
GPU-Accelerated Molecular Modeling Coming Of Age

John E. Stonea, David J. Hardya, Ivan S. Ufimtsevb, and Klaus Schultenc
John E. Stone: johns@ks.uiuc.edu; David J. Hardy: dhardy@ks.uiuc.edu; Ivan S. Ufimtsev: ufimtsev@stanford.edu; Klaus
Schulten: kschulte@ks.uiuc.edu
aBeckman Institute, University of Illinois at Urbana-Champaign, 405N. Mathews Ave., Urbana, IL,
61801
bDepartment of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305
cDepartment of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green, Urbana, IL,
61801

Abstract
Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for
visualization of molecular structures and animation of trajectories resulting from molecular dynamics
simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors
that can now be exploited to accelerate many scientific computations, typically providing about one
order of magnitude speedup over CPU code and in special cases providing speedups of two orders
of magnitude. This paper surveys the development of molecular modeling algorithms that leverage
GPU computing, the advances already made and remaining issues to be resolved, and the continuing
evolution of GPU technology that promises to become even more useful to molecular modeling.
Hardware acceleration with commodity GPUs is expected to benefit the overall computational
biology community by bringing teraflops performance to desktop workstations and in some cases
potentially changing what were formerly batch-mode computational jobs into interactive tasks.

Keywords
GPU computing; molecular modeling; molecular dynamics; quantum chemistry; molecular graphics

1. Introduction
Graphics processing units (GPUs) have recently evolved into sophisticated co-processors for
throughput-oriented, data-parallel computational work- loads [1,2,3]. As molecular modelers
study progressively larger biomolecular complexes and the dynamics of cellular processes
occurring on longer timescales, the computational demands continue to grow. Seeking to
satisfy demand for computing, themolecular modeling community was among the earliest
adopters of GPU computing [4,5,6,7,8,9,10]. Early attempts to devise molecular modeling
algorithms that harness the power of GPU shave been largely successful, in some cases
providing performance levels two orders of magnitude faster than that achieved with a CPU
alone. Performance increases of this magnitude have the potential to revolutionize

Correspondence to: Klaus Schulten, kschulte@ks.uiuc.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect
the content, and all legal disclaimers that apply to the journal pertain.
15http://qmcpack.cmscc.org/

NIH Public Access
Author Manuscript
J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

Published in final edited form as:
J Mol Graph Model. 2010 September ; 29(2): 116–125. doi:10.1016/j.jmgm.2010.06.010.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://qmcpack.cmscc.org/


computational biology today by changing what were formerly batch-mode computational jobs
into interactive tasks. While a survey of the sesuccesses is of interest to general practitioners
looking for present and future computing solutions, the rapid adoption of GPU sin molecular
modeling offers, in particular, guidance for other areas of computational biology. Prior to the
turn of the millennium, continuing advances in microprocess or design and semiconductor
manufacturing provided an exponential performance growth curve fueling the capabilities of
molecular modeling applications. During this period, parallel computing techniques were
typically employed only for solving the most computationally demanding tasks, as most
application users were satisfied to wait for the expected steady performance increases using
existing sequential molecular modeling codes. Beginning around the year 2002, practical
limitations on the power consumption and heat dissipation resulting from increasing
microprocessor clock rates caused the performance growth curve for single-core
microprocessors to fall flat. This left the molecular modeling community with no alternative
but to begin development of parallel and multi-core versions of applications that require
performance levels exceeding the capabilities of single-core CPUs. This situation has been
further exacerbated by continued advances in experimental structure determination techniques
that have yielded an overabundance of ever more challenging molecular structure data to be
studied.

There has been a great deal of interest in the use of accelerator devices to augment multi-core
CPUs for computationally demanding molecular modeling applications as a result of the
relentless drive for increased performance, improved price/performance, and greater
performance/watt efficiency. Previous efforts with accelerators, including field-programmable
gate arrays (FPGAs) [11,12], several generations of MDGRAPE [13,14,15], the Cell processor
[9,16,17,18,19,20], and GPUs, have demonstrated the potential performance benefits available
to molecular modeling, while bringing to light many of the software engineering challenges
involved in adapting existing applications for heterogeneous computing. Although the specific
details of programming GPUs differ somewhat from other accelerators, all heterogeneous
computing approaches involve porting or adapting existing algorithms for the target accelerator
device, managing multiple independent memory spaces, balancing work among host CPUs
and accelerator devices, and coping with host-device communication latency and bandwidth
limitations. In this sense, developers of GPU-accelerated molecular modeling applications
have benefited from the techniques and experiences gained on the other accelerator platforms.

Owing to architectural features resulting from their graphics lineage, GPUs are well suited to
arithmetic-intensive computational workloads that are highly data-parallel. State-of-the-art
GPUs achieve aggregate floating point performance levels that exceed that of contemporary
CPUs by up to a factor of ten, reaching over one trillion single-precision floating point
operations per second. GPUs contain high-bandwidth memory systems as a result of the needs
of graphics, capable of intra-GPU transfer rates of over one hundred gigabytes per second.
GPUs implement hardware multithreading and machine instructions for many of the
mathematical functions used by molecular modeling applications. In combination, these
attributes enable GPUs to outperform traditional CPU cores on highly data-parallel workloads
by factors ranging from ten to twenty times faster in the majority of cases, up to as much as
one hundred times faster in a few ideal cases [3,21,22,23].

Previously, the applications of parallel processing techniques to molecular modeling have
remained largely confined to batch-mode simulation workloads such as molecular dynamics
and quantum chemistry simulation. The use of GPUs as data-parallel co-processors has
provided a unique opportunity to tremendously increase the effective computational capability
of desktop workstations and laptop computers and the applications that run on them, without
requiring end users to develop expertise in managing clusters or using remote supercomputers.
GPUs can also be used to provide significant performance increases for latency-sensitive

Stone et al. Page 2

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interactive visualization and analysis tasks that are poorly suited to traditional HPC clusters,
in some cases giving rise to visualization and analysis capabilities not possible with
conventional techniques.

2. GPU Overview
Early efforts in the use of GPUs for non-graphical computations were based on graphics-
specific programmable shading languages, requiring scientific calculations to be expressed in
terms of graphics drawing operations. Adding to the difficulty of using such a convoluted
approach, early programmable GPU devices did not fully support standard IEEE floating point
data types, had limited support for data-dependent branching, and placed limits on program
size and complexity. Despite these challenges, the implementation of a variety of proof-of-
concept algorithms demonstrated the feasibility of using GPUs for non-graphical computations
and encouraged GPU architects to target general purpose computation in subsequent hardware
generations, ultimately leading to better programming models for GPU computing [1,24,25,
26,27].

GPU hardware architecture
In their primary role as engines for high performance computer graphics, GPUs rasterize
complex images from streams of graphics commands and geometric data. The most
computationally demanding parts of the rasterization and shading process are inherently data-
parallel, leading hardware architects to design GPUs as massively parallel throughput-oriented
devices. As graphics algorithms have evolved and applications have begun to employ
increasingly sophisticated shading techniques, GPU designs have shifted away from task-
specific fixed-function graphics logic toward large arrays of programmable processor cores
[1].

