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Introduction
There are over 10,000 species of parasitic protozoa, a subset of which can cause considerable
disease in humans. Here we examine in detail the complex immune response generated during
infection with a subset of these parasites: Trypanosoma cruzi, Leishmania sp, Toxoplasma
gondii, and Plasmodium sp. For these organisms, their capacity to replicate inside host cells
means that the ability of CD8+ T cells to recognize infected cells and respond with either
cytolysis or the production of cytokines is critical for protection. While these particular species
perhaps represent the most studied parasites in terms of understanding how T cells function
during infection, it is clear that the lessons learned from this body of work are also relevant to
the other protozoa known to induce a CD8+ T cell response. Nevertheless, despite major
advances in defining the critical role of CD8+ T cells for long-term resistance to many parasites,
there remains a paucity of vaccines for use in humans.

This review will highlight some of the key studies that established that CD8+ T cells play a
major role in protective immunity to protozoa, the factors that promote the generation as well
as maintenance of the CD8+ T cell response during these infections, and draw attention to some
of the gaps in our knowledge. Moreover, the development of new tools, including MHC Class
I tetramer reagents, TCR transgenic mice, and genetically modified parasites, has provided a
better appreciation of how parasite specific CD8+ T cell responses are initiated and new insights
into their phenotypic plasticity (Frickel et al., 2008; Garg et al., 1997; Hafalla et al., 2007;
Kumar and Tarleton, 2001; Kwok et al., 2003; Martin et al., 2006; Miyakoda et al., 2008;
Padilla et al., 2007; Pepper et al., 2004; Rodrigues et al., 1991). A greater understanding of the
generation of the cellular immune response to these parasites will create new opportunities to
develop effective vaccines for these organisms.

Public Health Impact of Parasitic Protozoa
Parasitic protozoa continue to pose major threats to human health and animals of veterinary
importance. In addition, with the growing numbers of immunocompromised individuals, either
as a consequence of acquired immunodeficiencies or because of specific treatments designed
to suppress the immune system, there is a long list of normally asymptomatic or quiescent
protozoal infections that can cause significant clinical disease (Ferreira and Borges, 2002). For
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example, while most humans are capable of mounting appropriate T cell responses required to
control T. gondii, the decline in CD4+ T cell numbers and loss of CD8+ T cell function seen
during AIDS can result in reactivation of latent T. gondii and the development of life
threatening toxoplasmic encephalitis (Luft et al., 1984). T. cruzi and Leishmania sp., both
organisms are normally associated with the inability to clear chronic infection, can also cause
severe acute disease, or recrudesce as a consequence of HIV infection (Ferreira and Borges,
2002). The heaviest burden of morbidity and mortality following infection with Plasmodium
sp. is found in children but there is also considerable disease associated with infection in adults.
Further, despite having detectable CD8+ T cell responses to malaria antigens (Doolan et al.,
1997; Plebanski et al., 1997; Sedegah et al., 1992), people in endemic areas suffer re-infection
with Plasmodium many times over their lifetime (Good, 2005).

While alterations in immune status can profoundly alter the outcome of infection, changes in
the parasite population structure can also have a significant impact on the ability of these
organisms to cause disease. This is illustrated by recent reports that have noted atypical strains
of T. gondii associated with ocular disease or acute lethality in immunocompetent individuals
(Demar et al., 2007; Grigg et al., 2001; Khan et al., 2006). Similarly, outbreaks of acute Chagas
disease in normal human populations, believed to have been transmitted orally, have recently
been identified in Brazil (Nobrega et al., 2009; Steindel et al., 2008; Valente et al., 2009).
Another example is the P. knowlesi strain of malaria, which infects macaques in Southeast
Asia, but which has emerged as a threat to humans (Cox-Singh et al., 2008; Cox-Singh and
Singh, 2008). The development of drug resistance is also a major problem, and this has been
well-described in the case of malaria (Anderson, 2009; Khatoon et al., 2009; Pearce et al.,
2009; Schonfeld et al., 2007; Schunk et al., 2006). Moreover, drug-resistant strains of T. cruzi,
T. gondii and Leishmania have also emerged (Aspinall et al., 2002; Robello et al., 1997; Ubeda
et al., 2008; Wilkinson et al., 2008) and this has accentuated the need for a better understanding
of how the immune system can be used to limit infection.

