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Abstract
Completion of the human genome project and rapid progress in genetics and bioinformatics have
enabled the development of large public databases, which include genetic and genomic data linked
to clinical health data. With the massive amount of information available, clinicians and researchers
have the unique opportunity to complement and integrate their daily practice with the existing
resources to clarify the underlying etiology of complex phenotypes such as allergic diseases. The
genome itself is now often utilized as a starting point for many studies and multiple innovative
approaches have emerged applying genetic/genomic strategies to key questions in the field of allergy
and immunology. There have been several successes, which have uncovered new insights into the
biologic underpinnings of allergic disorders. Herein, we will provide an in depth review of genomic
approaches to identifying genes and biologic networks involved in allergic diseases. We will discuss
genetic and phenotypic variation, statistical approaches for gene discovery, public databases,
functional genomics, clinical implications, and the challenges that remain.
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Human Genome Variation
Human genome variation encompasses all of the genetic characteristics observed within the
human species. Genetic variation occurs both within and among populations and is the basis
for natural selection. Insights regarding the distribution of genetic variants among human
populations have recently become available1. Interestingly, human genetic diversity decreases
in native populations as the migratory distance from Africa increases, presumably due to
limitations in human migration2.

Nucleotide diversity is based on single mutations called single nucleotide polymorphisms
(SNPs), which occur at a rate of 1 SNP per 1,000 base pairs3. Currently, there are more than
12 million SNPs deposited in GenBank, 6.5 million of which have been validated
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(http://www.ncbi.nih.gov/SNP). The bulk of variations at these nucleotide levels are not visible
at the phenotypic level. A better understanding of the basis of genetic diversity was gained
with the publication of full sequences of individuals genomes4, 5. The Human Genome Project
and a parallel project by Celera Genomics yielded two haploid sequences, however, analysis
of diploid sequences has revealed that non-SNP variation accounts for much more human
genetic variation than single nucleotide diversity. Non-SNP variation includes copy number
variation and results from deletions, inversions, insertions and duplications5. Copy number
variation regions (CNVRs) have been found in 12% of the genome. CNVRs can be markedly
different between populations and contain hundreds of genes, disease loci, functional elements
and segmental duplications5. Taking into account this variation as well as SNPs, human to
human genetic variation is estimated to be approximately 0.5%. This 0.5% difference amounts
to a significant number of distinct genetic traits that uniquely distinguish the genome of every
person and contribute to unique and distinct risks for diseases, responses to environmental
exposures (including nutrition), and responses to pharmacologic treatment.

Epigenetic Variation in Allergic Disorders
Epigenetic variation does not affect the underlying DNA code, but rather modifies how it is
expressed through covalent modifications including DNA methylation, histone modifications,
and microRNAs. It is the structural adaptation of chromosomal regions so as to register, signal
or perpetuate altered activity states6. Detailed analysis of methylation across several
chromosomes has demonstrated that the promoter region of nearly 20% of genes are
methylated, many of which influence transcription7. Progressive accumulation of phenotypic
differences between genetically identical monozygotic (MZ) twins illustrates how pollution,
smoking, mold, diet, habits or, in general, environment can shape phenotype and disease
susceptibility. MZ are epigenetically indistinguishable early in life but, with age, exhibit
substantial differences in particular when they have led different lifestyles and had spent less
of their lives together8, 9. Therefore, MZ twin discordance for many common disorders could
be interpreted as the result of external, environmental factors that modulate susceptibility
through a change in the profile of epigenetic modifications that ultimately determine gene
function. The field of epigenetics has emerged to explain how cells with the same DNA can
differentiate into alternative cell types and how a phenotype can be passed from one cell to its
daughter cells. It is now well established that epigenetic mechanisms are important to control
the pattern of gene expression during development, the cell cycle, and in response to biological
or environmental changes10–13. Unlike genetic alterations, which are permanent and usually
affect all cells, epigenetic modifications are cell type specific14. Epigenetic regulation of the
immune system occurs at many levels including the differentiation of T cells6, 15–19. Epigenetic
effects on gene expression may persist even after the removal of the inducing agent, and can
be passed on, through mitosis, to subsequent cell generations, constituting a heritable,
epigenetic change. In a somatic cell, a heritable change can generate a dysfunctional clone of
cells with phenotypic consequences (e.g. a tumor). In a germ-line cell, a heritable change may
be transmitted to the germ cells themselves (sperm or ova) and potentially to the next
generation. In this model, epialleles may be in linkage disequilibrium with SNPs that are
genotyped in genome-wide association studies. The role of epigenetics in allergic disease is
becoming increasingly evident. One recent study showed that epigenetic reprogramming
involving aberrant DNA methylation of a 5′-CpG island in acyl-CoA synthetase long-chain
family member 3 (ACSL3) was significantly associated with asthma risk in children born to
mothers exposed to air pollutants such as traffic-related combustion emissions20. Another study
found that neonates of allergic mothers are born with substantial changes in DNA methylation
in their splenic dendritic cells and these dendritic cells show enhanced allergen-presentation
activity in vitro21. Current knowledge of epigenetics in allergic diseases is limited and novel
applications of epigenetic approaches including genome wide approaches to allergic diseases
are necessary to uncover the role of epigenetics.