Continued architectural refinement has increased both the performance and generality of
GPUs, enabling them to operate on all standard integer and floating point data types supported
by contemporary CPUs. These improvements have made GPUs ideal devices for arithmetic-
intensive scientific and engineering applications containing significant parallelism [2]. Current
GPUs contain hundreds of independent execution units, organized into groups forming tightly-
coupled processor complexes that share fast on-chip memory systems, specialized graphics
“texture” hardware for fast interpolation of multi-dimensional arrays, and high bandwidth
channels to large off-chip global memory. Recent GPUs have improved peak host-GPU
memory transfer performance and latency to the point that they are limited mainly by the PCI-
Express bus itself and by driver software overhead. Current GPUs also support asynchronous
host-GPU memory transfers and allow complete overlapping of communication with
computations.

The individual processing elements that compose a GPU are grouped into clusters, each
following a single-instruction multiple-data (SIMD) organization, whereby all of the
processing elements execute the same instruction in lock-step, but on different data. The group
of threads executing in lock-step on the SIMD processing elements are collectively known as
a “warp” or a “wavefront.” The mapping of computational work items to threads in the same
warp can have a significant impact on performance. The evaluation of a conditional branch
among threads in the same warp can lead to a bifurcation of the code path, known as “branch
divergence,” which is handled by executing both code paths in sequence, masking the execution
of the individual threads not participating in one of the two paths of execution until they both
are again unified among all threads in the warp. Branch divergence is avoided and performance
improved whenever all threads in the warp evaluate to the same condition, in which case just
one of the two code paths is executed. While early GPUs were limited to stream-oriented
computations, contemporary GPUs support arbitrary memory access patterns, albeit with

Stone et al. Page 3

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



performance characteristics that vary according to the details of the access pattern. Peak
performance for accesses to the large off-chip global memory is attained only when the access
pattern yields so-called “coalesced” memory transfers, where all memory banks are utilized in
parallel for a single transfer operation with no conflicts among threads in the same warp.

An excellent overview of NVIDIA’s “Tesla” compute-oriented GPU architecture has been
provided by Lindholm et al. [28]. Figure 1 illustrates the hardware organization of the state-
of-the-art NVIDIA “Fermi” GPU architecture [29]. Some of the main features added in the
Fermi architecture are greatly increased double-precision floating point arithmetic
performance, an enlarged 64 kB on-chip shared memory and L1 cache capacity, a large 768
kB L2 cache for main memory, and support for complete overlapping of asynchronous
bidirectional host-GPU memory transfers and GPU kernel execution. The Fermi GPU
architecture also enables reliable execution of long-running computations through the use of
register files, caches, and memory systems protected by error correcting codes (ECC) that can
correct single-bit errors and detect two-bit errors.

The particular combination of hardware features provided by GPUs is aptly suited to the needs
of many molecular modeling applications. Molecular modeling algorithms typically contain
fine-grained data parallelism resulting from the atomic interactions they compute. Existing
CPU algorithms must often be reformulated in order to expose this data parallelism and to
effectively exploit the throughput-oriented architecture of GPUs. Due to the heavy use of
square roots, exponentials, and other transcendental functions in computer graphics algorithms,
GPUs provide machine instructions for these functions that greatly outperform their CPU
equivalents. Molecular modeling applications that manage to take advantage of several of the
GPU hardware features at once have been shown to achieve performance levels of up to one
hundred times that of a single CPU core [21,22]. It is not surprising that applications that closely
match the characteristics of graphics workloads achieve such speedups, since GPUs provide
even higher effective speedups for the graphics applications that they are primarily designed
to accelerate.

GPU programming models and abstractions—Early data-parallel GPU computing
languages, such as Brook [30] and Sh [31], wrapped existing graphics-specific shading
languages with more broadly applicable languages and programming abstractions, leading to
early GPU computing successes. Though a big step in the right direction, these efforts were
still hindered by limitations of the GPU hardware available at the time. The introduction of
hardware support for standard data types, branching instructions, and greatly increased memory
capacity has allowed development of GPU-specific dialects of popular computer languages
such as C and Fortran. In 2007, NVIDIA released the “CUDA” GPU programming toolkit,
providing a dialect of C with extensions for data-parallel programming targeting NVIDIA
GPUs [32]. The CUDA toolkit enables execution of a C function, or “kernel,” on a target GPU
device. CUDA was used as the basis for several early successes in GPU-accelerated molecular
modeling [5,33]. Since then, CUDA has gained a tremendous following as the first GPU
programming toolkit to achieve significant traction among developers of science and
engineering applications. An excellent introduction to CUDA and data-parallel GPU
programming concepts has been provided by Nickolls et al. [34].

In 2008, an industry consortium released a specification for OpenCL, the first broadly
supported multi-platform data-parallel programming interface for heterogeneous computing
on GPUs and similar devices [35]. Like CUDA, OpenCL is also based on a dialect of C. One
of the distinguishing features of OpenCL is that it also specifically targets multi-core CPUs.
With careful design, it is possible to construct OpenCL kernels that perform at moderate
efficiency on CPUs, GPUs, and other accelerators. Although OpenCL provides portability and
correctness guarantees across architectures, different architectures have varying warp or

Stone et al. Page 4

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



wavefront sizes and memory coalescing requirements, necessitating the use of platform or
accelerator-dependent optimizations for peak performance [36]. OpenCL has the potential to
displace vendor-specific CPU vector arithmetic intrinsics, reducing the number of unique code
paths that must be maintained in scientific applications while broadening the range of supported
hardware. Optimized OpenCL kernels are generally much more readable than routines
containing, for example, heavy use of Intel x86 SSE vector intrinsics. As the specification
matures and receives better support from vendor implementations, OpenCL is expected to
become more popular in the future.

Although GPUs are nearly complete computers in their own right, they must be managed by
application software running on a host computer. An application program on the host uses
attached GPUs through language extensions such as “Jacket” for Matlab1 or PyCUDA2 for
Python, by calling libraries containing GPU-accelerated BLAS or FFT subroutines [3,37], or
by invoking custom-written CUDA or OpenCL kernels. Language extensions and subroutine
libraries are the easiest way for an application to take advantage of GPUs. Custom-written
GPU kernels typically provide the greatest performance by minimizing sources of overhead
and matching GPU data structures and kernel parameters as closely as possible to the needs of
the application. The key programming interfaces provided by GPU programming toolkits, such
as CUDA and OpenCL, include mechanisms for enumerating and managing available GPUs,
managing GPU memory allocations, transferring data between the host machine and attached
GPUs, launching calculations, querying execution progress, and checking for errors.

GPU algorithm design—Custom-written GPU kernels can often outperform standardized
or generically written GPU subroutine libraries, but achieving high performance requires
careful attention to the use of GPU hardware features and appropriate use of software interfaces.

Due to their massively parallel and multithreaded hardware architecture, GPUs perform best
with fine-grained parallel decompositions. Contemporary GPUs require a data parallel
workload on the order of 10,000 to 30,000 independent threads in order to fully occupy the
device and provide enough work to hide various sources of latency. Fortunately, the fine-
grained parallel decomposition required by GPUs is often complementary to the coarse-grained
decompositions typically employed for multi-core CPUs and clustering. It is often relatively
easy to compose GPU algorithms within existing applications targeting multi-core CPUs or
HPC clusters by adding an additional level of parallel decomposition for the GPU. The work
that would have previously been performed by one or more CPU cores on a single cluster node
can often be further decomposed into thousands of even smaller individual computations
suitable for the GPU.