Characterization of parasite specific CD8+ T cell responses in humans
While patients with defects in T cell mediated immunity illustrate the role of T cells in
resistance to multiple intracellular parasites, numerous studies have characterized the T cell
responses to these infections in humans. This work has focused on the ability of different T
cell populations to make IFN-γ or lyse infected cells, two main effector functions of CD8+ T
cells. For example, T. gondii-specific CD4+ as well as CD8+ T cells have been cloned from
infected humans (Khan et al., 1990; Montoya et al., 1996; Purner et al., 1996), and another
study noted a correlation of HLA haplotype with susceptibility to toxoplasmic encephalitis
(Suzuki et al., 1996). Parasite-specific CD8+ T cells have also been isolated from the peripheral
blood of T. cruzi-infected patients (Brodskyn et al., 1996; Wizel et al., 1998), and two other
studies reported low frequencies of positive IFN-γ responses to predicted HLA-A2 CD8+ T
cell epitopes (Fonseca et al., 2005; Laucella et al., 2004). CD8+ T cell responses to malaria
circumsporozoite (CS) protein have also been identified following human infection (Braga et
al., 2002; Doolan et al., 1993; Plebanski et al., 1997; Suphavilai et al., 2004), and this protein
is a component of several candidate vaccines against malaria (Nardin et al., 2004; Oliveira et
al., 2005; Wang et al., 2004). Further, even in the case of Leishmania where resistance is mainly
mediated by CD4+ T cells, parasite-specific CD8+ T cells have been identified following
human infection (Antonelli et al., 2004; Barral-Netto et al., 1995; Da-Cruz et al., 1994).

Defining the role of CD8+ T cells in animal models of parasitic infection
While the approaches discussed above highlight the presence of CD8+ T cell responses to
parasites in humans, it is the development of experimental models that allowed the use of
antibody depletion, adoptive transfers or knockout mice, that has clarified the role of this T
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cell subset in resistance to multiple infections. Some of the first evidence that an endogenous
CD8+ T cell population was critical for resistance to a parasite was demonstrated when
depletion of CD8+ T cells led to increased susceptibility to primary challenge with T. cruzi,
associated with greatly increased parasite burdens (Tarleton, 1990). Subsequent studies
showed that depletion of CD8+ T cells during the chronic stage resulted in the exacerbation of
inflammation in the heart, the site of chronic T. cruzi infection, as well as higher parasite burden
(Tarleton et al., 1994). Furthermore, β2-m–deficient mice, which lack the ability to express
stable MHC class I molecules on the cell surface and therefore have minimal development of
Class I-restricted CD8+ T cells, rapidly succumb to T. cruzi, thereby confirming the importance
of CD8+ T cells in protection against this organism (Tarleton et al., 1992). This conclusion
was complemented by studies in which the adoptive transfer of T. cruzi-specific CD8+ T cells
protected mice against parasite challenge (Wizel et al., 1997).

