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Abstract

The organization of biological materials into versatile three-dimensional assemblies could be used 

to build multifunctional therapeutic scaffolds for use in nanomedicine. Here we report a strategy to 

design three-dimensional nanoscale scaffolds that can be self-assembled from RNA with precise 

control over their shape, size and composition. These cubic nanoscaffolds are only ~13 nm in 

diameter and are composed of short oligonucleotides making them amenable to chemical 

synthesis, point modifications and further functionalization. Nanocube assembly is verified by gel 

assays, dynamic light scattering and cryogenic electron microscopy. Formation of functional RNA 

nanocubes is also demonstrated by incorporation of a light-up fluorescent RNA aptamer that is 

optimally active only upon full RNA assembly. Moreover, we show the RNA nano-scaffolds can 

self-assemble in isothermal conditions (37°C) during in vitro transcription, which opens a route 

towards the construction of sensors, programmable packaging and cargo delivery systems for 

biomedical applications.

It is highly desirable to generate a library of nano-scaffolds that allow precise positioning of 

various therapeutic agents or sensors in 3D space to guarantee their simultaneous delivery to 

specific areas of the body. In the past 20 years, Seeman and co-workers have largely 

contributed to the fabrication of DNA-based nano-cages through molecular self-assembly1–
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3. Diverse 3D DNA nano-scaffolds with the connectivity of a cube4, tetrahedra5,6, 

bipyramid7, octahedra8,9, dodecahedra6,10, and buckminster-fullerene6 were constructed. 

The ability of DNA polyhedra to promote targeted delivery by functioning as nano-capsules 

for molecular cargo has been shown for rigid tetrahedral11 and icosahedral12 DNA cages. 

Recently, a powerful DNA “origami” technique13 for the design of 2D addressable DNA 

shapes was applied towards the construction of nano-boxes14, pyramidal tetrahedrons15, 

and other 3D objects16,17.

To date, most of the nucleic acid based polyhedral nano-scaffolds designed in the laboratory 

have diameters greater than 15 nm and employ DNA molecules as building blocks3,16,17. 

While these DNA structures have revealed the potential to develop programmable scaffolds 

for nanotechnological applications1–3, the DNA biopolymer might not always be able to 

mimic all the biological functions of RNA. Despite being more chemically labile than DNA, 

natural RNA molecules are able to function as therapeutic agents such as small interfering 

and micro RNAs (siRNAs and miRNAs) which do not have DNA analogs18. Furthermore, 

natural RNA molecules comprise a wide range of working components of biologically 

essential molecular machines including ribozymes19,20, regulatory aptamers19,21 and 

nano-motors22.

As a result of greater natural versatility and biologically relevant functionality, RNA might 

offer building blocks and functional components that have no counterparts in the present day 

DNA world for building multifunctional therapeutic nano-scaffolds for nano-medicine23,24. 

Previous works have demonstrated the designs of modular RNA units forming small 

multimeric particles of various sizes23–30, as well as programmable filaments25,31,32 and 

2D nano-arrays and nanogrids consisting of RNA squares26,30. While previous 

achievements demonstrate that reliable prediction and design of the tertiary structure of 

RNA can be achieved to build supra-molecular architectures28,30, the structural potential of 

RNA self-assembly for nano-construction of 3D nano-cages33 and 3D RNA networks has 

not yet been fully exploited.

We therefore present a strategy to rationally design and construct 3D RNA nano-scaffolds, 

composed of six (A6–F6) or ten (A10–J10) strands assembled in the shape of a cube. Due to 

its geometrical simplicity and the relatively large number of participating modules, the cube 

is an attractive shape for a multifunctional nano-scaffold. The small size of the engineered 

nano-scaffold (one helical turn per side) allows for the use of relatively short RNA 

sequences (28–54 nts). This makes the sequences suitable for chemical synthesis, 

functionalization and/or selective point modifications. Furthermore, the number of possible 

functions within each scaffold is at least as large as the number of addressable nucleic acid 

units present in its composition.