Figure 2 illustrates a typical parallel decomposition strategy shown for a three-dimensional
computational domain such as an electrostatic potential map. The computational domain is
first decomposed into two-dimensional slices, which are then broken up into thousands of
independent threads and organized into a grid of thread blocks. It is usually beneficial to pad
data structures and throw away unneeded results, rather than attempting to avoid doing
unnecessary computations. Padding the data also helps to maintain memory alignment
requirements for high-bandwidth coalesced memory transfers [34].

A modern GPU can achieve over 1,000 GFLOPS peak performance for single-precision
arithmetic, but has peak global memory bandwidth on the order of 100 gigabytes per second.
This leaves roughly a factor of 40 gap between the rate at which arithmetic units consume
single-precision operands and the peak bandwidth to GPU global memory. In order to achieve

1http://www.accelereyes.com/
2http://pypi.python.org/pypi/pycuda

Stone et al. Page 5

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.accelereyes.com/
http://pypi.python.org/pypi/pycuda


peak arithmetic performance, GPU algorithms must reduce or eliminate this performance gap
through the use of registers and fast on-chip GPU memory subsystems, effectively amplifying
overall operand bandwidth. Since GPU registers run at the same rate as the arithmetic units,
they are the first choice for storage of data and temporary values that are private to individual
GPU threads. For read-only data, a small on-chip constant cache can provide near register-
speed performance when all threads in a warp read the same constant data location. For data
that are too large to be held in thread-private registers or that must be shared or communicated
among multiple threads, a small on-chip shared memory or parallel data cache provides roughly
50% of the throughput of registers. Good GPU performance necessitates coalesced global
memory access, achieved through use of the proper memory block size, alignment, and thread
access pattern over each memory block. The effective bandwidth can be amplified by using
the shared memory as a program-managed cache, with the required bookkeeping minimized
by accessing data blocks consecutively. Recent GPUs such as the NVIDIA Fermi also provide
hardware-managed caching of global memory accesses in the on-chip shared memory or
parallel data cache.

A problem that frequently arises when adapting serial or coarse-grained parallel algorithms to
GPUs is the occurrence of output conflicts from multiple threads, where uncoordinated
concurrent memory writes from multiple threads will likely produce unpredictable results. In
serial or coarse-grained parallel algorithms for CPUs, this problem is often avoided by having
independent threads write to independent intermediate output buffers, followed by a reduction
that combines the independent buffers into a final result. It is impractical to use this approach
on GPUs since efficient execution requires over 10,000 threads to be running concurrently, far
too many for completely duplicated output buffers to be practical. Although modern GPUs
support atomic updates to global memory, this access is available with comparatively low
performance, slower than a standard global write and slower, still, if there is contention between
threads.

Performance and correctness issues arising from conflicting memory writes are most efficiently
handled by reformulating algorithms to avoid them. Output conflicts are eliminated by
recasting scatter memory access patterns, in which a single thread writes with conflicts to a
number of global memory locations, into gather memory access patterns, in which a single
thread reads without conflicts from a number of global memory locations. The cutoff
summation algorithm discussed in the following section provides a nice example of how a
reorganization of the data combined with interchanging the nesting of loops converts the typical
scatter-based serial approach into a gather-based approach that is well suited to GPU
computation. A GPU algorithm might also benefit from trading floating point operations for
memory accesses. An example is to double the number of non-bonded force evaluations, rather
than taking advantage of Newton’s Third Law, in order to convert a gather-scatter memory
access pattern of a typical serial implementation into a simple gather.

3. GPU-Accelerated Applications
With the release of CUDA [32] and OpenCL [35], GPU programming has become significantly
more accessible, and computational scientists no longer need to have an extensive background
in computer graphics to harness the computational capabilities of GPUs. In the past three years,
tremendous progress has been made in the development of GPU implementations of
fundamental algorithms and widely used subroutine libraries, providing the foundation for
broader adoption within computationally demanding scientific applications. In this section,
brief summaries are presented of some recently published work on the utilization of GPU
acceleration techniques for several areas of molecular modeling.

Stone et al. Page 6

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1. Electrostatics—One of the early applications of GPU computing was the calculation
of three-dimensional electrostatic potential maps [5]. Since the electrostatic environment
surrounding biomolecules has a strong impact on their function, rapid calculation of these maps
is desirable for molecular structure visualization and analysis, and can serve as part of a
systematic method for placing ions when preparing a system for simulation [38,39,40]. More
generally, GPU particle-grid algorithms that evaluate spatially related quantities on grids
surrounding a molecule arise in many other applications, such as the calculation of time-
averaged spatial occupancy maps and the visualization of molecular orbitals [22].

Direct summation—The electrostatic potential contribution from each atom is summed to
every point in a three-dimensional lattice. The computation has quadratic time complexity O
(MN) for N atoms and M lattice points. Although direct summation is impractical for large
problem sizes, its implementation on GPUs has provided valuable insight into the design of
similar algorithms and was an early test case for distributing computation across multiple GPUs
within the same host machine [2,5]. Kernel development for direct summation showed that
contemporary GPUs perform best with workloads dominated by arithmetic operations, in
which the most effective optimizations increased arithmetic intensity and decreased memory
references. Use of the fast on-chip GPU constant memory system for broadcasting atomic
coordinates and charges yields operand access at near-register-speed and, in combination with
data reuse and manual loop unrolling techniques, results in a kernel that is entirely arithmetic
bound. GPU-accelerated direct summation achieves speedup factors of 44 for G80 and 88 for
GT200 architectures compared to a single CPU core. The optimal kernels achieve a large
fraction of the theoretical peak GPU arithmetic performance, providing a rough measure of the
peak floating point performance possible for related molecular modeling algorithms.

Cutoff summation—Distance-based potentials are typically truncated to zero beyond a
cutoff radius, reducing overall algorithm time complexity from quadratic to linear O(M+N).
GPU kernels for efficient summation of a cutoff electrostatic potential require changes to the
data structures and memory utilization from those employed by the kernels for direct
summation. The CPU performs a spatial hashing of the atom data into an array of atom bins,
which is then copied to the GPU. Each work group cooperatively streams the sphere of
surrounding atom bins into the GPU on-chip shared memory to calculate contributions to its
cubic region of grid points, effectively using the shared memory as a managed cache. The atom
bins are chosen to have a fixed data size that is compatible with coalesced memory reads, and
the spatial dimensions assigned to the bins are chosen to maintain a high average occupancy
of atoms to optimize GPU performance. The CPU concurrently calculates contributions from
any atoms that overflow the bin size for regions of the system with an unusually high atom
density, making productive use of the combined computational resources [41]. Even with
algorithmic parameters that effectively hide memory access latency, the GPU kernels for cutoff
summation require enough extra bookkeeping to limit speedup factors to no more than about
32 for GT200 compared to a single CPU core [42].

Multilevel summation—Rather than neglecting the longer-range contributions to the
electrostatic potential, it is desirable to approximate them using an efficient method. The
multilevel summation method calculates a smooth approximation to the full electrostatic
potential through the nested interpolation of successive smoothings of 1/r from a hierarchy of
multi-resolution lattices [43,44]. The GPU-accelerated implementation of multilevel
summation for calculating a map of the electrostatic potential makes use of the cutoff
summation GPU kernel for the short-range part and introduces another GPU kernel for
calculating the three-dimensional convolutions performed over the multi-resolution lattices,
with the CPU calculating the less computationally intensive work [42]. The overall

Stone et al. Page 7

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



computational complexity is linear O(M+N), with the GPU implementation achieving a
speedup factor of 26 for GT200.