Early studies to define the role of different lymphocyte populations in resistance to T. gondii
were dependent on the use of a temperature-sensitive strain that provides protection from
subsequent challenges (Suzuki et al., 1988). The transfer of T cells from infected or immunized
mice to naïve mice provided protection against a lethal challenge of T. gondii, but this was
abolished by depletion of CD8+ T cells prior to transfer (Parker et al., 1991; Suzuki and
Remington, 1988). Similarly, transfer of CD8+ T cells from chronically infected mice to naïve
WT or nude mice was also able to provide protection from T. gondii challenge (Parker et al.,
1991). However, in the case of β2-m–deficient mice, a potent NK cell response could
compensate for the lack of CD8+ T cells in response to T. gondii, though mice remained more
susceptible than WT mice (Denkers et al., 1993b). Consistent with a protective role for
CD8+ T cells, multiple genetic studies revealed that H-2 haplotype profoundly influenced the
outcome of this infection (Brown and McLeod, 1990; Suzuki et al., 1994). While the initial
studies focused on the ability of CD8+ T cells to protect against acute challenges, with the onset
of the AIDS pandemic it became of interest to define which T cell populations were involved
in preventing reactivation of T. gondii in the CNS. The finding that depletion of CD8+, but not
CD4+, T cells during chronic infection led to increased mortality established the importance
of these lymphocytes in long term resistance to toxoplasmic encephalitis (Gazzinelli et al.,
1992a).

For Plasmodium, the ability of this organism to invade and replicate inside erythrocytes, which
lack MHC class I expression, ensures little interaction of these infected cells with CD8+ T
cells; but hepatocytes also get infected and can present parasite-derived antigens (Bongfen et
al., 2007). Studies on the role of CD8+ T cells in resistance to malaria are contradictory: early
studies showed that CD8+ T cell depletion had no effect on peak parasite titers but was
associated with transient recrudescence of parasites in the blood (Podoba and Stevenson,
1991). However, β2-m-deficient mice have normal resolution of blood-stage malaria infection
(van der Heyde et al., 1993). Adoptive transfer of CD8+ T cells could provide protection in
some models (Khusmith et al., 1994; Mogil et al., 1987; Rodrigues et al., 1991), but not in
others (Vinetz et al., 1990). Irradiated sporozoites, which target hepatocytes, have long been
known to induce protective immunity to malaria (Nussenzweig et al., 1967) and multiple
studies have shown that while neither CD4+ T cells or antibody is required for this immunity,
CD8+ T cells are required for a protective response to the liver stage of this parasite (Doolan
and Hoffman, 2000; Erb et al., 1996; Mueller et al., 2007; Romero et al., 2007; Tsuji and Zavala,
2003; Weiss et al., 1988).

CD4+ T cell production of IFN-γ is essential for protection against acute L. major and
understanding the biology of T helper populations has been the main focus of study in resistance
against this parasite (Launois et al., 1998; Moll et al., 1988; Reiner and Locksley, 1995). Much
of the evidence does not support a protective role for CD8+ T cells in the control of primary
challenge with Leishmania, as demonstrated by experiments in mice lacking CD8+ T cells or
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MHC-Class I expression where control of infection was not impaired (Huber et al., 1998;
Overath and Harbecke, 1993; Wang et al., 1993). In MHC-Class II-deficient mice lacking
CD4+ T cells, CD8+ T cells were not found to protect (Erb et al., 1996). However, several
reports defined an important role for CD8+ T cells during Leishmania, either in memory
responses or during low-dose intradermal challenge (Belkaid et al., 2002; Muller et al., 1993;
Muller et al., 1994; Rafati et al., 2002; Uzonna et al., 2004). Adaptive immune responses against
the parasites discussed herein are complex, and the outcome of the experiment may depend on
dose or route of infection, or the strain of mouse that is infected. However, adaptive immune
responses, and CD8+ T cells in particular, are clearly important for resistance to the parasites
described in this review.