Baye et al. Page 2

J Allergy Clin Immunol. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncbi.nih.gov/SNP


Defining Phenotypic Variation in Allergic Disease
Phenotype is the observable characteristics of an organism, as determined by both genetic
makeup and environmental influences, including individual, physical, psychosocial
environmental exposures (Figure 1). Genotype is the descriptor of the genome which is the set
of physical DNA molecules inherited from the organism’s parents, while phenotype is the
descriptor of the phenome, the manifest physical properties of the organism including its
physiology, morphology and behavior.

Although single gene disorders in classical Mendelian inheritance result in direct genotype-
phenotype correspondence, the relationship between genotype and phenotype in traits of
multifactorial (complex) inheritance is complicated. In complex diseases with a multifaceted
phenotype such as asthma, a given genotype can result in many different phenotypes and there
are different genotypes corresponding to a given phenotype. While an individual’s genotype
is fairly stable over a lifetime, an individual’s phenotype is dynamic, influenced by both the
environment and the underlying genotype, including interactions between them22. The
definition, measurement, and validity of phenotyping need to be standardized to increase the
quality of research and the reproducibility of genetic studies22. Indeed, recently, NIH launched
an initiative (PhenX) to address the need standardized phenotype and environmental exposures
measures for cross-study comparison in genetics studies23. These measures do not include
information for allergic diseases, however, the National Institute of Allergy and Infectious
Diseases recently partnered with the National Heart, Lung, and Blood Institute, the National
Institute of Environmental Health Sciences, the National Institute of Child Health and Human
Development, the Agency for Healthcare Research and Quality, the Merck Childhood Asthma
Network, and the Robert Wood Johnson Foundation to host a Asthma Outcomes Workshop.
The objective of this workshop was to develop standardized definitions and data collection
methodologies for established and validated asthma outcomes measures. The goal is that these
outcomes will be broadly used in NIH-funded studies24.

There are several important variables to consider when defining a phenotype for studies of
allergic disorders including disease definition, atopic status, comorbidities, and disease
outcomes. For example, severe asthma is a recognized asthma phenotype defined by receiving
ongoing treatment with high-dose inhaled corticosteroids, oral corticosteroids, or both for at
least 6 months with persistent symptoms or exacerbations when the controller medications are
tapered25. However, “severe asthma” is not a single phenotype. Population studies have
revealed differences in severe asthma that begins in childhood versus adulthood26–28.
Childhood-onset asthma is often “allergic”, while adulthood-onset asthma is more
heterogeneous and often is not related to allergy, but rather to other influences including aspirin
sensitivity, hormonal influences, and occupational exposures. This heterogeneity strongly
supports the need for genetic studies aimed at uncovering the mechanistic bases for each distinct
phenotype, rather than the mixed phenotype of asthma.

Age is an important factor in defining phenotypes for allergic disorders. As a population ages,
it will be exposed to more environmental factors (e.g. environmental tobacco smoke, diesel
exhaust, air pollution) that contribute to the pathogenesis of asthma and allergy, thus increasing
sporadic (non-genetic) occurrences of these disorders. Thus, when studying a cohort of adults,
there will be a proportion of individuals who could be classified as having asthma because of
environmental exposures without a major genetic risk. Children on the other hand, may reduce
the heterogeneity of the etiology of asthma because they have had minimal time to accumulate
environment exposures, which would increase the risk of asthma. Given the risks of
misclassification of asthma in the very young and the heterogeneity in the older groups, serious
attention should be focused on the ages of participants. There has been a strong focus on
powering genetic studies with very large sample sizes, however, large cohorts may not help
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improve our understanding of the genetic underpinnings of allergy phenotypes as much as
precise phenotyping. Phenotypes can be defined through combinations of clinical information
and individual biomarker and molecular data.