Fast multipole method—Older and better known than multilevel summation, the fast
multipole method also approximates the full electrostatic potential with computational work
that scales linearly in the number of atoms [45]. Although capable of providing high accuracy,
the fast multipole method is best suited for applications that do not depend on continuity, such
as the calculation of electrostatic potential maps, since it produces discontinuous potentials.
Work by Gumerov et al. that performs the entire computation on the GPU reports for 1 million
particles speedup factors, depending on the accuracy settings, in the range of 30 to 60, although
the benchmarking has been performed against a less extensively optimized CPU
implementation [46].

3.2. Molecular Dynamics
One of the most compelling applications for GPU computing has been the acceleration of
molecular dynamics simulations based on classical mechanics. Despite years of investment in
efficient algorithms and large scale parallel processing techniques, the demands of biomedical
research require simulations on biomolecular complexes of increasing size and sophistication,
on longer timescales, with better sampling, and with improved force fields. Each of these
dimensions creates demand for more computation, something that GPUs can help address.

Folding@Home—An early success in the application of GPUs to molecular dynamics is the
Folding@Home distributed computing project,3 originally based on the BrookGPU
programming toolkit [4]. Within a short time of introducing GPU-accelerated clients, a large
fraction of the project’s overall computing power was being supplied by GPUs. The
Folding@Home team has continued to develop new GPU kernels optimized for fast protein
folding simulations. They have devised GPU kernels for Onufriev-Bashford-Case Generalized
Born implicit solvent simulations with non-periodic boundary conditions using an all pairs O
(N2) non-bonded force evaluation technique, which works best on small systems of a few
thousand atoms. Both the ATI and NVIDIA GPU implementations yield GPU speedup factors
well over 100 compared to AMBER9 running on a single-core CPU [3, 23, 33]. Today, the
overwhelming majority of Folding@Home computational power is supplied by GPUs.4 These
GPU kernels are also being deployed in the OpenMM5 software library for molecular
simulation.

NAMD—Prior to the introduction of CUDA [32] in 2007, none of the general purpose
molecular dynamics simulation packages had yet been modified to take advantage of GPU
acceleration. With the availability of CUDA, NAMD6 [47] became the first such software
package to incorporate GPU acceleration [5]. The CUDA programming environment’s support
for more sophisticated data structures and memory access patterns, combined with the general
purpose GPU hardware support for fast on-chip shared memory, made it practical for the first
time to design full-featured kernels for molecular dynamics.

Since NAMD is a complex program supporting a diversity of desktop and supercomputing
platforms, an incremental approach has been undertaken to incorporate GPU acceleration. The
initially developed GPU kernels calculate just the O(N) short-range non-bonded interactions,
which is the single most demanding part of the force evaluation, leaving the host CPUs to
perform the remaining computations and message passing operations. NAMD is typically used

3http://www.folding.stanford.edu/
4http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
5https://simtk.org/home/openmm
6http://www.ks.uiuc.edu/Research/namd/

Stone et al. Page 8

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.folding.stanford.edu/
http://fah-web.stanford.edu/cgi-bin/main.py?qtype=osstats
https://simtk.org/home/openmm
http://www.ks.uiuc.edu/Research/namd/


for simulations of large biomolecular complexes in explicit solvent with periodic boundary
conditions, and the GPU calculation has to support the short-range part of the particle-mesh
Ewald (PME) [48] method for approximating full electrostatics in a periodic domain. The
various challenges overcome include maintaining sufficient numerical accuracy despite the
use of single-precision floating point arithmetic, handling exclusions, and using CPU-fallback
methods to provide compatibility with advanced simulation features [2,5].

Subsequent NAMD GPU development efforts have focused on making effective use of GPU
clusters, which present several challenges when compared with single-machine scenarios [8].
Contemporary GPUs require a large amount of work to operate efficiently, so GPU algorithms
typically aggregate work until enough is available to effectively use the GPU. In a cluster or
other large scale parallel environment, the simulation workload on a single node can be
partitioned into two sets, the “remote” portion resulting from communications with peers, and
the “local” portion that depends only on node-local data. To optimize GPU execution, one
would ideally first submit all of the already available local work, followed by submission of
the remote work once it arrives. Although this strategy gives the GPU the best opportunity to
achieve peak performance, it adds latency to the execution of remote work which can delay
the critical path for overall parallel execution. NAMD benchmarks on up to 60 GPUs on the
“AC” cluster at the National Center for Supercomputing Applications (NCSA) have
demonstrated overall application speedups of 3.4 to 7 depending on system size. A 1 million
atom virus simulation running on 60 GPUs achieved performance equivalent to 330 CPU cores
on the same cluster [8]. Performance-per-watt measurements have shown an overall GPU-
accelerated NAMD energy efficiency improvement factor of 2.7, compared to CPU-only runs
[49]. Recent NAMD benchmarks of large simulations on the NCSA “Lincoln” cluster have
yielded per-GPU performance benefits roughly equivalent to adding 12 CPU cores. GPUs have
not only improved the price/performance of NAMD simulations, but also the space, power,
and cooling requirements for high performance NAMD clusters. Recent NAMD GPU work
has focused on broadening the range of simulation types that benefit from GPU acceleration,
improved parallel scalability for GPU-accelerated clusters, better support for asymmetric
numbers of CPU cores and GPUs within cluster nodes, and tuning for newer GPU hardware
such as NVIDIA’s Fermi.

HOOMD—Specializing in molecular dynamics simulations of polymer systems, HOOMD7

is freely available software explicitly designed for GPU execution [3,7]. Achieving speedups
of over a factor of 30 compared to the same simulations run with the LAMMPS [50] package
on CPUs, HOOMD has enabled a variety of coarse-grained particle simulations that would
have been impractical before. Results from a recent study to determine the stability of points
of the double gyroid phase for a polymer required more than 600 different simulation runs of
48 GPU-hours apiece [51]; the same set of simulations run with LAMMPS would have required
almost one million CPU-hours. Rather than using the GPU to accelerate only part of the force
calculation, HOOMD keeps the entire simulation data within the GPU memory to overcome
the CPU to GPU memory transfer bottleneck. A number of GPU-specific algorithms and
approaches are used, including the sorting of atoms to reduce branch divergence, the effective
use of pair lists, and optimizations that take advantage of atomic operations, along with other
features found only in state-of-the-art GPUs.

ACEMD—Released as a commercially licensed biomolecular dynamics software package,
ACEMD8 is explicitly designed for execution by a single workstation with multiple GPUs
[52]. Almost all of the computational work is performed on the GPUs in an effort to maximize

7http://codeblue.umich.edu/hoomd-blue
8http://multiscalelab.org/acemd

Stone et al. Page 9

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://codeblue.umich.edu/hoomd-blue
http://multiscalelab.org/acemd


performance. ACEMD provides many features typically required for production simulations,
including compatibility with CHARMM and AMBER force fields, long-range electrostatics
with PME [53], temperature control, and hydrogen bond constraints. The design uses a task-
parallel decomposition strategy, rather than the spatial data-parallel decomposition used in
NAMD, which limits its scalability to not more than three or four GPUs. ACEMD appears to
be most effective for system sizes of 10K to 100K atoms.