Antigen Presentation During Parasite Infection
Naïve CD8+ T cells are activated following exposure to their cognate antigen in the context of
MHC I on the surface of antigen-presenting cells (APC). It was previously believed that only
cell-associated endogenous antigens were presented by MHC Class I molecules. More recently,
it has been appreciated that during transplant rejection as well as during viral or parasite
infection that professional APC can sample and display exogenously-derived proteins on MHC
I in the process of cross-presentation (Rock and Shen, 2005). Several studies, using a model
of transient dendritic cell (DC) depletion, indicated that this pathway was critically required
for generation of antigen-specific CD8+ T cells in mice infected with Listeria
monocytogenes and P. yoelii (Jung et al., 2002; Liu et al., 2006). For malaria, transgenic
parasites expressing the model antigen ovalbumin were used to show that Transporter
Associated with Antigen Processing (TAP)-dependent cross-presentation of antigen begins
shortly following infection, after APC travel to the skin draining LN (Miyakoda et al., 2008).
TAP was not required for CD8+ T cell priming during L. major, nor was TAP required for
resistance to infection, indicating that cross-priming occurs in a TAP-independent manner
during this infection (Bertholet et al., 2006). In contrast, TAP was required to induce
proliferation of T cells with T. gondii-infected DC (Bertholet et al., 2006) and another
component of this TAP-dependent pathway, the ER-associated aminopeptidase, has also been
implicated in antigen presentation and resistance to T. gondii (Blanchard et al., 2008). There
is evidence in favor of (John et al., 2009), as well as against (Dzierszinski et al., 2007;
Goldszmid et al., 2009; Gubbels et al., 2005), cross-presentation of antigen to CD8+ T cells
during toxoplasmosis. Distinguishing which pathways are involved in these events may not
just be of academic interest as they may determine the type of pathogen antigens that are
presented to CD8+ T cells and therefore influence the generation of vaccine-mediated
immunity.

The protozoan parasites that are the focus of this review all have relatively large microbial
genomes, and this has complicated the discovery of relevant CD8+ T cell epitopes that would
allow antigen processing and presentation to be studied more easily. Nevertheless, extensive
efforts by many different groups have lead to the sequencing and annotation of the genomes
of each of these organisms (El-Sayed et al., 2005; Gardner et al., 2002; Ivens et al., 2005;
Kissinger et al., 2003), and formed the basis for the discovery of the endogenous CD8+ T cell
epitopes from T. cruzi, T. gondii, and Plasmodium shown in Table I. One common theme has
emerged from these studies, as well as from earlier reports using parasites that expressed model
antigens: there appears to be preferential processing and presentation of antigens that are either
secreted, or those located on the cell surface of these intracellular microbes (Bertholet et al.,
2005; Garg et al., 1997; Gubbels et al., 2005; Pepper et al., 2004; Wilson et al., 2010).
Therefore, targeting immune responses against surface-derived proteins would most likely be
an effective vaccine approach.
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Antigen recognition during parasite infection is further complicated by the distinct
developmental stages associated with initiation of infection, development of disease and
latency. For instance, T. gondii has been shown to express different antigens, depending on the
stage of infection, with some antigens being expressed only during the tachyzoite stage, while
others are not expressed until the parasite has encysted in the brain and muscle tissue in its
bradyzoite form (Kim and Boothroyd, 2005; Kwok et al., 2003; Lutjen et al., 2006). Though
changes in antigen expression can also occur during T. cruzi infection (Araya et al., 1994), an
immunodominant CD8+ T cell epitope located in a trans-sialidase gene has been described
which accounts for up to 30% of the antigen-specific CD8+ T cell response in certain inbred
mouse strains (Martin et al., 2006). Many studies of antigen presentation during malaria
infection have focused on the circumsporozite (CS) protein, which contains an
immunodominant epitope, though work is on-going in order to identify other endogenous
CD8+ epitopes from malaria parasites (Bongfen et al., 2007; Kumar et al., 2006; Plebanski et
al., 2005) as well as those from the Leishmania genome (Herrera-Najera et al., 2009).