The phenotypic definition of controls is another important consideration, especially in studies
of allergic disease where some features may be overlapping. For example, allergic sensitization
may overlap with childhood asthma, so if a study aims to identify specifically childhood asthma
genes, the control group should include sensitized subjects without asthma. The selection of
the controls should be based on the goals of the research. With the availability of genotypic
and phenotypic data through public resources such as dbGAP
(http://www.ncbi.nlm.nih.gov/gap), it is enticing to consider the recruitment of controls as
unnecessary. However, controls unselected with respect to phenotype increases the number of
participants required to obtain similar power when using controls, which do not have the
phenotype of interest. This is compounded by the fact that the publicly available controls are
likely to be from a different population than the cases. When this situation occurs, researchers
should consider applying genetic ancestry matching (discussed below) to minimize population
stratification29.

Statistical Approaches to Finding Genetic Variation in Allergic Disorders
There are three main statistical approaches to gene discovery, linkage, association, and
admixture mapping. Linkage analysis tests to determine whether a variant co-segregates with
disease in families; association analysis tests to determine whether a genetic variant occurs
more often in individuals with disease than without disease; and admixture mapping tests to
determine whether there particular regions of the genome at which inheriting DNA from
ancestors from a certain region of the world predisposes one to particular diseases. Linkage
studies can be performed only in family-based studies, while association testing and admixture
mapping can be performed in both population- or family-based studies. These approaches may
appear to ask the same questions, but statistically these are independent tests, and the strategy
affects the hypotheses that can be tested.

Linkage analysis is based on the assumption that the genetic marker and the disease variant
are in close proximity and transmitted intact across generations30. Thus, markers in close
proximity to the disease-causing gene segregate with disease in families. However, the
resolution of linkage is poor with candidate regions encompassing hundreds of genes. Thus,
linkage analysis only identifies regions not genes or variants. Further, as linkage is statistical
evidence, replication is the gold standard to minimize the risk of false positives.

An alternative approach is an association study, which can utilize population or family based
designs. It is important to recognize that association does not equal causation. Association
studies simply measures statistical dependence between two or more variables. Significant
associations can be due to one of several misleading factors including LD, population
stratification, or random chance. Once significance is achieved, replication is required to ensure
the validity31.

Admixture occurs when two or more genetically diverse populations merge to form a new
population32. Localizing disease genes using an admixed population is called admixture
mapping. In human admixture studies, researchers combine information about known
population history with information from individuals’ measured genotypes using known
ancestry informative markers (AIMs). Studies consistently show that allergic disorders such
as asthma are more common in people of West African ancestry compared with people of
European ancestry33. The African-American population is an admixed population for which
about 20% of the genetic material traces to European ancestry34. The association between
increased asthma risk and African ancestry and the admixed nature of the African-American
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population34 suggests that admixture mapping35 might be an important asthma gene-finding
strategy to study genetically heterogeneous populations.

With current technology, it is not cost prohibitive to perform genome-wide linkage and
association studies. An advantage of the genome-wide approach is that it requires no a priori
evidence and, thus, has the ability to identify regions and variants in genes previously not
implicated in allergic disorders and provide insights into the biologic underpinnings for these
disorders. Researchers using genome wide approaches must adjust the level of significance to
ensure that findings did not occur by chance; with the increased numbers of statistical tests,
the likelihood of obtaining a p-value of 0.05 increases. For the current GWAS SNP chips
(density 1M SNPs), significance thresholds of 10−8 are required31 to control for multiple
comparisons. Given this level of significance, the number of samples required to obtain
adequate power in a genome wide association study (GWAS) is in the thousands for a gene
with modest effect. By limiting the analysis to those gene regions, which have promising a
priori evidence of being involved with asthma, the severity of the correction for multiple testing
becomes much less severe. A candidate gene study examining 1000 SNPs will require only
60.5% of the sample size required by a GWAS study examining 1 million SNPs to obtain the
same statistical power of 80%. This reduced sample requirement may permit better
phenotyping and reduced heterogeneity, which will also improve the power. Thus, there are
benefits to both GWAS and candidate gene approaches.

