMT mice compared to the control (Figure 3B). In con-
trast, the activity of polypeptide GalNAc transferases and
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Fig. 2. hST3Gal-I transgenic mice express the sialyltransferase in the expected tissues. (A) Construct used to inject fertilized eggs to develop the hST3Gal-I
transgenic mice. (B) Frozen sections of tissue from hST3Gal-I transgenic mice and wild-type controls stained with the 4B10 antibody which specifically

recognizes human ST3Gal-1. Scale bar represent 100 pm. (C) Enzymatic activity of ST3Gal in the indicated tissues from hST3Gal-I transgenic mice and wild-type
control. Galp 1-3GalNAca-pnp was used as the acceptor substrate (see Materials and methods). Assays were carried out in duplicate, which showed a variation of less

than 10%.

C2Gn transferases was the same in the two groups of mice.
The glycans expressed by the tumors were then analyzed by
mass spectrometry to investigate if an increase in sialyltrans-
ferase activity resulted in an overall change in the total O-
linked glycans linked to glycoproteins. Sialylated core 1 glycans
with the sialic acid 2,3 linked to Gal were found in the
ST3Gal-1/PyMT; however, these glycans were also observed
in the control/PyMT tumors. Tumors from both types of
mice also showed extended core 1 and core 2 structures par-
tially decorated with sialic acid and fucose residues, and
looking at this gross level, no consistent changes in the pro-
file of O-glycans could be seen between tumors originating
from the STGal-I/PyMT mice or the control/PyMT mice (see
Supplementary data).

Over-expression of ST3Gal-I in MMTV-PyMT mice results in
the earlier appearance of tumors

In the control/PyMT mice (r = 23), mammary tumors were
first detected at 60 days. When the mice were 99 days old,
100% of the animals had at least one palpable tumor. In

contrast, in the ST3Gal-I/PyMT mice (n = 33), the first
mouse developed a tumor at 38 days old, and by 77 days all
the mice had developed palpable mammary tumors. Analysis
of the tumor-free survival of the mice (Figure 4A) showed
that the ST3Gal-I/PyMT mice developed tumors significantly
earlier than the control/PyMT animals (P < 0.001).

Tumors arising in PyMT mice can secrete cytokines, such as
TGFp, that can be measured in the blood (Mukherjee et al.
2003). Figure 4B shows that the amount of TGFp in the serum
significantly increases with time, indicating that it is reflecting
the growth of the tumor. Determination of the level of TGFp in
the serum of the mice can therefore give an indication of tumor
size and this can be analyzed before the appearance of palpable
tumors. The concentration of TGFp was determined in the se-
rum taken before tumors could be detected by palpation, the
mean time being 38 days from birth for the ST3Gal-1/PyMT
mice and 42 days for the control/PyMT mice. Figure 4C shows
significantly higher levels of TFGP in the sera from ST3Gal-1/
PyMT mice compared to that of control/PyMT mice (P <
0.001). This further demonstrates that in the ST3Gal-I/PyMT,
mice development of tumors is initiated significantly earlier
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Fig. 3. Mammary tumors arising in the ST3Gal-I/PyMT show expression of hST3Gal-I and increased ST3Gal enzyme activity. (A) Top panel, frozen sections of
mammary tumors arising in the ST3Gal-I/PyMT mice and in Control/PyMT were stained with the 4B10 monoclonal antibody, which specifically recognizes human
ST3Gal-I; bottom panel, formalin-fixed, paraffin-embedded sections of tumors stained with the polyclonal antibody, CT1, which recognizes the cytoplasmic tail of
Mucl. (B) Snap-frozen tumors from ST3Gal-I/PyMT and Control/PyMT mice were assayed for polypeptide GalNAc-transferase (ppGalNAcT), core 2 p6-GIcNAc-
transferase (C2GnT) and a3-sialyltransferase (ST3GalT) activity as described in Materials and methods. Figures on the X-axis refer to individual mice within each
group. Assays were carried out in duplicate, which showed a variation of less than 10%.

than mice on the same background but without the ST3Gal-I
transgene.

