° NAT/O

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

N, NIH Public Access

(<
A 5 Author Manuscript

2 eSS

Published in final edited form as:
Ann Hum Genet. 2010 May ; 74(3): 189-194. doi:10.1111/j.1469-1809.2010.00573.x.

APOE is not associated with Alzheimer Disease: a cautionary
tale of genotype imputation

Gary W. Beecham?, Eden R. Martin!, John R. Gilbert!, Jonathan L. Haines?2, and Margaret
A. Pericak-Vancel

IHussman Institute for Human Genomics, University of Miami, Miami FL

2Center for Human Genetics Research, Vanderbilt University, Nashville TN

Abstract

The use of genotype imputation methods are becoming increasingly common. They are of
particular use in meta-analyses, where data from different genotyping platforms are imputed to a
reference set and combined in a joint analysis. We show here that such a meta-analysis can miss
strong genetic association signals, such as that of the apolipoprotein-e in late-onset Alzheimer
disease. This can occur in regions of weak LD; unobserved SNPs are not imputed with confidence
so there is no consensus SNP set on which to perform association tests. Both IMPUTE and Mach
software are tested, with similar results. This shows that results of imputation methods,
particularly failure to replicate strong signals, should be considered critically and examined on a
case-by-case basis.
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Recent publications (Zeggini et al. 2007; Tenesa et al, 2008; Barrett et al, 2008; O’Donovan
et al, 2008; Raychaudhuri et al, 2008; Rafiq et al, 2008) have highlighted the tremendous
gains in power that can be achieved in genetic association studies using imputed genotype
data. Indeed the application of imputation methods has become mainstream in the analysis
of large-scale genome-wide association studies (GWAS) (Marchini et al, 2007; Browning
and Browning, 2007; Scheet and Stephens, 2006; Purcell et al, 2007, Li and Abecasis, 2006;
Guan and Stephens, 2008; Nothnagel et al, 2009). Importantly, imputation provides an
efficient and cost-effective means of inferring missing data when performing a joint analysis
(i.e., combining datasets then performing association testing) or a meta-analysis (i.e.,
performing association testing separately and then combining the test statistics) of datasets
genotyped on different platforms. These combined analyses of all available data maximize
the power to detect genetic risk factors in complex traits.

A direct combined analysis of GWAS data is only feasible on a small subset of overlapping
data when multiple genotyping platforms are used. Each of the common genotyping
platforms claims excellent (>85%) coverage of common genome-wide variation, but uses
substantially different sets of actual SNPs. Imputation is one solution for harmonizing the
SNP sets, since it allows the inference of genotypes for a common set of reference
polymorphisms, usually the HapMap phase Il data (The International HapMap Consortium,
2007), which can then be jointly analyzed. This combined analysis leverages the increased
sample size of multiple datasets, and reduces the missing data for a more powerful test for
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association. While the potential utility of imputation is generally recognized, its application
is not without difficulties and should be approached with caution. In this report, we provide
a warning against a naive implementation of imputation procedures, using our experience in
an Alzheimer disease GWAS as an illustration.

We recently performed a GWAS for late-onset Alzheimer disease (LOAD [MIM 104300])
using the Illumina HumanHap 550K beadchip platform (Beecham et al, 2009). LOAD is the
most common form of dementia in the elderly and has a complex etiology with a strong
genetic component. Polymorphisms at the apolipoprotein-e gene (APOE, [MIM 107741])
are strongly associated with LOAD risk (Corder et al., 1993), with the homozygote odds
ratio for the e4 allele estimated at 14.9 (Farrer et al, 1997). The APOE gene signal has been
universally replicated in LOAD genetic studies and typically serves as a positive control
(Bertram et al, 2007;
http://www.alzforum.org/res/com/gen/alzgene/geneoverview.asp?geneid=83).

In our discovery dataset (Beecham et al., 2009), we observed several SNPs near APOE that
were strongly associated with LOAD (rs2075650, p-value = 3.4 x 10723). To validate our
GWAS findings, we performed a joint analysis using Affymetrix 500k GeneChip data from
a published GWAS (Reiman et al, 2007). Both datasets contained individuals of European
descent. In the Reiman et al study (2007), a strong signal near APOE was also observed
(rs4420638, p-value = 5.3 x 10734 Coon et al, 2007). However, the exact SNPs genotyped
in each dataset were different, making joint analysis impossible without imputation. To
combine the two studies we independently examined two software packages, IMPUTE
(Marchini et al, 2007) and MACH (Li and Abecasis, 2006), to generate genotypes for a
common set of SNPs based on the HapMap CEU reference set. Genotypes were accepted
when the genotype probability was over 0.90 (the default of the GTOOL software, a
companion program for IMPUTE), and the joint analysis was performed on SNPs with less
than 10% of genotypes missing (an alternative approach is discussed below). This approach
was taken as it is analogous to our quality-control for genotype calling using DNA
microarray assays; genotypes were called based on a quality score, and SNPs performing
poorly across many samples were removed from the statistical analysis (Beecham et al,
2009). Statistical association with LOAD was tested using the Armitage test for trend
(Armitage, 1955).