Because asthma is a prevalent disorder, the classic population based sampling strategy is case-
control. In this approach, the researcher collects individuals with disease (cases) and unrelated
individuals without disease (controls). This method is very efficient; compared to a random
sampling design, only 35% of the total sample would be required for equivalent power
(assuming an asthma frequency of 10%). While this approach appears simple, the challenge is
ensuring that the controls come from the same ancestrally homogeneous population as the
cases. When cases and controls are not drawn from the same ancestral population, population
stratification can result in spurious associations36. For example, suppose most people of
African ancestry in a sample had brown eyes and also happened to have asthma, while most
people of European ancestry were blue-eyed and asthma-free. A naïve analysis might conclude
that the brown-eyes SNP is responsible for asthma, even if eye color and disease are completely
unrelated. That is, the methods are likely to nab the wrong SNP suspects, due to “guilty by
association”. This problem becomes more pronounced in studies surveying the entire genome
because of the huge number of ancestry-related SNPs being tested. To address this genetic-
mixing problem, researchers can test whether cases and controls differ over a large number of
variants not expected to be associated with disease. If differences exist, adjustments can be
made to minimize this effect37. Currently, three fundamentally different methods are used to
correct for confounding in allergy genetic association studies37–39. These methods are (1)
genomic control, (2) structured association, and (3) principal component analysis. Genomic
control uses a set of non-candidate, unlinked loci to estimate an inflation factor, l, which was
caused by the population structure present and then corrects the standard Chi-square test
statistic for this inflation factor. The structured association method utilizes Bayesian techniques
to assign individuals to “clusters” or subpopulation classes using information from a set of
non-candidate, unlinked loci and then tests for an association within each “cluster” or
subpopulation class. To control for population confounding by variations in background
ancestry during structural association testing (SAT), ancestry informative markers (AIMs)
panel can be used35. Therefore, AIMs can be also termed structure informative markers (SIMs).
These markers exhibit differences in frequencies between population groups. Importantly, care
should be taken in selecting which AIMs to use as some sets may be population specific40.
Principal component analysis (PCA) involves a mathematical procedure that transforms a
number of possibly correlated variables into a smaller number of uncorrelated variables called
principal components. It can be used to identify and adjust for population substructure37.
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Family based association tests protection against stratification, a decided advantage of family
based designs41.

Use of Public Databases to Inform Genetic Data
Publicly available databanks now contain billions of nucleotides sequence data collected from
over 260,000 different organisms42. This proliferation of data from genome sequencing over
the past decade has resulted in dramatic changes in the way the scientific community is
communicating and carrying out genomic research. Once a genome wide or candidate gene
study has been performed, the investigator can readily obtain information about an identified
SNP, including where it is located, its potential functional significance, its frequency in
different populations, and what else may already be known (Figure 2). A summary of available
public resources is summarized in Table 1. The PUBMED
(http://www.ncbi.nlm.nih.gov/sites/entrez) site will provide information on whether a SNP is
in a gene and whether there are reported genotypic and allelic frequencies for major population
groups. The database of genomic variants (http://projects.tcag.ca/variation/) is also a useful
tool. This site permits the researcher to zoom out and get a broader view of the genomic region
containing the SNP of interest including features such as newly reported genes, transcripts,
and copy number variants. The website UCSC Genome Browser (http://genome.ucsc.edu) also
provides excellent information about the features of the genome in a particular region. While
each of these sites is an excellent tool to examine a small number of SNPs, a large number of
SNPs can be investigated efficiently using a high throughput method, such as the SNP and
CNV annotation database (http://genemem.bsd.uchicago.edu/newscan). Once the most
promising SNPs have been identified, databases are available to provide estimates of putative
functionality of the SNPs. FASTSNP
(http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp) evaluates all SNPs
in a gene region using the methodology proposed by Tabor and colleagues43, 44. If the SNP is
non-synonymous then SNPeffect (http://snpeffect.vib.be/search.php) can provide additional
information about the molecular properties of the variant. In order to determine what is already
known about a specific SNP or genes in terms of disease associations, the Genetic Association
Database (http://geneticassociationdb.nih.gov/) is a useful tool. It is an archive of genetic
association studies. It is searchable by both disease and by gene45. A catalog of published
GWAS is regularly updated and deposited at http://www.genome.gov/GWAStudies 46.
Another resource available is the relationship between SNP variants and gene expression
(http://www.scandb.org)47.