Increased ST3Gal-I activity does not alter the interaction of
Mucl with c-Src

The ability of the PyMT to give rise to tumors is due to the in-
teraction of PyMT with the Src family of kinases. Activation of
c-Src is essential for the induction of mammary tumors in the
MMTV-PyMT transgenic mice (Guy et al. 1994). Mucl, the mu-
rine ortholog of human MUC!1 mucin that is upregulated in
carcinomas, is expressed by PyMT-induced mammary tumors
and can interact with c-Src and affect downstream Src signaling
(Al Masri and Gendler 2005). The development of PyMT-
induced mammary tumors in Mucl null mice is significantly de-
layed indicating a role of Muc1 in tumor development (Spicer et
al. 1995). As this mucin carries a large amount of O-linked su-
gars and its glycosylation is affected by the expression and
activity of ST3Gal-I (Dalziel et al. 2001), we investigated
whether increased expression of ST3Gal-I can alter the ability
of Mucl to interact with c-src and downstream effectors.
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Using a polyclonal antibody to the cytoplasmic tail of Mucl,
which is independent of the glycosylation, we initially looked
at the expression of Mucl in the PyMT-induced mammary tu-
mors. Tumors from the ST3Gal-I/PyMT mice and control/
PyMT mice expressed Mucl, and by immunohistochemistry,
there was no difference in the level of expression (see
Figure 3A). Mammary tumor lysates were immunoprecipitated
with a monoclonal antibody to the cytoplasmic tail of Mucl
(CT2) or with anti-c-Src antibody and, after running on sodium
dodecyl sulfate—polyacrylamide gel electrophoresis (SDS—
PAGE), were immunoblotted with anti-c-Src or anti-Mucl
(CT1). On SDS-PAGE, the cytoplasmic tail of Mucl is sepa-
rated from the rest of the molecule and runs as band of around
25 kDa (Schroeder et al. 2001). As can be seen in Figure 5A,
the interaction between c-Src and Mucl is confirmed by the
coimmunoprecipitations. However, although there is heteroge-
neity in the degree of interaction among the individual mice,
there is no consistent difference between the groups.

PI3kinase is also a direct target of PyMT oncogenesis and
phosphorylates AKT. The interaction between the p83 subunit



>

------ ST3Gal | / PyMT (n=33)
—— Control / PyMT (n=23)

P<0.001

% of mice without tumor

o 4/ “'a:
L 1 - I 1
40 60 80 100

Days after birth

55 -
50 - P<0.001
45 A
40 A

35 4

TGF-beta ng/ml

30 o

25 T
30 60
Mice age (days)

P<0.001

(@)

704
65 1
60 1
551
50 1
45 4
40 4

a5 37 ==
30 { '

251

......P.... -

TGF-beta ng/mi

ST3Gal I/PyMT
n=21

Control/PyMT
n=14

Fig. 4. Mammary tumors develop faster in the ST3Gal-I/PyMT mice
compared to the controls. (A) Kinetics of tumor formation in ST3Gal-I/PyMT
and Control/PyMT mice. The difference between ST3Gal-I/PyMT and control
mice was highly significant (P < 0.001), evaluated by the Breslow test. (B)
Sera from control/PyMT mice (n = 6) were taken from the same mice at days
30 and 60 after birth and assayed for TGFR. TGFp levels increased
significantly over time and were associated with the appearance and the
number of mammary tumors. (C) Sera taken from ST3Gal-I/PyMT (n = 21)
and Control/PyMT (n = 14) mice at a mean time of 38 and 42 days from birth,
respectively, were assayed for TGFpP using a commercial ELISA kit. The
difference between groups was significant (P < 0.001) evaluated by two-tailed
T test.
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of PI3kinase and AKT is facilitated by the presence of Mucl
(Al Masri and Gendler 2005). We therefore investigated the
phosphorylation of AKT in tumors from the two groups of
mice. Although the level of phosphorylation differed in tumors
from different mice, again there was no consistent difference
between the two groups (see Figure 5B).

Morphology of the mammary tumors arising in the ST3Gal-I
transgenic mice

Paraffin-embedded sections of mammary tumors taken from
the ST3Gal-I/PyMT (n = 42 tumors) and control/PyMT (n =
33 tumors) were analyzed blind by a breast pathologist (SP)
for differences in morphology and mitosis. Although tumors
from both sets of mice showed areas of sheets of cells and
areas of differentiation (Figure 6A) and necrosis, there was
a trend for the tumors from the STGal-I’/PyMT mice to be
more differentiated (Figure 6B) although this did not reach
significance, P = 0.086. The mitotic index was assessed by
counting the number of mitosis observed in 10 high-power
fields of each tumor. Although tumors from both groups of
mice were highly mitotic with 37 mitoses on average per 10
high-power fields for control/PyMT and 42 for ST3Gal-I/
PyMT mice, we did not observe a significant difference be-
tween the groups (Figure 6B).