Nanocubes rational design

Computational 3D models were generated using the NanoTiler software34 as well as 

Accelrys Discovery Studio. The computational sequence optimization consists of sequence 

randomization and Monte Carlo optimization algorithms (Figure S1, Supporting Information 

(SI)). The objective function of the optimization is the weighted sum of three scores: (i) a 
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rule-based score35,36, (ii) a score comparing the target secondary structure with 

RNAcofold37–39 predictions of all sequence pairs as well as with RNAfold37,40 

predictions of all individual sequences, and (iii) a score evaluating a multi-sequence 

secondary structure prediction based on a trivial energy model34. Three different cube types 

were engineered: two cubes with and without dangling ends, each containing six strands of 

equal length, and a 10-stranded cube with dangling ends containing two different strand 

lengths (Figure 1). These dangling ends can be modified into functional units as 

demonstrated below. The sizes of all cubes are 10 bps per side.

In contrast to the step-wise formation of covalently closed DNA cubes reported by Chen and 

Seeman4, our approach to synthesizing RNA cubes is a one pot self-assembly process. The 

self-assembly protocol is optimized to be used for all nano-cubes investigated in this project 

(Materials and Methods). Several different techniques such as native poly-acrylamide gel 

electrophoresis (PAGE) experiments, dynamic light scattering (DLS), and cryogenic 

electron microscopy (cryo-EM) were employed to confirm the formation of closed RNA 

cubes of defined sizes. Hybrid RNA/DNA and DNA cubes were also analyzed.

Nanocubes self-assembly

Native-PAGE results presented in Figure 2 demonstrate the reproducible self-assembly of 

six (A6–F6) RNA, RNA/DNA, or DNA strands, into finite hexameric structures. 

Quantification of the bands (Materials and Methods) reveals that the average yields of the 

RNA or DNA hexamers are greater than 90%. To confirm the formation of the closed 

hexameric species, sequence A6 was mutated (A6m) to prevent complementary base 

pairings with strands E6, D6, and F6 (SI, Table S1). Thus, mixing strands A6m, B6, C6, 

D6, E6, and F6 only leads to the formation of an “open” hexamer. PAGE experiments in 

Figure 2a demonstrate different electrophoretic mobilities between “open” (lane #6) and 

“closed” (lane #7) hexamers. By adjusting the porosity of native gels, optimal separation 

between tetramers, pentamers and hexamers can be achieved. However, the retention factors 

(Rf) of tetrameric and pentameric assemblies can vary depending on their strand 

composition, which might favor either circular or linear molecular species (data not shown).

To verify that all 6 RNA strands participate in self-assembly of the hexamer, radio-assay 

PAGE experiments were carried out (Figure 2a). In these experiments, each of the six radio-

labeled molecules (marked with “*”) was individually mixed with five other non-labeled 

molecules followed by the assembly protocol. The results show identical gel shifts for all 6 

cubes with different labeled strands, suggesting the participation of all strands in the 

formation of a closed species (Figure 2a, lanes #7). Likewise, the formation of DNA 

hexamers was confirmed by using three different labeled DNA strands (SI, Figure S2).

The assemblies of the 6- and 10-stranded cubes with 5' dangling ends were also confirmed 

by PAGE experiments and the yields for both nano-constructs were estimated to be greater 

than 90% (SI, Figures S4, S5, and S11). For instance, SYBR Green II total RNA staining as 

well as assembly reactions performed with body-labeled RNA strands demonstrate that all 

the RNA strands expected to enter into cube composition are localized in a unique band 
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product on native PAGE gels. In the case of the 6-stranded cube, the sequence composition 

or the presence of the dangling ends can alter the relative gel shifts for the hexamers.