HapMap, Tagging SNPs, and Imputation Analysis
To accelerate the identification of common disease alleles, the International HapMap Project
in 2002 initiated the construction of a genome-wide SNP database of common variation
(http://www.hapmap.org). In brief, the phase I and II project has genotyped over 3 million
SNPs in 269 samples from 4 populations (90 Utah Residents (30 parent-offspring trios) with
Northern and Western European Ancestry (CEU), 45 Han Chinese from Beijing, China (CHB),
44 Japanese from Tokyo, Japan (JPT), and 90 Yorubans (30 trios) from Ibadan, Nigeria (YRI).
The average spacing of the map is one SNP per 1000 bp, and this vast resource is currently
being used globally as a template for both LD-based candidate gene and genome-wide
association studies in allergic disorders. To increase the sample size to over 1000 individuals
in 11 populations, the HapMap phase III has recently released draft version of the dataset
(http://www.hapmap.org). HapMap genotypic data, allele frequencies, LD data, phase
information and sample documentation are publicly and freely available for download from
HapMap website (http://www.hapmap.org).
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While whole human genome sequencing is possible48, the cost and challenges with dealing
with such a large quantity of data makes this approach untenable currently. However, SNPs
that are physically close to one another on the chromosome are more likely to be inherited
together than SNPs farther apart. Linkage disequilibrium (LD) is a measure of this non-random
correlation between pairs of SNPs. Thus, if a causal variant is in LD with a marker SNP, then
the marker will be associated with the phenotype proportional to the degree of LD between the
two. Further, there are blocks of high LD conserved within populations49. The coinheritance
between SNP alleles showing strong linkage disequilibrium, or LD enable most of the common
genetic variations in a region to be captured by genotyping subsets of SNPs (termed haplotype-
tagging SNPs, or tagSNPs) across a candidate gene or region of interest. Because redundant
information can be reduced (thus reducing cost), many studies will often use the tagging SNP
approach. A challenge is that tagging SNPs are not selected for their likelihood to be functional.
However, recent work has shown that information from unmeasured SNPs can be imputed
using tagging SNPs50, 51. Imputation requires use of a reference population in which genotype
information is available for a large number of SNPs52. While some of these SNPs would overlap
with the genotyped tagging SNPs in a given study, others would be untyped SNPs in LD with
the genotyped SNPs. By delineating the genotype patterns in the reference set, researchers can
make reasonable inferences about what genotypes are likely to be carried by individuals at
untyped SNPs in their study. It is essential that the reference population is similar in ancestry
to the population in which imputation will be performed. Fortunately, HapMap53 provides
publicly available information on over 3 million SNPs in four major ancestry groups. Once
imputation is performed then imputed SNPs can be tested for association with disease in the
population of interest52. Since imputation interrogates all common variants, the likelihood of
identifying biologically relevant associations (e.g with functional variants) is greater. Another
advantage of imputation is that studies may not utilize the same SNPs in the original discovery
phase. With imputation, even studies which have investigated different SNPs can be combined
to determine the overall evidence for a given association52.

Rare Variants in Allergic Disorders
Most genetic studies, including GWAS, investigating common diseases have focused on
common genetic variants on the assumption that common variants are mostly likely to
contribute to common diseases (common disease/common variant hypothesis)54. There is
emerging interest in association studies of rare variants and it is hypothesized that rare variants
are more likely to be functional than common variants. Further, recent evidence supports that
rare genetic variants can create synthetic associations that are credited to common variants55.
While genetic association and linkage studies are well suited to find common variants for
common diseases, they are not optimal for identification of rare variants56. Rare alleles with
major phenotypic effects can contribute significantly to common traits in the general
population57. Sequencing of candidate genes or entire genomes is the optimal way to identify
rare variants. Unfortunately, most current studies are not designed or powered to identify and/
or test the contributions of rare SNPs to common disease. Although current approaches are not
optimal to elucidate rare variants, they can identify regions of interest, which harbor rare
variants; these regions can then be further analyzed by deep resequencing (the determination
of a new genome sequence relative to a reference genome is often referred to as
“resequencing”).