Discussion

Changes in glycosylation are observed in nearly all malignan-
cies, including breast cancers. While normal mammary
epithelial cells exclusively express core 2-based O-glycans car-
rying mucin-type O-linked glycosylation, cancer cells can
express shorter truncated O-glycans (Burchell et al. 2001).
The expression of these truncated glycans results in new epi-
topes being expressed on breast cancer cells. During the last
two decades, the use of monoclonal antibodies (mAbs) has
helped to demonstrate that expression of some truncated gly-
cans, such as STn, is associated with poor prognosis in breast
cancer. This suggests that these carbohydrates may have some
function in cancer development (Miles et al. 1994; Julien et al.
20006).

The core 1 structure (Galp 1-3GalNAca-Ser/Thr), otherwise
known as T antigen, can be sialylated on «2-3 position of the
Gal residue by the sialyltransferase ST3Gal-I, resulting in the
NeuSAca2-3Galp 1-3GalNAca-Ser/Thr sometimes referred as
sialyl-T (ST) structure. This is a common glycan expressed by
breast cancers and one of the dominant glycoforms of the
MUCI1 mucin found in the serum of breast cancer patients
(Storr et al. 2008). Moreover, MUC1 expressing ST (as recog-
nized by the monoclonal antibody MY.1E12) is also associated
with the progression of prostrate (Arai et al. 2005) and colon
cancer (Suzuki et al. 2004).

The expression of ST by breast cancers is due to the over-
expression of ST3Gal-I, the level of expression of this enzyme
being related to tumor grade (Burchell et al. 1999). In vitro
studies have shown that over-expression of ST3Gal-I is suffi-
cient to cause a change from core 2-based glycans to ST being
carried by mucins (Dalziel et al. 2001; Brockhausen 2006). Al-
though ST is a common O-linked glycan, often expressed on
glycoproteins found in blood (Thomas and Winzler 1969;
Moody et al. 2003), its abundant expression on epithelial
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mucins is characteristic of cancer. As the interactions between
glycans and their binding proteins (e.g. lectins) occur with a
relatively low affinity compared to protein—protein interac-
tions, the expression of multiple novel glycans on mucins
can increase the avidity of binding and could therefore create
new interactions. However, it is not clear if the expression of
the ST glycan by epithelial cancers has any direct role in
driving tumorigenesis. To address this question, we devel-
oped a transgenic mouse that expresses hST3Gal-I from the
MUCI1 promoter to induce sialyltransferase expression in ep-
ithelial tissues including the mammary gland (Graham et al.
2001). This hST3Gal-I transgenic mouse has then been
crossed with the MMTV-PyMT mouse that develops sponta-
neous mammary tumors (Guy et al. 1992). In this in vivo
context, which has been designed to be as closed as possible
to natural cancer development, we have been able to assess
the effect of the over-expression of ST3Gal-I on tumor devel-
opment. The data presented here clearly show that ST3Gal-I
promotes mammary gland carcinogenesis, as tumors arose
significantly earlier in hST3Gal-I/PyMT mice than in control
mice.

Increased sialyltransferase activity was detected in the
ST3Gal-I/PyMT tumors. However, despite this, we could not
detect any difference in glycosylation when tumors from these
mice were compared to control/PyMT tumors using mass spec-
trometry to establish the comprehensive pattern of O-glycans
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(see Supplementary data). It could be that changes of glycosyl-
ation induced by increased ST3Gal-I only affect a specific and
restricted portion of the tumor glycoproteins, which would
not be detected using this gross analysis. However, it has
been shown that spontaneous murine mammary tumors, like
human breast cancer, exhibit changes in O-linked glycosyla-
tion (Graham et al. 1996) and indeed sialylated core 1 glycans
were observed in the control/PyMT mice (see Supplementary
data). Thus, it appears that when the tumors have developed
and are larger enough to necessitate culling of the mice,
the effect of expression of the ST3Gal-I transgene may
not be able to compound the effect of endogenous aberrant
glycosylation.