Figure 1 shows the results of the single dataset analyses and the joint analyses in the region
around apoE (IMPUTE results shown, results from MACH were similar). This figure shows
the —log10(p-value) for association with AD (points, left axis) and the percentage missing
data (bars, right axis) in our GWAS, the Reiman GWAS, the joint analysis before quality-
control and the joint analysis after quality-control (Figures 1A, 1B, 1C, and 1D,
respectively). Though the APOE signal was strong in the independent datasets (Figure 1A,
1B), there was no association at SNPs near the APOE locus in the final joint analysis of the
two datasets. Figure 1C shows that the associated SNPs near APOE were also missing much
of their data. When quality-control thresholds were applied, there were no associated SNPs
in the final analysis (Figure 1D). This effect occurs because the linkage disequilibrium (LD)
in the region around APOE is weak (Figure 2; Barrett et al, 2005). Without strong
disequilibrium the observed genotypes provide little information about the unobserved
genotypes, and the imputation algorithm cannot infer genotypes with high confidence. With
lower confidence comes more missing data, and the SNPs fail the quality-control thresholds.

The effect of low LD is largely independent of the statistical analysis method. A common
alternative to making genotype calls in imputation is to perform the statistical analysis
directly on the genotype distribution (e.g., using the SNPTEST software; Marchini et al.,
2007). While this method does allow for more uncertainty in individual genotypes, the
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quality of the imputed SNPs must still be considered. In our APOE example, instead of
making genotype calls we removed imputed SNPs with an average maximum posterior
probability less than 0.90 in either study, and performed the association testing using the
SNPTEST software. As with the genotyping calling approach, there were no SNPs near
APOE that were successfully imputed in both datasets.

One alternative approach that can recover some signals in low-LD regions has been
suggested by de Bakker et al (2008). Instead of directly combining datasets for a joint
analysis, they advocate a meta-analysis in which the respective test statistics are weighted by
a quality score (e.g., RSQR_HAT from MACH, INFO from PLINK, or PROPER_INFO
from SNPTEST). Rather than entirely removing a SNP due to poor imputation quality in a
single dataset, this method down-weights the suspect dataset without ignoring the signals
from other datasets. For example, the rs405509 SNP was genotyped in the Beecham dataset
and was highly significant (SNPTEST, p-value = 9.6 x 10-11; PROPER_INFO = 0.996).
The SNP was not genotyped in the Reiman dataset, and was imputed poorly
(PROPER_INFO score of 0.13). However, the Reiman test statistic was highly significant
(p-value = 7.4 x 10-7). We then performed a meta-analysis (METAL,
www.sph.umich.edu/csg/abecasis/metal), weighting the two studies by the sample size times
the respective info score. This kept the Beecham signal as-is, but severely down-weighted
the Reiman dataset. In the end, the down-weighted Reiman dataset still contributed to the
association and the meta-analysis p-value strengthened to 3.2 x 10-15.

This example illustrates how a naive combined analysis with imputed data can miss even
strong association when LD is weak, and serves as a warning against an uninformed
combined analysis on multiple datasets. In the case of APOE, if we had insisted on a strict
rule of “significance plus replication at the same SNP” to define regions of interest we
would have wrongly ignored the APOE association, and missed one of the strongest known
genetic effects in common complex disease. We suggest that if a signal is not present in a
combined analysis of imputed data, it should not necessarily evidence of a type-1 error in
the initial analysis. The region should be further investigated to determine why the signal
was not replicated. If there is strong LD and genotypes were inferred with confidence, then
it may be evidence of a type-1 error. However, if there is little confidence in the imputation
and there is much missing data there may be a legitimate association that a standard joint
analysis will not find. A meta-analysis approach such as that proposed by de Bakker et al
can sometimes recover the signal. The application of novel and powerful tools for fully
characterizing GWAS data holds much promise for scientific discovery, but requires us to
think critically about their meaning and interpretation.
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Figure 1. Plot of —log10(p-value) and missing data in the region surrounding apoE
The plot shows results of the imputation analysis in our GWAS (Fig 1A), the Reiman et al
GWAS (Fig 1B), the joint analysis of both GWAS before quality-control (Fig 1C), and the
joint analysis after quality-control (Fig 1D). The points refer to —log10 (p-value) of the trend

test. Open circles are SNPs that were genotyped on the platform for 1A and 1B. Closed

circles mark SNPs inferred by the imputation algorithm. SNPs with crosses were
monomorphic and not tested. The bar graph represents the percent of missing data of the

tested SNPs.
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Figure 2. Patterns of linkage disequilibrium (LD) around apoE
Plot of LD around the apoE gene. LD is measured by r2, in the Haploview program, and is
calculated from the HapMap CEU parents. The table shows p-value of the trend test after
imputation, and percent of samples with missing genotypes for that SNP. SNPs that were

genotyped in the initial studies are outlined with black boxes.
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