Recently, approaches have been utilized to study the potential health impact of private SNPs,
i.e. SNPs that have only been found in a given population58. In one study, investigators explored
private SNPs in specific populations that may have phenotypic effects. They found that these
SNPs contribute to variability in several cellular processes59. Such variability may provide
clues regarding ethnicity-specific responses to diseases or drugs. Another recent study found
that in African Americans, private SNPs were associated with asthma60. Investigation of rare
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and private SNPs requires deep sequencing approaches. The 1000 Genomes Project, a deep-
resequencing project aimed at providing detailed genetic variation data on over 1000 genomes
from 11 populations around the world, will aid these efforts (www.1000genomes.org). This
project will identify over 95% of the variants with allele frequencies of more than 1% in human
genome, substantially enhancing the HapMap data. Results from the 1000 Genome Project will
provide data to allow evaluation of the common disease common variance (CD/CV) hypothesis
versus the common disease many rare variants (CD/RV) hypothesis61.

Functional Genomics
Once a genetic study has been performed and allergy causing variants have been identified,
the investigator can gain information to unify the biological function of gene products. Several
groups have reported that genes involved in predisposing to a given polygenetic disease tend
to share more commonalities (annotated by similar GO terms) in their molecular function or
biological pathway than genes chosen at random or genes not involved in the same
disease62–69. Gene Ontology (GO, http://www.geneontology.org) can be used to identify
commonalities between gene products in the form of an agreed ontology. It provides a
controlled vocabulary about genes and gene products based on known or predicted molecular
function, cellular location, and biological process70. Because of the existing homologies
between proteins among different taxa, the GO terms provides researchers with a powerful
way to query and analyze functional genomic information in a way that is independent of
species70, 71. Once genetic analyses determine which genes (among the thousands analyzed)
may be related to the phenotypes, functional genomics experiments allow the scaling of the
classical functional experiments to a genomic level72. The GO analysis could potentially be
used to reduce the number of targets of a large group of correlated genes and to find biological
functions potentially affected by multiple genes. In summary, GO annotation terms are
enriched among genes linked to the trait, and such commonalities are often sufficient to narrow
the list of candidate genes69.

Integration of Gene Expression and Sequence Variation Approaches in
Allergic Disorders

Both coding and non-coding variability contribute to genetic variation. Novel approaches to
capture human genetic variation have integrated expression global gene expression arrays,
DNA sequence variation arrays, and public databases (Figure 3)73. This strategy has been
successfully applied to asthma74. In association studies, the investigators found markers on
chromosome 17q21 to be reproducibly associated with childhood asthma. They then evaluated
the relationships between the markers and transcript levels of genes in cell lines derived from
children in the association study. The SNPs associated with childhood asthma were associated
with transcript levels of ORMDL3, suggesting that genetic variants regulating ORMDL3
expression are determinants of susceptibility to childhood asthma. Thus, gene expression data
informed the genetic data and provided insights regarding the biologic mechanisms that may
be involved. Gene expression arrays can also be used in a discovery approach to identify
dysregulated genes and pathways. The gene expression profiles can be used to identify key
regulatory networks, to identify novel potential candidate genes, and to define phenotypes,
which can then serve as quantitative traits for genetic studies. Variation in gene expression is
an important mechanism underlying susceptibility to complex disease. An integrated genetic/
genomic approach allows the mapping of the genetic factors that underpin individual
differences in quantitative levels of expression (expression QTLs; eQTLs)75. The major public
data repositories, ArrayExpress and Gene Expression Omnibus (GEO), house raw microarray
data and serve as warehouses for processed experimental data, facilitating gene-based queries
of multiple expression profiles. ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae) is a
public repository for experimental microarray data, queryable based on a range of gene
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annotations including gene symbols, GO terms and disease associations76. GEO
(http://www.ncbi.nlm.nih.gov/geo) is a public repository that archives and freely distributes
microarray, next-generation sequencing, and other forms of high-throughput functional
genomic data.