Anti-Parasitic Effector Mechanisms Mediated by CD8+ T Cells
With the recognition that CD8+ T cells play a role in limiting the replication of many different
parasites, the next goal became to define how these lymphocytes mediated protection. IFN-γ
is made by CD4+ and CD8+ T cells as well as NK cells, and has been demonstrated to be crucial
for a protective response to numerous intracellular parasites by studies using neutralizing
antibody to IFN-γ or mice deficient in its production (Scharton-Kersten et al., 1996; Schofield
et al., 1987; Suzuki et al., 1989; Suzuki et al., 1988; Torrico et al., 1991). Evidence that
production of this cytokine and subsequent protection against these parasitic diseases is
dependent on CD8+ T cells was demonstrated by showing that treatment of infected mice with
anti-CD8 antibodies resulted in reduced production of IFN-γ and loss of IFN-γ-mediated
protection (Gazzinelli et al., 1991; Schofield et al., 1987; Shirahata et al., 1994; Tarleton,
1990; Weiss et al., 1988). Further, CD8+ T cells are also known to produce the pro-
inflammatory cytokines IL-17 and TNF-α, and while both of these cytokines are associated
with resistance to T. gondii, relatively little is known about the contribution of CD8+ T cells
as a source of these factors during parasitic infections (Johnson, 1992; Kelly et al., 2005;
Stumhofer et al., 2006).

CD8+ T cells can also mediate perforin-dependent cytotoxicity against target cells that present
the correct peptide in the context of MHC on their cell surface. Early reports with T. gondii
showed that CD8+ T cells isolated from immunized or infected mice were capable of lysing
infected cells or targets pulsed with parasite antigens (Denkers et al., 1993a; Hakim et al.,
1991; Khan et al., 1991; Subauste et al., 1991). These studies frequently relied on the in
vitro expansion of rare T cell populations and the use of chromium release assays to
demonstrate lytic activity. More recently, based on the development of in vivo cytotoxicity
assays (Barber et al., 2003), cytotoxic CD8+ T cells have been detected in vivo during murine
toxoplasmosis (Jordan et al., 2009), T. cruzi (Martin et al., 2006) and the blood stage of P.
berghei (Lundie et al., 2008). However, the contribution of CD8-mediated cytolysis to
resistance in vivo was uncertain until perforin-deficient mice became available. Initial studies
with these mice revealed that they were less susceptible to infection than CD8-deficient mice,
and could generate a protective CD8+ T cell response, but showed increased susceptibility to
chronic toxoplasmosis indicating that the ability to recognize and lyse infected cells was
required for optimal resistance (Denkers et al., 1993b; Denkers et al., 1997). In contrast, the
cytolytic effector function of CD8+ T cells during malaria does not protect the host, but rather
through perforin-mediated lysis of endothelial cells in the brain contributes to the pathology
associated with cerebral malaria (Nitcheu et al., 2003; Potter et al., 2006).
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Induction of CD8+ T Cell Responses
Many factors influence the generation of CD8+ T cell responses, including cytokines such as
IL-2 and IL-12, which contribute to T cell expansion, survival, and the acquisition of effector
function. CD4+ T cell help is important in the generation of effector CD8+ T cells following
immunization with replication-deficient T. gondii (Jordan et al., 2009), but not during the acute
stage of infection with a replicating strain of T. gondii (Lutjen et al., 2006). Work from two
other groups found that CD4+ T cells were required to maintain optimal CD8+ T cell responses
to T. gondii during chronic infection (Casciotti et al., 2002; Gazzinelli et al., 1992b). Following
infection with irradiated malaria sporozoites, CD4+ T cell help was critical in the development
of the CD8+ tetramer population (Carvalho et al., 2002), and in other malaria immunization
models CD4+ T cell help also enhanced the CTL response (Valmori et al., 1994; Widmann et
al., 1992). In contrast, antigen-specific CD8+ T cells specific for subdominant epitopes can
develop during T. cruzi in the absence of CD4+ T cell help, but responses to dominant CD8+

T cell epitopes were CD4+ T cell dependent (Padilla et al., 2007). The seemingly disparate
requirements for CD4+ T cell help might be explained by the inflammatory environment where
priming occurs. When inflammation is limited, CD4+ T cells can have a significant role in
promoting CD8+ T cell expansion through activating DC or providing growth factors such as
IL-2 (Rajasagi et al., 2009; Wilson and Livingstone, 2008).