Glycosylation of extracellular domains can affect signal-
ing and interactions of intracellular domains of a protein
(Guo et al. 2007). We therefore looked at the interactions
of Mucl, which carries many O-glycans and has been im-
plicated in the tumorigenesis of PyMT-induced tumors.
Although the interaction with c-Src reported by others (Al
Masri and Gendler 2005) was confirmed, no differences
could be observed in tumors from the two sets of animals
and no differences were observed in downstream signaling.
Moreover, when analyzed at the endpoint of the experiment,
the tumors derived from the hST3Gal-I/PyMT mice or con-
trol mice did not show significant differences in terms of
morphology or mitotic index, suggesting that ST3Gal-I ex-
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pression did not affect the histopathological type of the
tumor.

In a transplantable tumor model, we demonstrated that trans-
plantable murine mammary tumors expressing MUCI carrying
ST developed significantly faster than tumors expressing
MUCI carrying core 2-based glycans. However, this response
was not seen in immunosuppressed mice, suggesting an immu-
nological mechanism (Mungul et al. 2004). We therefore
analyzed the PyMT spontancous tumors for evidence of a
change in immune response when ST3Gal-I is over-expressed.
We found no difference in the number of infiltrating lympho-
cytes (data not shown) or in the level of expression of
cytokines (IFNvy, TNFa, TGFpB, IL2 and IL10) detected in
the tumors by quantitative reverse transcription—polymerase
chain reaction (QRT-PCR) (data not shown) when comparing
tumors from ST3Gal-I/PyMT to tumors from control/PyMT
mice.

Comparison of the levels of circulating TGF( suggests that
the difference in the development of the tumor already occurred
in the mice prior to the detection of palpable tumor masses.
Taken together, our results indicate that ST3Gal-I exerts its in-
fluence early in tumor development. It is now therefore
important to analyze any differences at this early stage. Several
mechanisms could be responsible for promoting tumorigenesis,

one of them being the ability of the tumor to escape the immune
surveillance early in tumor development, as suggested by the
results from the transplantable tumor model (Mungul et al.
2004). Certainly changes in mucin-type glycosylation can af-
fect how MUCI interacts with the immune system, and while
the expression of some glycans may be active in stimulating an
immune response (Napoletano et al. 2007), other glycans such
as ST, may inhibit a response (Mungul et al. 2004), suggesting
that the type of O-glycans expressed by cancer cells may be
able to modulate the immune response to the tumor.

In conclusion, we have demonstrated for the first time that
over-expression of ST3Gal-I is functionally involved in onco-
genesis. This suggests that ST3Gal-I over-expression in breast
cancer is not just a collateral effect of carcinogenesis but may
provide some advantages to tumor development. Our data al-
so suggest that ST3Gal-1 exerts its effect early in tumor
development.

Materials and methods

Development of hST3Gal-I transgenic mice

Human ST3Gal-I (+889 to +1951) (accession number: L29555,
EC:2.4.99.4) was amplified by PCR from a plasmid containing
hST3Gal-I full cDNA with the following primers designed to
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insert restriction sites for Not 1 at both 5’ and 3’ ends of the
amplicon:

Forward primer: 5'-ATCAGCTAGCGCGGCCGCTTC-
CTGCTACCCATCGT-3'

Reverse primer: 5'-TAGAAGTTCCCCTCTACTCC-
TAGGCGC-3'.

Using these Not I sites, the resulting cDNA was inserted into
the pNASSP plasmid (Clontech Laboratories Inc, Mountain
View, California), downstream of the promoter region of human
MUCI (from —1401 to +33) previously cloned in this plasmid
(Graham et al. 2001). To confirm expression, the resulting con-
struct was transfected into Cos7 cells, and the transfected cells
were stained with a monoclonal antibody to hST3Gal-I. Trans-
fected cells showed positive staining in the Golgi as expected
(data not shown).

A 2.5-kb Sal I-Sca I fragment containing the MUC1 promot-
er fused to ST3Gal-I was purified (Qiagen kit) and dissolved in
injection buffer (10 mM Tris, 0.1 mM ethylenediaminetetraa-
cetic acid pH 7.4 prepared in ultrapure water). DNA (5 ng/L)
was injected into the pronucleus of pure C57/Bl6 mouse em-
bryos that were subsequently transferred into day 1-plugged
pseudopregnant C57/B16 female mice.