Successes and Clinical Implications
Using a candidate gene approach, common mutations in filaggrin gene (FLG, 1q21) have been
implicated in the causation of ichthyosis vulgaris77–79. Filaggrin80 (filament aggregation
protein) is a major epidermal protein involved in maintaining the skin barrier81 and previous
studies had demonstrated that filaggrin was absent or reduced in the skin cells of individuals
with ichthyosis vulgaris82. Several independent replication studies have now provided
convincing evidences of an association of FLG mutations with atopic dermatitis (AD)83–85.
The estimated penetrance varies from 42% to 79%86, 87 i.e, between 42% and 79% of
individuals with one or more FLG null mutations are likely to develop atopic dermatitis. The
discovery that null mutations in FLG are associated with atopic eczema represents the single
most significant breakthrough in understanding the genetic basis of this complex disorder. In
addition, this association has yielded important insights into the biologic underpinnings of AD
and support for the hypothesis that a barrier defect may be a contributory mechanism for the
pathogenesis of AD and related atopic disorders83, 88. The exact contribution of FLG to atopic
disorders remains to be delineated. The identification of patients with these FLG mutations
may facilitate the targeting of novel therapies to repair or replace the defective epidermal
barrier89.

Genome-wide association studies have also yielded successes. As discussed above, the
association of ORMDL3 with asthma was first identified by GWAS74. Since the initial report,
multiple groups have replicated the association between ORMDL3 variants and asthma90–96.
Further, these variants have recently been found to associate not only with ORMDL3
expression, but with transcripts of multiple genes in this region92. Increased expression of
ORMDL3 has been associated with the unfolded-protein response (UPR)97. There is still much
work to be done in this area, but it further illustrates how genetic/genomic approaches can
provide insights into novel biologic networks and potential disease mechanisms.

Missing Heritability and Future Directions
Genetic association including GWAS studies have identified hundreds of genetic variants
associated with complex human diseases including 43 replicated genes for asthma98. Most
variants identified so far confer relatively small increments in risk, and explain only a small
proportion of disease heritability. This has lead to considerable speculation regarding the
sources of the remaining, “missing heritability”99. Much of the speculation has focused on the
possible contribution of rare variants (minor allele frequency 0.5% – 5.0%). Such variants are
not sufficiently frequent to be captured by current genotyping arrays, nor do they carry
sufficiently large effect sizes to be detected by current studies. With the completion of the
human genome, more focus has gone into dense re-sequencing of regions. As the cost of
sequencing is still high, researchers often sequence DNA pools to identify variants which that
can be explored with additional genotyping100, 101. The pooled samples reliably detect variants
at a frequency of 1% or greater with as little as 287 samples100. Further, if overlapping pools
are used, these samples can be used to estimate allele frequencies101. Once variants are
identified, the next challenge is how to proceed. Much larger samples are needed for the
identification of associations with variants than those needed for the detection of the variants
themselves. One technique that has been employed is to group rare variants such that the
presence of any one of a number of rare variants is examined for disease association. However,
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this is complicated by the fact that the rare variants may have disparate effects on phenotype
making this approach uninterpretable.

Structural variants, including copy number variants (including insertions and deletions) and
copy neutral variation (including inversions and translocations) may account for some of the
unexplained heritability102. While the variation affecting large chromosomal regions can result
in large phenotypic perturbations, small/regional copy number variation can have minimal to
severe effects on phenotype103. In 2006, the first comprehensive CNV map of the human
genome was published104. Since then, CNVs have been associated with many different diseases
including asthma105. The challenge for copy number variants is detection102. Furthermore, in
a recent study, two copy number algorithms resulted in poor agreement106. Thus, while CNV
analysis offers promise, the technical and statistical assessment of CNVs is still evolving107,
108.