IL-12 was demonstrated to augment vaccine-induced responses to L. major and was thought
to act as an adjuvant in that system (Afonso et al., 1994). Since that time it has been recognized
that IL-12 can profoundly influence the generation, phenotype, and effector function of
CD8+ T cells generated in response to T. gondii (Wilson et al., 2008), T. cruzi (Katae et al.,
2002) and Plasmodium infection (Doolan and Hoffman, 1999), as well as playing a role during
bacterial infection (Badovinac and Harty, 2007). Increasingly, it has also been demonstrated
that while IL-12 can act as an adjuvant during the primary response to infection, its presence
negatively affects the generation of CD8+ T cell memory responses (Joshi et al., 2007; Pearce
and Shen, 2007; Takemoto et al., 2006). The role that IL-12 and other cytokines play in effector
versus memory differentiation during parasite infection is still being unraveled, and it is likely
that factors including duration of antigen exposure, cytokine milieu and priming environment
will influence these events. The ability of a vaccine to induce CD4+ T cell help as well as
cytokines that promote T cell differentiation, effector function, and memory formation must
therefore be taken into consideration during vaccine design.

Regulation of Immune Responses During Chronic Infection
Parasite infection can induce mixed cytokine responses that differ based on mouse strain and
may be linked with susceptibility or resistance to disease (Liesenfeld et al., 1996; Reiner and
Locksley, 1995; Roggero et al., 2002; Zhang and Tarleton, 1996). While control of the parasites
discussed within this review is generally dependent on robust Th1-polarized immune
responses, these must be carefully controlled to prevent pathology in the host. In many studies
mentioned above, pathological effects are mediated by CD4+ T cells rather than CD8+ T cells,
one prominent exception being in the case of cerebral malaria where CTL caused damage to
the brain via perforin-dependent mechanisms (Nitcheu et al., 2003). Immunoregulatory
cytokines such as IL-10 and IL-27 are an important mechanism to limit these pro-inflammatory
adaptive immune responses during chronic infection. For instance, IL-10−/− mice have
increased susceptibility to T. gondii, P. chabaudi chabaudi and T. cruzi driven in part by
overproduction of IFN-γ and TNF-α (Gazzinelli et al., 1996; Hunter et al., 1997; Li et al.,
1999; Wilson et al., 2005). During experimental leishmaniasis IL-10 can either promote
protection or the development of non-healing lesions, depending on the strain of parasite
(Anderson et al., 2005; Kane and Mosser, 2001). Another more recently described cytokine,
IL-27, has also been show to downregulate the inflammatory responses induced during T.
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gondii. This cytokine is important in limiting host pathology induced by IFN-γ (Villarino et
al., 2003) as well as IL-17 (Stumhofer et al., 2006). IL-27 signaling also limits pro-
inflammatory cytokine responses during T. cruzi (Hamano et al., 2003) while its role in L.
major is more complex (Artis et al., 2004; Yoshida et al., 2001). Overall, these studies point
to an important balance of the immune system as it attempts to combat invading pathogens,
especially in the context of chronic infection.

CD8+ T Cell Memory in the Setting of Chronic Infection
Memory CD8+ T cell responses that develop following parasite infection have been defined
functionally in terms of their ability to protect animals from secondary challenge (Gazzinelli
et al., 1991; Muller et al., 1993; Parker et al., 1991; Schofield et al., 1987; Tarleton, 1990;
Weiss et al., 1988). However, because many parasites cause persistent infections for the life
of the individual, it can be difficult to phenotypically distinguish between chronically activated
effectors and bona fide memory cells (Frenkel, 1988; Zhang and Tarleton, 1999). Memory
CD8+ T cells induced by acute viral infection differ from what has been seen so far during
parasite infection, and are characterized by their expression patterns of
CD62L+KLRG1−CD127high (Joshi et al., 2007). The phenotype of CD8+ T cells during chronic
toxoplasmosis or Chagas disease is that of an effector-memory cell as defined by their
phenotype (CD62L−, KLRG1+ and CD127low) (Bixby and Tarleton, 2008; Bustamante et al.,
2008). Drug-induced clearance of T. cruzi caused antigen-specific CD8+ T cells to upregulate
their expression of CD62L, CD127 and CCR7 (Bustamante et al., 2008). These data indicate
that ongoing antigen exposure was required for these cells to maintain an effector phenotype.