Other work—Some of the other research into accelerating molecular dynamics with GPUs
includes work by Liu et al. [54] and Davis et al. [55]. Liu et al. reports on accelerating the time
integration of particles acting under a simple Lennard-Jones potential with a cutoff distance,
showing speedup factors of about 7 to 11 over optimized routines from LAMMPS on systems
ranging from 8K to 131K in size. Davis et al. simulates flexible water entirely on the GPU,
showing a speedup factor of about 7 over CHARMM on a single CPU for a system of 20K
atoms.

3.3. Quantum Chemistry
Quantum chemistry simulations constitute the most computationally demanding applications
within molecular modeling. As the size of simulated molecules grows, or more accurate
techniques are used, computational complexity often grows non-linearly, such as quadratically
O(N2), cubically O(N3), quartically O(N4), or more. However, increased computational
complexity provides greater opportunity for data reuse, which can favor the GPU over the CPU
by increasing the ratio of arithmetic operations to memory accesses. Many first principles
quantum chemistry algorithms are also embarrassingly parallel and thereby particularly well
suited for GPU architectures.

Quantum chemistry simulation—In 2007, Anderson et al. implemented for the first time
the Quantum Monte-Carlo (QMC) algorithm on a GPU [56]. Remarkably, the code was written
using the Cg language, a popular graphics-specific programmable shading language available
prior to the introduction of CUDA and OpenCL. After the introduction of CUDA in 2007, the
effectiveness of GPU-accelerated quantum chemistry calculation was demonstrated for QMC
[57], evaluation of two-electron (2e) integrals [21,58,59], Hartree-Fock (HF) [60,61,62],
density functional theory (DFT) [63,64,65], and correlated methods [66,67]. HF and DFT
algorithms require calculation of millions and sometimes billions of the 2e-integrals that
describe electrostatic repulsion between uncorrelated pairs of electrons. In addition, most
popular DFT methods also involve numerical integration of various functionals on a unified
set of spherical atom-centered grids. The 2e integral and numerical integration problems are
embarrassingly parallel and perfectly map onto the GPU architecture demonstrating from one-
to two-order of magnitude performance gains with respect to traditional CPU-based solutions.

On the other hand, porting existing serial and even parallel CPU-based quantum chemistry
applications to the GPU architecture is not straightforward, because in most cases the programs
are designed in such a way as to extensively reuse intermediate data. This strategy generally
reduces the total number of arithmetic operations required to complete the same amount of
work but necessitates higher utilization of the memory bandwidth and causes random (non-
contiguous) memory access patterns, hampering GPU performance significantly. In many
cases, to obtain the maximum computation speed on GPUs one needs to redesign existing
quantum chemistry algorithms, sometimes increasing the number of floating point operations
in exchange for a reduced number of memory operations and contiguous memory accesses
[21,60,63,64]. In contrast, applications designed from the outset for massively parallel
processors (in this particular case, GRAPE-DR) can be ported to the GPU quite efficiently due
to conceptual similarities between various massively parallel architectures [58].

Stone et al. Page 10

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Another way to accelerate existing CPU-based applications is to replace standard CPU library
(BLAS, LAPACK) function calls by their counterparts from GPU-accelerated libraries
available from several vendors. This porting strategy is especially appealing because it requires
essentially no code reorganization and has been demonstrated to be relatively efficient for
applications formulated in terms of BLAS-3 operations [66]. Limitations in the amount of on-
board GPU memory for large-sized matrix problems and the slower performance of double
precision versus single precision operations on the GPU have led to the development of
customized matrix libraries [67]. Such libraries address memory capacity limitations by
decomposing a large problem into smaller problems that fit into the GPU memory. Performance
is improved through the use of mixed precision calculations that take advantage of the speed
and memory bandwidth benefits of single precision arithmetic while preserving accuracy with
limited use of double precision.

Quantum chemistry visualization—As the size of systems routinely treated at the
quantum chemistry level approaches 1,000 atoms and the typical length of first principles
molecular dynamics simulations reaches 1 ns, visualization of the results of such calculations
(molecular orbitals, electron and spin density, etc.) becomes a challenge for traditional
processors. A large computational cost is associated with the evaluation of various functions
on the three-dimensional grids needed for rendering of the corresponding isosurfaces. Because
the evaluation of functions on grids is intrinsically parallel, it creates an ideal opportunity for
offloading this part of the visualization process to the GPU. In fact, the recent development of
orbital visualization tools within the popular molecular visualization program VMD [68] has
clearly demonstrated great superiority of GPU over CPU for this type of problem [22]. Figure
3 depicts a typical molecule whose molecular orbitals can be rendered interactively using
VMD. Molecular orbital computations using four GPUs have yielded speedups as high as 412
compared to a single CPU core. The use of multiple GPUs to accelerate latency-sensitive
visualization calculations requires special techniques for dynamic load balancing and handling
of errors. VMD contains a framework for efficient execution of latency-sensitive multi-GPU
computations.

3.4. Additional Applications
Besides the application areas already discussed, GPUs have been successfully employed for
several other important tasks in molecular modeling.

Protein-ligand docking—Molecular docking problems often involve computationally
demanding calculations of protein-ligand or protein-protein interaction energies, for many
possible translations, orientations, or poses of docked structures. Korb has developed GPU-
accelerated transformations and scoring functions for protein-ligand docking, yielding an
overall speedup factor of 5 or more [69]. Although this work was done using the OpenGL
graphics interface, the algorithms could be directly expressed in the compute-specific CUDA
or OpenCL toolkits, thereby alleviating concerns about floating point accuracy and portability
that exist for implementations based on OpenGL programmable shading techniques. Sukhwani
et al. present a GPU-accelerated version of the docking program PIPER [70], achieving an
overall speedup factor of 17 or more [71]. Sukhwani et al. also compare performance with
FPGA accelerators, and evaluate both FFT-based correlation and direct correlation approaches
for a variety of ligand sizes.

Molecular surface area—The computation of solvent-accessible, solvent-excluded, and
molecular surface areas are important for calculation of solvation energies and are of interest
in the study of protein folding. Juba et al. have created a parallel molecular surface area
algorithm based on the use of a surface defined by summed Gaussian radial basis functions
[72]. The surface is then sampled stochastically, estimating surface area by counting line-

Stone et al. Page 11

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



surface intersections. They report runtime and difference in estimated surface area compared
to several other popular programs, achieving performance levels of up to 24 times faster than
other tools running on the CPU, and with surface area differences typically less than 5% over
a wide range of problem sizes.

Dynerman et al. describe a GPU algorithm for computing solvent-accessible surface areas, as
used in computing desolvation energy [73]. The surface area algorithm uses an O(N2) pairwise
geometric area formulation that yields a twice differentiable approximation practical for
optimization problems. The strong linear relationship between desolvation energy and solvent-
accessible surface area is exploited to compute the desolvation energy. The GPU algorithm for
computing solvent-accessible surface area yielded speedups ranging from 30 to over 200 for
a range of problem sizes, when comparing runtime for 2 CPUs against 2 GPUs, although the
authors note that the CPU implementation was not extensively optimized. Since the runtime
of the desolvation algorithm is composed primarily of the surface area computation time, it
yields similar speedups.