The modest size of genetic effects detected thus far confirms the mulitfactorial etiology of
these complex disorders. The next frontier of genetic studies will require innovative approaches
to look for the sources of missing heritability. This will include application of whole genome
sequencing to people with extreme phenotypes, use of expanded genome variation data
provided by the 1,000 Genomes project, development of novel methods to detect additional
sources of variation, improved phenotyping and use of eQTLs, expanded efforts in epigenetics
and identification of epigenetic variation, rigorous assessment of environmental influences and
gene-environment interactions, assessment of gene:gene interactions, and the design of meta-
studies with well defined consistent phenotypes spanning across large population sets.
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AIMs ancestry informative markers

CD/CV common disease common variance

CD/RV common disease many rare variants
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CNV copy number variation

CNVRs copy number variation regions

CpG cytosine base followed immediately by a guanine base

dbGAP database of Genotypes and Phenotypes

DNA deoxyribonucleic acid

ENCODE Encyclopedia of DNA Elements (ENCODE)

eQTL expression quantitative trait loci
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GWAS genome wide association study

HapMap haplotype map

JPT Japanese from Tokyo

LD linkage disequilibrium

MAF minor allele frequency

microRNA small, ribonucleic acid

MZ monozygotic

ORMDL3 ORM1-Like protein 3 gene

PCA Principal Component Analysis

PhenX consensus measures for Phenotypes and eXposures

PUBMED search engine for accessing the MEDLINE database of citations

SAT structural association testing

SIMs structural informative markers

SNPs single nucleotide polymorphisms

tagSNPs haplotype-tagging SNPs
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Figure 1.
Genetic and environmental factors, which interact to determine the overall phenotype.
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Figure 2.
Public databases can be utilized to rapidly provide key information about putative disease-
associated genetic variants.
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Figure 3. From phenotypes to genotypes and back to phenotype
An overview of how integrated genetic and genomics approaches can be used to inform current
knowledge about allergic disorders.
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Table 1

Summary of web based public databases and browsers of genetics/genomics tools

TnQTable 1What do we know? What is still unknown?

Genetic variation plays a large role in asthma and allergic disease risk. Identified variants account for a small proportion
of disease and the factors that contribute to the
majority of the heritability of allergic diseases are
still unknown.

Non-SNP variation accounts for much more human genetic variation than single nucleotide
diversity. Copy number variation regions (CNVRs) have been found in 12% of the genome.

The impact of structural variation (including
CNV) on asthma and allergic disease is unclear.
Furthermore, the technical and statistical
assessment of CNVs is still evolving.

Whole genome information and high-throughout tools are now available for high-resolution
mapping.

Linkage of genetic variation to phenotypic
variation and to translation into biological
function is still at infancy.

Gene-environmental interactions play an important role in allergic diseases and have been
relatively well studied in model organisms.

Rigorous quantitative assessment of
environmental influences will be necessary to
elucidate gene-environment in humans.

Epigenetic effects on gene expression may persist even after the removal of the inducing agent,
and can be passed on, through mitosis, to subsequent cell generations, constituting a heritable,
epigenetic change.

Approaches to efficiently dissecting the role of
gene-gene and gene-environment interactions,
epigenetics, and imprinting are lacking

There are three main statistical approaches to identify disease associated genes:, association,
and admixture mapping.

A positive association does not imply causality
or a direct effect on gene expression or protein
function

Recent evidence has revealed that rare alleles with major phenotypic effects can contribute
significantly to common traits in the general population. Sequencing of candidate genes or
entire genomes is currently the optimal way to identify rare variants.

The role of rare variants unclear, Furthermore,
while genetic association and linkage studies are
well suited to find common variants for common
diseases, they are not optimal for identification
of rare variants.

Recent evidence has revealed that rare/private SNPs can contribute significantly to common
traits in the general population. While genetic association and linkage studies are well suited
to find common variants for common diseases, they are not optimal for identification of rare
variants. Sequencing of candidate genes or entire genomes is currently the optimal way to
identify rare variants.

Although rare and private SNPs are largely
unknown, the 1000 Genomes Project, a deep-
resequencing project will provide detailed
genetic variation data on over 1000 genomes
from 11 populations around the world.

Novel approaches to capture human genetic variation have integrated expression global gene
expression arrays, DNA sequence variation arrays, and public databases. Variation in gene
expression is an important mechanism underlying susceptibility to complex disease. An
integrated genetic/genomic approach allows the mapping of the genetic factors that underpin
individual differences in quantitative levels of expression (expression QTLs; eQTLs).

Genetic studies have identified hundreds of
genetic variants associated with complex human
diseases including 43 replicated genes for
asthma. The variants identified so far confer
relatively small increments in risk, and explain
only a small proportion of disease heritability.
The clinical implications, i.e., the contribution of
the genetic variation to asthma subphenotypes,
variations in treatment response, and different
disease outcomes remain largely undetermined.
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