All the assembly protocols used in this project involve stepwise incubation at several 

temperatures, while the production and folding of naturally transcribed RNAs is an 

isothermal process. To demonstrate the potential feasibility of cube assembly in conditions 

mimicking an intracellular environment, we monitored its formation throughout an in vitro 

transcription reaction (Material and Methods). Equimolar concentrations of DNA templates 

for all RNA strands were simultaneously added to the α[P32]-ATP body-labeling 

transcription mixture and the final products were characterized with PAGE. Co-

transcriptional assembly results reveal the ability of all three nano-scaffolds to self-assemble 

isothermally (37°C) during in vitro transcription with yields greater than 70 % (Figure 2a; 

SI, Figures S4 and S5).

Comparison of RNA, DNA, and RNA/DNA nanocubes

Because the concentration of the RNA strands is a key factor in self-assembly processes, we 

measured the apparent dissociation equilibrium constants (Kd) for the RNA and DNA 

hexamers (see Materials and Methods). For the RNA hexamer Kd was found to be ~16 nM 

(Figure 2b), while the DNA hexamer Kd was measured to be at least 10 times higher (~170 

nM, data not shown).

Nanostructures of hybrid (RNA/DNA) composition are of great interest due to their ability 

to maintain the diverse functionality of RNA, while incorporating the chemical stability of 

DNA. To test for hybrid cube viability, some of the RNA/DNA hybrids of the 6-stranded 

cube without dangling ends were characterized by total staining PAGE assembly 

experiments. The results (Figure 2) demonstrated slight differences in the gel shifts for the 

major bands which can be attributed to the differences in shape and hydrodynamic radii of 

the cubes based on the number of A-form (RNA/RNA, RNA/DNA) and B-form (DNA/

DNA) helices (see also Table S2).

Melting temperatures (Tm’s) were determined by TGGE experiments30 for the six stranded 

(Figure 2c; SI, Figures S3 and S4) and ten stranded (SI, Figure S5) cubes by measuring the 

decrease in the yield of cubes versus temperature. Relative thermal stabilities of assembled 

RNA, DNA and RNA/DNA hybrid cubes were also compared by temperature gradient gel 

electrophoresis (TGGE) and are summarized in Table S2 (SI). The RNA cubes have Tm's 

about 15–20 °C higher than those of DNA cubes which can be explained by the higher 

thermal stability of A-form RNA duplexes versus B-form DNA duplexes41–43. However, 

the Tm values of RNA/DNA hybrids nanocubes can significantly vary in function of the 

number of strands of RNA and DNA entering into their composition as well as the location 

and orientation of the RNA strands with respect to DNA strands (Table S2). These results 

suggest that the thermal stability of nano-scaffolds can be potentially tuned by altering the 

ratio of RNA to DNA strands and their location within the assembly.
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Structural characterization by DLS and cryo-EM

Using dynamic light scattering (DLS), the hydrodynamic radii (Rh) for pre-assembled 

hexameric RNA and DNA particles were determined to be 6.4 and 6.2 nm, respectively 

(Figure 2). These values are in good agreement with the predicted radii of circumscribed 

spheres around the RNA and DNA cube models of 6.5 and 6.3 nm, respectively (Materials 

and Methods, Eq. 2). The hydrodynamic radii of the 10-stranded and 6-stranded cubes with 

dangling ends are 6.9 and 7.1 nm, respectively (SI, Figures S3 and S4). The larger radii can 

be attributed to the presence of 6nt dangling ends and are consistent with estimated radii of 

6.8 nm each and with PAGE results (SI, Figure S6).

Overall, PAGE results and DLS data strongly suggest the formation of closed, compact 

molecular complexes composed either of six or ten strands. However, one of the most 

convincing evidences for the formation of RNA cubes comes from cryogenic electron 

microscopy (cryo-EM) imaging and further single particle reconstruction6,9,44. The cryo-

EM images show that most RNA particles have the expected size (Figure 3) and are equally 

distributed in the entire imaging field (SI, Figure S7). Using the EMAN reconstruction 

packages45, the 3D structures of the 6-stranded and 10-stranded cubes were obtained at 

resolutions of 8.9 Å (from 2,038 particles) and 11.7 Å (from 1,677 particles), respectively 

(SI, Figure S7, and Materials and Methods). The computed projections from these 3D 

reconstructions match well with the class averages of observed particles with similar views 

(Figure 3). RNA cube reconstructions have structural features in good agreement with the 

predicted 3D cubic model displayed in Figure 1. Structural variations observed between the 

6- and 10-stranded cubes can be explained by the different structures of their 3-way junction 

corners (Figure 1).