Transgenic mice were identified by PCR on DNA isolated
from tail snips, amplifying a 550-bp segment of DNA using
oligonucleotides primers within the 3’ end of the MUCI pro-
moter and within the 5’ end of the ST3Gal-I. Two founder mice
were identified that expressed hST3Gal-I in the expected tis-
sues and from one founder, mice homozygous for hST3Gal-1
were developed by littermate mating. Homozygosity was con-
firmed by backcrossing mice into WT C57B1/6, which resulted
in 100% of the offspring carrying hST3Gal-1.

Development of spontaneous tumors in hST3Gal-I transgenic
mice

Homozygous hST3Gal-I female mice on a pure C57Bl/6 back-
ground were mated with FVB male mice heterozygous for the
polyomavirus middle T antigen driven by the mouse mammary
tumor virus (MMTV-PyMT mice (Guy et al. 1992)) promoter
to obtain the ST3Gal-I/PyMT mice. Control mice (Control/
PyMT mice) were derived by crossing female C57B1/6 mice
with MMTV-PyMT male mice. The offspring were screened
for the PyMT by PCR of DNA prepared from tail snips using
the following primers:

Forward primer: 5'-CCAGAACTCCTGTATCCA-
GAAGCG-3’

Reverse primer 5'-GGATGAGCTGGGGTACTTGTTC-
CCC-3'.

Female mice carrying the PyMT were examined three times
per week for the development of tumors. All animal work was
under project license number PPL 70/6847, strictly adhering to
Home Office guidelines.

Immunohistochemistry

Frozen sections of mouse tissue and tumors were fixed in ice-
cold acetone for 10 min. For staining for mouse Mucl, endog-
enous peroxidase activity was blocked in 1/100 H,0O,/
methanol for 10 min. Sections were blocked with 50% fetal
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calf serum and then incubated with a monoclonal antibody
4B10 to human ST3Gal-I (Vallejo-Ruiz et al. 2001) or a
polyclonal antibody to the human MUCI cytoplasmic tail
that also reacts with mouse Mucl (Pemberton et al. 1992).
After extensive washing, the slides were incubated with bio-
tinylated rabbit antimouse Ig or biotinylated goat antirabbit
Ig (DAKO Denmark A/S, Glostrup, Denmark), respectively,
for 30 min, washed and incubated with streptavidin biotin
complexes linked to horse radish peroxidase (DAKO). Bind-
ing was visualized with diaminobenzidine (DAKO), and the
sections were counterstained with hematoxylin. Hematoxylin
and eosin (H&E) staining on formalin-fixed, paraffin-embed-
ded tissue was used for additional histological analysis.

Glycosyltransferase assays

Homogenates of mouse tissues were prepared by mincing tis-
sues and hand homogenizing in five times volume of 0.25 M
sucrose. Protein contents were determined by the Bio-Rad Lab-
oratories Inc, Berkeley, California protein assay (Bradford)
using bovine serum albumin (BSA) as the standard. All en-
zymes were assayed in at least duplicate determinations, and
results varied by <10% between duplicates. Assays lacking ex-
ogenously added acceptor substrate provided the background
radioactivity.

Sialyltransferase

ST3Gal transferase assay mixtures contained in a total volume
of 40 pL: 2 mM Galp 1-3GalNAca-p-nitrophenyl (Galp1-
3GalNAca-pnp) acceptor substrate, 0.1 M Tris—HCI, pH 7,
0.125% Triton X-100, 5 mM MnCl,, 0.4 mM CMP-[*H]sialic
acid (2420 cpm/nmol) and 10 pL homogenate (0.08—0.15 mg
protein). The mixtures were incubated for 1 h at 37°C. Reac-
tions were stopped with 0.2 mL water and freezing, mixtures
filtered through 0.1 mL of Bio-Gel P2 and washed three times
with 0.4 mL water. After lyophilizing combined eluates,
120 puL of water was added and 80 pL injected into high-
performance liquid chromatography (HPLC), using an analyt-
ical amine column and acetonitrile/15 mM K-phosphate, pH
5.2 = 75/25 as the mobile phase. The absorbance at 195 nm
and radioactivity of 2 min fractions were monitored. Sialic acid
eluted at about 25—-30 min and enzyme product at 14—18 min.
Radioactivity of fractions was determined by scintillation
counting. Radioactive CMP-sialic acid did not elute under
these conditions but can be eluted with acetonitrile/15 mM
K-phosphate, pH 5.2 = 50/50.