Implicit ligand sampling—The computation of the occupancy map reveals within a protein
the most likely channels for a gas, such as methane [74,75]. The concepts behind implicit ligand
sampling and parts of its calculation bear resemblance to protein-ligand docking. The
occupancy map is averaged over a series of RMSD-aligned trajectory frames of the molecule,
for which each of the map contributions is determined by calculating a dense lattice of the non-
bonded potential between the fixed molecular structure and the rotations of the small ligand.
The application of a single GPU to this compute intensive procedure has shown speedup factors
of 10 to 30 over highly optimized CPU code, depending on the size and shape of the ligand.
Although the details of the GPU algorithm are as yet unpublished, the GPU implementation is
already available for use in VMD. The GPU algorithm shares similarities with the electrostatics
map calculation of a cutoff potential [41], but must look up Lennard-Jones parameters and
stream through a list of rotations of the ligand. Performance is enhanced by an initial culling
of the lattice points for which occupancy is near zero.

Other work—Haque et al. have recently described a GPU algorithm for Gaussian molecular
shape overlay [76]. Their algorithm is an open source implementation of the Gaussian volume
overlap optimization approach used by the ROCS (Rapid Overlay of Chemical Structures)
package produced by Open-Eye Scientific Software. These algorithms are used to identify
spatial features common among a set of molecules, and can be used to measure similarity for
ligand-based compound discovery approaches. Haque et al. report speedups of 20 compared
to highly optimized CPU implementations and also include results for low-cost platforms of
interest to distributed computing efforts such as Folding@Home.

Histogramming algorithms tend to perform well on GPUs due to their intrinsic parallelism,
particularly in the case of recent devices that support arbitrary scatter and gather operations to
global memory. State-of-the-art GPUs also support atomic-add operations, further simplifying
the construction of efficient histogramming techniques, reducing the need for multi-pass
algorithms. Recent development has begun toward the implementation of radial distribution
functions on GPUs, taking advantage of the GPUs’ arithmetic capabilities for calculating
particle pair distances and their ability to perform fast histogramming. Preliminary testing has
achieved GPU speedups as high as 70 compared to a single CPU core when computing radial
distribution histograms. The completed implementation is planned for release in VMD [68],
augmenting the existing CPU implementation.

Many other molecular modeling tools are currently in the process of incorporating GPU
acceleration. GPU-accelerated versions of AMBER,9 CHARMM, DL POLY,10 GROMACS,
11 LAMMPS,12 AutoDock,13 BigDFT,14 and QMCPACK15 are in development at the time

Stone et al. Page 12

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of this writing. It seems likely that within a short time, many of the mainstream molecular
simulation packages will support GPU acceleration to some degree.

4. Future Outlook
The broad range of existing work demonstrates performance benefits from the use of GPUs as
massively parallel co-processors for arithmetic-intensive molecular modeling applications.
State-of-the-art GPU hardware designs, like the AMD Cypress and NVIDIA Fermi, offer
greatly increased computational capabilities and solve some of the past limitations of GPUs.
Double precision is now supported at just twice the cost of single precision operations, and
error correcting memory is supported. CUDA driver and compiler technology is mature enough
for production-level software development, and OpenCL is anticipated to follow this lead as
vendor support improves.

Parallelization across GPU-accelerated clusters brings additional issues. Several problems
from molecular modeling have already demonstrated good scaling for large problem sizes on
GPU clusters, with improved performance and reduced power consumption as compared with
traditional HPC clusters. Strong scaling on GPU clusters is still difficult to attain for small
problem sizes due to the additional sources of latency introduced by GPU devices. In particular,
a key challenge here is to improve the performance of molecular dynamics simulations of small
systems over longer timescales. The recent GPU support for the execution of workloads
provided in smaller batches will help to improve latency issues with GPU clusters. Future
improvements are expected that will reduce host-GPU memory transfer overhead and that will
provide new interfaces allowing efficient communication directly between GPUs within the
same host.

The most exciting applications of GPUs to molecular modeling are perhaps those that have
resulted in a “computational phase transition,” transforming what had previously been batch-
mode computations on clusters into interactive computations that can now be performed on
laptop or desktop computers. Recent and continuing improvements to the state-of-the-art
GPUs, such as new special-purposes caches and hardware reduction operations, will enable
development of GPU algorithms that were previously difficult to map to GPU hardware with
high efficiency, while reducing the number of development hurdles encountered by
computational scientists that are just beginning to learn GPU programming techniques.

Acknowledgments
This work was supported by the National Institutes of Health under grant P41-RR05969. Performance experiments
were made possible by a generous hardware donation by NVIDIA. Ivan Ufimtsev would like to acknowledge an
NVIDIA fellowship and National Science Foundation grant (CHE-06-26354).

References
1. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ. A survey of general-

purpose computation on graphics hardware. Comput. Graph. Forum 2007;26:80–113.
2. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc. IEEE

2008;96:879–899.

9http://ambermd.org/gpus/
10http://www.ichec.ie/research/gpgpu_projects
11https://simtk.org/home/openmm
12http://code.google.com/p/gpulammps/
13http://sourceforge.net/projects/gpuautodock/
14http://inac.cea.fr/L_Sim/BigDFT/

Stone et al. Page 13

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ambermd.org/gpus/
http://www.ichec.ie/research/gpgpu_projects
https://simtk.org/home/openmm
http://code.google.com/p/gpulammps/
http://sourceforge.net/projects/gpuautodock/
http://inac.cea.fr/L_Sim/BigDFT/


3. Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, Morton S, Phillips E, Zhang Y, Volkov
V. Parallel computing experiences with CUDA. IEEE Micro 2008;28:13–27.

4. Elsen, E.; Houston, M.; Vishal, V.; Darve, E.; Hanrahan, P.; Pande, V. SC06 Proceedings, IEEE
Computer Society. 2006. N-body simulation on GPUs.

5. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular
modeling applications with graphics processors. J. Comp. Chem 2007;28:2618–2640. [PubMed:
17894371]

6. Yang J, Wang Y, Chen Y. GPU accelerated molecular dynamics simulation of thermal conductivities.
J. Chem. Phys 2007;221:799–804.

7. Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. J. Chem. Phys 2008;227:5342–5359.

8. Phillips, JC.; Stone, JE.; Schulten, K. Adapting a message-driven parallel application to GPU-
accelerated clusters; SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing;
Piscataway, NJ, USA: IEEE Press; 2008.

9. Giupponi G, Harvey M, Fabritiis GD. The impact of accelerator processors for high-throughput
molecular modeling and simulation. Drug Discovery Today 2008;13:1052–1058. [PubMed:
18762274]

10. Phillips JC, Stone JE. Probing biomolecular machines with graphics processors. Communications of
the ACM 2009;52:34–41.

11. Azizi, N.; Kuon, I.; Egier, A.; Darabiha, A.; Chow, P. Reconfigurable molecular dynamics simulator,
Field-Programmable Custom Computing Machines; Annual IEEE Symposium on; 2004. p. 197-206.

12. Gu, Y.; VanCourt, T.; Herbordt, M. Accelerating molecular dynamics simulations with configurable
circuits; International Conference on Field Programmable Logic and Applications; 2005. p. 475-480.