RNA nanocubes functionalization

To demonstrate the concept of functional activation through nano-scaffold assembly, 

Malachite Green (MG) aptamers (PDB ID: 1f1t)46 were integrated into the dangling ends of 

the 10-stranded cube sequences. The triphenylmethane dye, MG was chosen as a signaling 

agent due to its fluorescent properties47. In an unbound state, the MG molecule exhibits no 

fluorescence, however, upon binding to an RNA aptamer a large increase in fluorescence is 

observed48. The MG aptamer was separated into two strands, each of which was 

incorporated into the flanking sequence of two different strands of the cube (Figure 4). The 

MG aptamer sequences were designed to have low mutual affinity, such that dimers would 

not form an active aptamer (Figure S8). As seen in Figure 4, emission remains relatively low 

for the monomer, dimer and all eight possible nonamers (Figure 4, spectra 1–3; for all 

nonamers see Figure S9 in SI). Analysis of the decamer (cube) spectrum (Figure 4, spectrum 

5) indicates a sharp increase in fluorescence due to full cube formation. Therefore, only 

when the cube is formed are the aptameric flanking sequences brought into close enough 

proximity to form the active MG binding aptamer. To reveal the potential multifunctionality 

of the nano-scaffold, a second aptamer was introduced into the same cube, resulting in a 

two-fold increase in the MG emission signal (spectrum 6). The successful formation of 

functionalized nano-cubes was confirmed by native PAGE experiments (Figure 4). A single 

RNA oligonucleotide containing the MG aptamer sequence within a helical region was used 
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as a positive control (Figure 4, sample S7, supporting Table S1). Based on the emission 

signal of the control molecule, the yield of the functionally active cube S5 was estimated to 

be 77.3 % at RNA concentration of 1µM.

The assembly of the functionalized 10-stranded cube with MG aptamer was also monitored 

during in vitro transcription by following an increase in MG emission signal (Figure 4c). 

Equimolar concentrations of 10 DNA templates for A10–J10mg RNA strands (Figure 4c, 

Sample S2) were simultaneously added to the transcription mixture as described above and 

aliquots of the transcription mixture were taken after 2, 3, 4, 5, and 7 hours for fluorescence 

measurements in presence of MG. Amplification of the emission signal over the course of 

the reaction confirms the proper folding of the MG aptamer into its active conformation 

upon cube assembly during transcription at 37°C (Figure 4c, sample S5; and supporting 

Figure S10a). After 5 hours, a slight decrease in emission signal occurs due to the partial or 

entire inactivation of the T7RNA polymerase and simultaneous RNA degradation. 

Additional T7RNA polymerase was therefore added to the transcription mixture at ~5.5 

hours. By contrast to the transcription mixture containing the ten DNA templates coding for 

the 10-stranded cube, removal of one of the templates essentially resulted in partial RNA 

assemblies unable to trigger the fluorescent signal emission in the presence of MG (Figure 

4c, samples S3, S4 and SI, Figure S10b–c). These results are consistent with the idea that the 

MG aptamer is optimally active only once the full RNA assembly is achieved. The 10-

stranded cube has a lower emission signal than the control MG aptamer molecule (Figure 4c, 

sample S7). This is expected as less MG aptamers are obtained in the 10-stranded RNA mix 

than in the MG aptamer control mix for an even amount of RNA produced during 

transcription.

As suggested previously, co-transcriptional assembly of functionalized nano-scaffolds 

confirm their ability to self-assemble isothermally (37°C) during in vitro transcription, in 

conditions mimicking intracellular context.