The fact that antigen-specific CD8+ T cells associated with some parasite infections are
phenotypically different from viral memory cells, yet are able to protect mice from challenge,
suggests that current paradigms for memory responses either need to be modified or recognized
as being specific to different pathogens. Some of the same cytokines that have been associated
with CD8+ T cell memory in viral and bacterial systems are also important in the development
of CD8+ T cell memory during parasite infection; the importance of IL-7 and IL-15 in the
survival and homeostatic proliferation of CD8+ T cells has recently been reviewed (Surh et al.,
2006). For example, a subset of T. cruzi-specific CD8+ T cells was shown to be responsive to
the cytokines IL-7 and IL-15 (Bixby and Tarleton, 2008). Thus, although memory cells are not
yet as clearly defined as in other model systems, the same cytokines that contribute to the
homeostasis of CD8+ T cells in viral models are likely important in maintaining similar
populations during chronic parasite infection.

Targeting CD8+ T Cells for Anti-Parasitic Vaccines: What Comes Next?
Despite the advances in understanding the role of CD8+ T cells in immunity to multiple
intracellular parasites, there are few vaccines against protozoan parasites. A vaccine to prevent
Toxoplasma-induced abortions in cattle is commercially available (Buxton and Innes, 1995),
but nothing approved for human use is currently available. The difficulty in developing
vaccines against protozoan parasites could in part be attributed to the complicated life cycle
of these organisms. Nevertheless, increasing the potency of current candidates, or development
of therapeutic vaccines, would be helpful to limit the morbidity and mortality associated with
certain parasitic infections. For example, recent work has shown that activation of the NF-κB
signaling pathway in DC leads better antigen presentation, an approach that could be used as
a generalized adjuvant during vaccination (Andreakos et al., 2006). A better understanding of
the transcription factors that regulate the effector and memory potential of CD8+ T cells during
parasite infection may provide additional strategies to increase the potency of vaccines.
Multiple transcription factors that regulate CD8+ T cell effector functions, such as cytokine
production and cytotoxicity, have been described in a range of infection models (Cho et al.,
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2009; Intlekofer et al., 2008; Intlekofer et al., 2005; Lieberman et al., 2004; Mason et al.,
2004). However, further research is still required to understand how to best apply this
information to promote the generation and maintenance of immunity to parasite infection.
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Table I
Recent work in murine infection models of parasitic disease has identified endogenous
CD8+ T cell epitopes

CD8+ T Cell Epitopes in T. gondii, T. cruzi and P. falciparum

Parasite Epitope Gene family References

T. cruzi VDYNFTIV Trans-sialidase (Wizel et al., 1997)

YEIQYVDL Paraflagellar rod (Wrightsman et al., 2002)

ELTMYKQLL LYT1 (host cell lysis) (Fralish and Tarleton, 2003)

ANYKFTLV Trans-sialidase (Martin et al., 2006)

T. gondii SPMNGGYYM Dense granule protein (Frickel et al., 2008)

IPAAAGRFF Rhoptry protein (Frickel et al., 2008)

SVLAFRRL Putative secreted protein (Wilson et al., 2010)

Plasmodium NDDSYIPSAEKI Circumsporozoite (Romero et al., 1989)

SYVPSAEQI Circumsporozoite (Rodrigues et al., 1991)
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