13. Susukita R, Ebisuzaki T, Elmegreen BG, Furusawa H, Kato K, Kawai A, Kobayashi Y, Koishi T,
McNiven GD, Narumi T, Yasuoka K. Hardware accelerator for molecular dynamics: MDGRAPE-2.
Computer Physics Communications 2003;155:115–131.

14. Taiji, M.; Narumi, T.; Ohno, Y.; Futatsugi, N.; Suenaga, A.; Takada, N.; Konagaya, A. Protein
Explorer: A petaflops special-purpose computer system for molecular dynamics simulations.
Supercomputing; ACM/IEEE Conference; 2003. p. 15-15.

15. Narumi, T.; Ohno, Y.; Okimoto, N.; Koishi, T.; Suenaga, A.; Futatsugi, N.; Yanai, R.; Himeno, R.;
Fujikawa, S.; Taiji, M.; Ikei, M. A 55 TFLOPS simulation of amyloid-forming peptides from yeast
prion sup35 with the special-purpose computer system MDGRAPE-3; SC ’06: Proceedings 2006
ACM/IEEE conference on Supercomputing; New York, NY, USA: ACM; 2006.

16. Hofstee, HP. Power efficient processor architecture and the Cell processor; HPCA ’05: Proceedings
of the 11th International Symposium on High-Performance Computer Architecture; Washington,
DC, USA: IEEE Computer Society; 2005. p. 258-262.

17. Kunzman, D.; Zheng, G.; Bohm, E.; Kalé, LV. Charm++, Offload API, and the Cell Processor;
Proceedings of the Workshop on Programming Models for Ubiquitous Parallelism; Seattle, WA,
USA: ACM; 2006.

18. Swaminarayan, S.; Kadau, K.; Germann, TC.; Fossum, GC. Tflop/s molecular dynamics simulations
on the Roadrunner general-purpose heterogeneous supercomputer; SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing; Piscataway, NJ, USA: IEEE Press; 2008. p. 1-10.

19. Shi, G.; Kindratenko, V. Implementation of NAMD molecular dynamics non-bonded force-field on
the Cell Broadband Engine processor. Parallel and Distributed Processing; IPDPS 2008. IEEE
International Symposium on; 2008. p. 1-8.

20. Kunzman, DM.; Kalé, LV. Towards a framework for abstracting accelerators in parallel applications:
Experience with Cell; SC ’09: Proceedings of the 2009 ACM/IEEE Conference on Supercomputing;
New York, NY, USA: ACM; 2009. p. 1-12.

21. Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 1. Strategies for two-
electron integral evaluation. J. Chem. Theor. Comp 2008;4:222–231.

22. Stone, JE.; Saam, J.; Hardy, DJ.; Vandivort, KL.; Hwu, WW.; Schulten, K. High performance
computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. Proceedings
of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units; ACM
International Conference Proceeding Series; New York, NY, USA: ACM; 2009. p. 9-18.

Stone et al. Page 14

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns
CM, Pande VS. Accelerating molecular dynamic simulation on graphics processing units. J. Comp.
Chem 2009;30:864–872. [PubMed: 19191337]

24. Chinchilla, F.; Gamblin, T.; Sommervoll, M.; Prins, JF. Parallel N-Body Simulation Using GPUs,
Technical Report TR04-032. Department of Computer Science, University of North Carolina at
Chapel Hill; 2004.

25. Fan, Z.; Qiu, F.; Kaufman, A.; Yoakum-Stover, S. GPU cluster for high performance computing; SC
’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing; Washington, DC, USA:
IEEE Computer Society; 2004. p. 47

26. Takizawa H, Kobayashi H. Hierarchical parallel processing of large scale data clustering on a pc
cluster with GPU co-processing. J. Supercomput 2006;36:219–234.

27. D. Göddeke D, Strzodka R, Mohd-Yusof J, McCormick P, Buijssen SHM, Grajewski M, Turek S.
Exploring weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Comput
2007;33:685–699.

28. Lindholm E, Nickolls J, Oberman S, Montrym J. NVIDIA Tesla: A unified graphics and computing
architecture. IEEE Micro 2008;28:39–55.

29. NVIDIA. NVIDIA’s next generation CUDA compute architecture. Fermi: White Paper, NVIDIA;
2009. Available online (Version 1.1, 22 pages).

30. Buck, I.; Foley, T.; Horn, D.; Sugerman, J.; Fatahalian, K.; Houston, M.; Hanrahan, P. SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM Press; 2004. Brook for GPUs:
Stream Computing on Graphics Hardware; p. 777-786.

31. McCool M, Du Toit S, Popa T, Chan B, Moule K. Shader algebra. ACM Trans. Graph 2004;23:787–
795.

32. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. Santa Clara,
CA, USA: NVIDIA; 2007.

33. Elsen, E.; Vishal, V.; Houston, M.; Pande, V.; Hanrahan, P.; Darve, E. Simulations on GPUs,
Technical Report. Stanford, CA: Stanford University; 2007. Http://arxiv.org/abs/0706.3060.

34. Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with CUDA. ACM Queue
2008;6:40–53.

35. Munshi, A. OpenCL Specification Version 1.0. 2008. Http://www.khronos.org/registry/cl/.
36. Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard for heterogeneous computing

systems. Comput. in Sci. and Eng 2010;12:66–73.
37. Volkov, V.; Demmel, JW. Benchmarking GPUs to tune dense linear algebra; SC ’08: Proceedings

of the 2008 ACM/IEEE conference on Supercomputing; Piscataway, NJ, USA: IEEE Press; 2008.
p. 1-11.

38. Gumbart J, Trabuco LG, Schreiner E, Villa E, Schulten K. Regulation of the protein-conducting
channel by a bound ribosome. Structure 2009;17:1453–1464. [PubMed: 19913480]

39. Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K. Molecular Dynamics Flexible Fitting:
A practical guide to combine cryoelectron microscopy and X-ray crystallography. Methods
2009;49:174–180. [PubMed: 19398010]

40. Trabuco LG, Harrison CB, Schreiner E, Schulten K. Recognition of the regulatory nascent chain
TnaC by the ribosome. Structure 2010;18:627–637. [PubMed: 20462496]

41. Rodrigues, CI.; Hardy, DJ.; Stone, JE.; Schulten, K.; Hwu, WW. GPU acceleration of cutoff pair
potentials for molecular modeling applications; CF’08: Proceedings of the 2008 conference on
Computing Frontiers; New York, NY, USA: ACM; 2008. p. 273-282.

42. Hardy DJ, Stone JE, Schulten K. Multilevel summation of electrostatic potentials using graphics
processing units. J. Paral. Comp 2009;35:164–177.

43. Skeel RD, Tezcan I, Hardy DJ. Multiple grid methods for classical molecular dynamics. J. Comp.
Chem 2002;23:673–684. [PubMed: 11939600]

44. Hardy, DJ. Ph.D. thesis. Univ. of Illinois at Urbana-Champaign; 2006. Multilevel Summation for the
Fast Evaluation of Forces for the Simulation of Biomolecules. Also Department of Computer Science
Report No. UIUCDCS-R-2006-2546, May 2006. Available online at
http://www.cs.uiuc.edu/research/techreports.php.