Conclusion

In summary, we have demonstrated a strategy to design and engineer programmable, 3D 

RNA self-assembling nano-scaffolds with radii not exceeding 6.5 nm. By contrast to other 

strategies taking advantage of pre-folded RNAs26,30,33, nanocube strand components are 

short enough to be amenable to chemical synthesis. This allows (i) introduction of 

chemically stable RNA nucleotide analogs at specific sequence position to enhance their 

chemical stability, (ii) chemical functionalization important for therapeutic delivery and (iii) 

high yield of synthesis. Thermal stabilities of these nano-scaffolds can be tuned by altering 

their strand compositions. Functionalization can be introduced through modification of the 

core strands and triggered by the full assembly of the nano-scaffold, thus providing vast 

potential for biomedical applications. In addition, the ability of these cubic RNA scaffolds to 

self-assemble isothermally at 37°C during in vitro transcription opens a completely new 

route towards the in vivo construction of detection sensors, programmable packaging and 

cargo delivery systems.
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Materials and Methods

RNA preparation

RNA molecules were prepared by transcription of PCR amplified DNA templates. Synthetic 

DNA molecules coding for the antisense sequence of the designed RNA were purchased 

from IDT DNA and amplified by PCR using primers containing the T7 RNA polymerase 

promoter. PCR products were purified using the QiaQuick PCR purification kit and RNA 

molecules were prepared by in vitro transcription using home-made T7 RNA polymerase 

and purified on denaturing urea gel (PAGE) (10% acrylamide, 8M urea). The RNA was 

eluted from gel slices overnight at 4°C into buffer containing 300 mM NaCl, 10 mM Tris 

pH 7.5, 0.5 mM EDTA then ethanol precipitated, and rinsed twice with 90% ethanol, 

vacuum dried and dissolved in TE buffer.

pCp labeling of RNA molecules

T4 RNA ligase was used to label the 3`-ends of RNA molecules by attaching [32P]Cp. 

Labeled material was purified on denaturing polyacylamide gels (10% acrylamide, 8M 

urea).

ATP labeling of DNA

T4 polynucleotide kinase was used to label the 5`-ends of DNA molecules by moving [32P] 

from the gamma position of ATP. Labeled material was purified on denaturing 

polyacrylamide gels (10% acrylamide, 8M urea).

RNA and DNA cubes self-assembly

All assembly experiments reported in this study were analyzed on 7% (37.5:1) non-

denaturing polyacrylamide native gels containing 2 mM Mg(OAc)2 and 50 mM KCl and run 

at 4°C with running buffer (89 mM Tris-borate, pH 8.3/ 15 or 2 mM Mg(OAc)2). Prior to 

the addition of the buffer and Mg(OAc)2, the RNA(DNA) samples containing cognate 

RNA(DNA) molecules at concentrations 1 µM were heated to 95°C for two minutes and 

immediately snap cooled at 45°C followed by assembly buffer addition (tris-borate buffer 

(89 mM, pH 8.3), 2 mM Mg(OAc)2, and 50 mM KCl) and incubation for 30 minutes at 

45°C.

Non-denaturing PAGE, TGGE experiments, and Kd measurements

All constructs were assembled as described above and an equal volume of loading buffer 

(same buffer with 0.01% bromphenol blue, 0.01% xylene cyanol, 50% glycerol) was added 

to each sample before loading on native gel. Gels were run for 4 hours, at 25 W with 

temperature set to be below 10°C, dried under vacuum, exposed to a phosphoimager screen 

for 16 hours, and scanned using a Typhoon phosphoimager. For total gel staining, SYBR® 

Green II RNA gel stain was used to visualize RNA or DNA bands using Typhoon 

phosphoimager with the emission of SYBR Green II centered at 520 nm. The stained RNA 

or DNA bands appear as black bands on the white background.