Polypeptide GalNAc-transferase

Polypeptide GalNAc-transferase activity was assayed in mix-
tures containing in a total volume of 40 pL: 0.5 mM
acceptor substrate AQPTPPP, 0.125 M MES buffer, pH 7,
0.125% Triton X-100, 10 mM AMP, 10 mM MnCl,,
0.9 mM UDP-[*H]GalNAc (3795 cpm/nmol) and 10 pL ho-
mogenate (0.08—0.15 mg protein). The mixtures were
incubated for 1 h at 37°C. Reactions were stopped with
0.6 mL water and freezing. Mixtures were applied to columns
of 0.4 mL AG1x8, which were washed two times with 0.6 mL
water. Eluates were lyophilized, and enzyme product was sep-
arated by HPLC using a C18 column and acetonitrile/water =
6/94 as the mobile phase. The absorbance at 195 nm and radio-



activity of 2-min fractions were monitored. Radioactivity of
fractions was determined by scintillation counting.

Core 2 B6GlcNAc-transferase

Core 2 B6GIcNAc-transferase assay mixtures contained in a
total volume of 40 puL: 2 mM Galp1-3GalNAca-Bn acceptor
substrate, 0.125 M GlcNAc, 0.125 M MES buffer, pH 7,
0.125% Triton X-100, 10 mM AMP, 0.5 mM UDP-[’H]
GIcNAc (5230 cpm/nmol) and 10 pL homogenate (0.06—
0.24 mg protein). The mixtures were incubated, in duplicates,
for 1 h at 37°C. Product was isolated as described for polypep-
tide GalNAc-transferase by AG1x8 and HPLC using a C18
column and acetonitrile/water = 12/88 as the mobile phase.

TGFB quantification

The concentration of TGF in mouse serum was measured by a
commercially available two-site sandwich enzyme-linked im-
munosorbent assay (ELISA) from R&D Systems Europe Ltd,
Abingdon, UK according to manufacturer’s instructions. Assays
were performed in duplicate and experiments repeated twice.

Immunoprecipitation

Snap-frozen tumors were crushed using a Mikro-dismembrator
IT (B Braun Biotech, Melsungen, Germany). Tumor powders
were dissolved in lysis buffer (Tris/HC1 50 mM, NaCl
150 mM, Triton X-100 0.1%) containing the complete mini anti-
protease cocktail (Roche, Lewes, UK) and incubated for 6 h.
Lysates were homogenized with an Ultra-Turrax T8 (Ika, Fisher
Scientific, Loughborough, UK) and further incubated for 2 h.
Total tumor lysates (2 mg of proteins) were precleared using
50 pL of A/G proteins agarose beads (Roche) for 2 h. The lysates
were then incubated with 5 pug of anti-c-Src antibody (Santa
Cruz Biotechnology Inc, Santa Cruz, California) or 100 pL of
anti-CT supernatant (CT2 antibody), overnight at 4°C.

A/G protein beads (100 uL) were subsequently added and
incubated for 4 h. Immunoprecipitated proteins were washed
using phosphate-buffered saline, then eluted from the bead
using elution buffer (0.1 M glycine at pH 2.5) for two in-
cubations of 15 min each. All procedures were carried out at
4°C using ice-cold reagents.

Electrophoresis and western blotting

The immunoprecipitates were loaded onto 4—12% gradient ac-
rylamide gels, submitted to SDS—PAGE electrophoresis under
reducing conditions and electro-transferred onto nitrocellulose
membranes (Biotrace NT; Gelman Sciences Inc, Ann Arbor,
Michigan) in accordance with standard procedures. Mem-
branes were blocked in 1% BSA in Tris-buffered saline
(TBS) and incubated with primary antibodies, anti-c-Src or
a polyclonal antibody (CT1) to the cytoplasmic tail of
Mucl, in TBS 0.05% Tween-20, for 1 h. After washing, la-
beled proteins were revealed using appropriate secondary
antibodies conjugated to alkaline-phosphatase and NBT/X-
phosphate revelation reagent (Roche).

Western blots for AKT and Phospho-AKT were performed
using antibodies from Cell Signalling Technology Ltd, Herts,
UK using a phospho-Ser473 specific antibody and visualized
using ECL system (GE Healthcare Life Sciences, Little
Chalfont, UK).

ST3Gal-1 promotes mammary tumorigenesis

Supplementary data

Supplementary data for this article is available online at http://
glycob.oxfordjournals.org/.
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