Stone et al. Page 15

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Http://arxiv.org/abs/0706.3060
Http://www.khronos.org/registry/cl/
http://www.cs.uiuc.edu/research/techreports.php


45. Greengard L, Rokhlin V. A fast algorithm for particle simulation. J. Comp. Phys 1987;73:325–348.
46. Gumerov NA, Duraiswami R. Fast multipole methods on graphics processors. J. Comp. Phys

2008;227:8290–8313.
47. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L,

Schulten K. Scalable molecular dynamics with NAMD. J. Comp. Chem 2005;26:1781–1802.
[PubMed: 16222654]

48. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald
method. J. Chem. Phys 1995;103:8577–8593.

49. Showerman, M.; Enos, J.; Pant, A.; Kindratenko, V.; Steffen, C.; Pennington, R.; Hwu, W. QP: A
Heterogeneous Multi-Accelerator Cluster; 10th LCI International Conference on High-Performance
Clustered Computing; Boulder, CO, USA: 2009.

50. Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys 1995;117:1–
19.

51. Phillips CL, Iacovella CR, Glotzer SC. Stability of the double gyroid phase to nanoparticle
polydispersity in polymer-tethered nanosphere system. Soft Mat 2010;6:1693–1703.

52. Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: Accelerating biomolecular dynamics in the
microsecond time scale. J. Chem. Theor. Comp 2009;5:1632–1639.

53. Harvey MJ, Fabritiis GD. An implementation of the smooth particle mesh Ewald method on GPU
hardware. J. Chem. Theor. Comp 2009;5:2371–2377.

54. Liu W, Schmidt B, Voss G, Mler-Wittig W. Accelerating molecular dynamics simulations using
graphics processing units with CUDA. Comput. Phys. Commun 2008;179:634–641.

55. Davis, JE.; Ozsoy, A.; Patel, S.; Taufer, M. Towards large-scale molecular dynamics simulations on
graphics processors; BICoB ’09: Proceedings of the 1st International Conference on Bioinformatics
and Computational Biology; Heidelberg: Springer-Verlag, Berlin; 2009. p. 176-186.

56. Anderson AG, Goddard WA III, Schröder P. Quantum Monte Carlo on graphical processing units.
Comput. Phys. Commun 2007;177:298–306.

57. Meredith JS, Alvarez G, Maier TA, Schulthess TC, Vetter JS. Accuracy and performance of graphics
processors: A quantum Monte. J. Paral. Comp 2009;35:151–163.

58. Yasuda K. Two-electron integral evaluation on the graphics processor unit. J. Comp. Chem
2008;29:334–342. [PubMed: 17614340]

59. Asadchev A, Allada V, Felder J, Bode BM, Gordon MS, Windus TL. Uncontracted Rys quadrature
implementation of up to g functions on graphical processing units. J. Chem. Theor. Comp
2010;6:696–704.

60. Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 2. Direct self-consistent-
field implementation. J. Chem. Theor. Comp 2009;5:1004–1015.

61. Sanna N, Baccarelli I, Morelli G. SCELib3.0: The new revision of SCELib, the parallel computational
library of molecular properties in the Single Center Approach. Computer Physics Communications
2009;180:2544–2549.

62. Ufimtsev IS, Martinez TJ. Graphical processing units for quantum chemistry. Comput. in Sci. and
Eng 2008;10:26–34.

63. Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 3. Analytical energy
gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theor. Comp
2009;5:2619–2628.

64. Yasuda K. Accelerating density functional calculations with graphics processing unit. J. Chem. Theor.
Comp 2008;4:1230–1236.

65. Genovese L, Ospici M, Deutsch T, Méhaut J-F, Neelov A, Goedecker S. Density functional theory
calculation on many-cores hybrid central processing unit-graphic processing unit architectures. J.
Chem. Phys 2009;131:034103. [PubMed: 19624177]

66. Vogt L, Olivares-Amaya R, Kermes S, Shao Y, Amador-Bedolla C, Aspuru-Guzki A. Accelerating
resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with
graphical processing units. J. Phys. Chem. A 2008;112:2049–2057. [PubMed: 18229900]

Stone et al. Page 16

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



67. Olivares-Amaya R, Watson MA, Edgar RG, Vogt L, Shao Y, Aspuru-Guzik A. Accelerating
correlated quantum chemistry calculations using graphical processing units and a mixed precision
matrix multiplication library. J. Chem. Theor. Comp 2010;6:135–144.

68. Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J. Mol. Graphics
1996;14:33–38.

69. Korb, O. Ph.D. thesis. Universität Konstanz, Universitätsstr. 10, 78457 Konstanz; 2008. Efficient Ant
Colony Optimization Algorithms for Structure and Ligand-Based Drug Design.

70. Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: An FFT-based protein docking program with
pairwise potentials. Proteins: Struct., Func., Bioinf 2006;65:392–406.

71. Sukhwani, B.; Herbordt, MC. GPU acceleration of a production molecular docking code; GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units; New
York, NY, USA: ACM; 2009. p. 19-27.

72. Juba D, Varshney A. Parallel, stochastic measurement of molecular surface area. J. Mol. Graph. Model
2008;27:82–87. [PubMed: 18424205]

73. Dynerman D, Butzlaff E, Mitchell JC. CUSA and CUDE: GPU-accelerated methods for estimating
solvent accessible surface area and desolvation. J. Comp. Biol 2009;16:523–537.

74. Cohen J, Arkhipov A, Braun R, Schulten K. Imaging the migration pathways for O2, CO, NO, and
Xe inside myoglobin. Biophys. J 2006;91:1844–1857. [PubMed: 16751246]

75. Cohen, J.; Olsen, KW.; Schulten, K. Finding gas migration pathways in proteins using implicit ligand
sampling. In: Poole, RK., editor. Globins and other NO-reactive Proteins in Microbes, Plants and
Invertebrates, volume 437 of Methods in Enzymology. Elsevier: 2008. p. 437-455.

76. Haque IS, Pande VS. PAPER - accelerating parallel evaluations of ROCS. J. Comp. Chem
2009;31:117–132. [PubMed: 19421991]

Stone et al. Page 17

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A simplified hardware block diagram for the NVIDIA “Fermi” GPU architecture. Fermi
contains up to 512 general purpose arithmetic units known as “streaming processors” (SP) and
64 “special function units” (SFU) for computing special transcendental and algebraic functions
not provided by the SPs. Memory load/store units (LDST), texture units (TEX), fast on-chip
data caches, and a high-bandwidth main memory system provide the GPU with sufficient
operand bandwidth to keep the arithmetic units productive. Groups of 32 SPs, 16 LDSTs, 4
SFUs, and 4 TEXs compose a “streaming multiprocessor” (SM). One or more CUDA “thread
blocks” execute concurrently on each SM, with each block containing 64 to 512 threads.

Stone et al. Page 18

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
In CUDA, a data-parallel problem is decomposed into independent work items called
“threads.” Threads are executed together in cooperative work groups called “thread blocks,”
which are grouped into “grids.” The computation for a CUDA grid corresponds to exactly one
GPU kernel invocation. OpenCL uses a very similar scheme with essentially the same
semantics, but in OpenCL these groupings are named “work items,” “work groups,” and “index
ranges.”

Stone et al. Page 19

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
This molecular orbital representation of a 102 atom Taxol molecule is an example of the kind
of quantum chemistry data that can be interactively displayed and animated in VMD, with on-
the-fly GPU computation of molecular orbital grids [22].

Stone et al. Page 20

J Mol Graph Model. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