Afonin et al. Page 7

Nat Nanotechnol. Author manuscript; available in PMC 2011 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For TGGE, analysis performed at 2 mM Mg(OAc)2, a linear temperature gradient, typically 

from 30 to 60 °C, was applied perpendicular to the electric field. Cube concentration was 

typically 1 µM. Gels were run for 1 hour, at 30 W.

Dissociation constants (Kd`s) were calculated by plotting the fraction of a cube (f) versus the 

total concentration (CT) of the RNA strands corresponding to this particular fraction. The 

combined data collected from three independent measurements was subjected to nonlinear 

curve fitting with the equation:

(Eq. 1)

which was solved for f and fit non-linearly to obtain Kd49.

All gels were quantified using ImageQuant software. Equally sized boxes were drawn 

around the bands corresponding to the hexamers (cubes). The yield for each hexamer-

forming complex was calculated by dividing the corresponding quantified value for hexamer 

by the total sum of the values for all complexes present in the corresponding lane.

Assembly of RNA cubes during transcription

Equimolar concentrations of PCR amplified DNA templates (containing the T7 RNA 

polymerase promoter) for all six (A6–F6) or ten (A10–J10) RNA strands were 

simultaneously added all together to the transcription mixture (diH2O, 50 mM Tris pH 7.5, 

10 mM MgCl2, 2 mM spermidine, 2.5 mM NTPs, 10 mM DTT) containing α[P32]-ATP (10 

mCi/ml) for body-labeling. Transcription was initiated with the addition of home-made T7 

RNA polymerase and stopped after 4 hours with RQ1 RNase-free DNase followed by the 

direct characterization of the transcription mixture with native PAGE as described above. To 

compensate the difference in transcription time for varying lengths of 10-stranded cube 

sequences (A10–J10) the initial concentrations of longer DNA templates for A10 and B10 
were doubled.

Dynamic Light Scattering

For DLS, 10 µL of sample solution containing preassembled RNA/DNA cubes were 

measured by DynaPro99 (Protein Solution/Wyatt) with the laser wavelength equal to 824 

nm at 24°C. The theoretical hydrodynamic radii (Rh) were calculated using the equation:

(Eq. 2)

where L is the length (nm) of the cube side. Assuming a 0.23 nm rise per basepair and a 2.6 

nm diameter of the RNA duplex, the side length of the RNA cube is calculated to be 7.5 nm. 

The DNA cube side length is calculated to be 7.3 nm using 0.33 and 2.0 nm for the rise per 

basepair and duplex diameter, respectively. For the cubes with dangling ends, the theoretical 

Rh`s were calculated by measuring the distance between the center of mass and the furthest 

atom of the cube 3D CPK model.
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Cryo-EM imaging

Samples containing the six-stranded RNA cube with dangling ends (6-cube) and the 10-

stranded RNA cube (10-cube) for cryo-EM were prepared as described above. Micrographs 

were acquired using a Tecnai F20 Twin transmission electron microscope operating at 120 

kV, a nominal magnification of 80,000X, and a dose of ~30 e-/Å2. 413 images for 6-cube 

and 335 images for 10-cube and were automatically collected by the Leginon system50 and 

recorded with a Tietz F415 4k × 4k pixel CCD camera. Experimental data were processed 

using the Appion software package51. 2,038 particles for 6-cube and 1,677 particles for 10-

cube were manually selected. The 3D reconstruction was carried out using the EMAN 

reconstruction package45. A resolution of 9.6 Å for 6-cube and 11.5 Å for 10-cube was 

determined by Fourier Shell Correlation (FSC) at a cutoff of 0.5.

Fluorescent Experiments

The fluorescent experiments were carried out using a NanoDrop 3300 Fluorospectrometer 

with the following settings: excitation wavelength was set at blue in all experiments. 

Emission was scanned from 540 to 800 nm. Signal was registered in Relative Fluorescent 

Units (RFU) at 660 nm. All RNA complexes used in the fluorescent experiments were 

assembled as described above at 1 µM concentrations. The experiments with MG binding to 

the decamer (10-stranded cube) resulting in enhanced MG emission were repeated and 

reproduced (within 10% error) at least five times. The experiments with the nine nonamers 

and the 10-stranded cube with two embedded aptamers were repeated and reproduced twice 

(within 10% error).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
3D models for six and ten stranded cubes with corresponding 2D schematics of sequence 

interactions. Note that 5' start sequences (in black) are base paired in (a) and single-stranded 

in (b) and (c). The diagrams are drawn to emphasize the symmetry of 3` and 5` positions. 

Note that the six RNA strands for the 6-stranded cube and the 10 RNA strands for the 10-

stranded cube have different length and sequences (Table S1).
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Figure 2. 
Characterization of 6 stranded cube assemblies (without dangling ends). a. Native PAGE 

assembly experiments: (left) radioactive assemblies with 32P radiolabeled RNA molecules 

indicated with asterisks. Am (or A6m) was designed to assemble with B–F (or B6–F6) to 

form an open hexamer. (middle) Co-transcriptional self-assembly of body-labeled RNA 

cube strands. (right) Native PAGE assembly experiments with RNA visualization by total 

SYBR Green II staining. Estimated yields of the hexamers (in %) are shown at the bottom of 

corresponding lanes. All lanes are numbered to distinguish between twelve different 

compositions of RNA, RNA/DNA and DNA complexes. b. Titration curve fitting data 

collected from three independent experiments of RNA cube assembly. c. Thermal melting 

curves of RNA, DNA, and RNA/DNA hybrid cubes. Corresponding Tm`s are shown Figure 

S3 in SI. d. Size histograms of six stranded cubes measured by DLS. Compositions are 

specified for each measurement. Color code is consistent with b and c. Relative assembly 

yields are calculated from each histogram. All RNA complexes used in a, c, and d 
experiments were assembled as described in Materials and Methods at 1 µM concentrations.
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Figure 3. 
Structural characterization of RNA cubes by cryo-EM with single particle image 

reconstruction. Panels a and b correspond to the characterization of 6 and 10 stranded RNA 

cubes respectively. Each panel on the top left represents typical cryo-EM images of the 

RNA particles. On the right side, class averages for each RNA cube as observed by cryo-EM 

(EM) with corresponding projections of the reconstructed 3D structure and theoretical RNA 

cube model. Reconstructed 3D models of the six and 10-stranded RNA cubes have been 

obtained at 8.9 Å and 11.7 Å resolution, respectively. All RNA complexes used in cryo-EM 

experiments were assembled at 1 µM of each RNA strand as described in the Materials and 

Methods.
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Figure 4. 
Functionalization of RNA nano-cube scaffold with Malachite Green (MG) aptamer. a. 
Scheme showing the functionalization. b. Emission spectra representing binding of MG to 

RNA aptamer and native PAGE demonstrating the formation of the constructs. Monomer, 

dimer and nonamer samples (S1, S2, S3, S4) are unable to bring the aptamers into close 

enough proximity necessary for fluorescent emission in presence of MG. The functionalized 

cube sample (S5) shows an increase in fluorescence demonstrating correct formation of the 

MG binding pocket. The cube sample (S6) shows two-fold increase in fluorescence 
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demonstrating simultaneous correct formation of its two MG binding pockets. All RNA 

complexes used in the fluorescent experiments were assembled at RNA strand concentration 

of 1 µM as described in Materials and Methods. Based on the emission signal of the control 

molecule, the yield of the functionally active cube (S5) was estimated to be 77.3 %. c. 

Comparison of co-transcriptional self-assembly of nonamers S3 and S4 with 10-stranded 

RNA nano-cube (S5) functionalized with one MG aptamer at 37°C. Aliquots of the 

transcription mixture were taken after 2, 3, 4, 5, and 7 hours, followed by the addition of 

DNAse to stop the reaction. MG was added just prior to fluorescent data acquisition. Note 

that after 5h, more T7 RNA polymerase was added to each transcription mix. Control S7 

corresponds to a MG aptamer molecule.
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