Association of the Extended-Spectrum β -Lactamase Gene bla_{TLA-1} with a Novel ISCR Element, ISCR20^{\forall}

Beatrice Berçot,^{1,2} Laurent Poirel,¹ Jesus Silva-Sanchez,³ and Patrice Nordmann^{1*}

Service de Bactériologie-Virologie, INSERM U914 "Emerging Resistance to Antibiotics," Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine et Université Paris-Sud, Le Kremlin-Bicêtre, France¹; Service de Bactériologie-Virologie, Hôpital Lariboisiere, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine et Université Paris Diderot, Faculté de Médecine, Paris VII, France²; and Departamento de Resistencia Bacteriana, Instituto Nacional de Salud Publica, Centro de Investigaciones Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, Mexico³

Received 19 January 2010/Returned for modification 12 May 2010/Accepted 20 June 2010

The bla_{TLA-1} gene encoding an extended-spectrum β -lactamase was identified in 11 enterobacterial isolates from Mexico City, Mexico. This gene was located on different plasmids and plasmid types with different sizes and incompatibility groups. It was associated with a novel insertion sequence, ISCR20, encoding a putative transposase that shared only 20% amino acid identity with the most closely related transposase of ISCR1. The ISCR20 element provided specific promoter sequences for expression of the bla_{TLA-1} gene.

Although the majority of Ambler class A extended-spectrum β-lactamases (ESBLs) identified in the family Enterobacteriaceae worldwide are mostly of the TEM, SHV, and CTX-M types, some "minor" ESBLs have been reported, such as VEBlike, GES-like, BES-1, SFO-1, and TLA-1 enzymes (5). The bla_{TLA-1} gene was first reported in 2000 from an Escherichia coli clinical isolate from Mexico (8). From April 2000 until February 2002, the bla_{TLA-1} gene was detected from an epidemic Klebsiella pneumoniae clone in Mexico, and both the bla_{TLA-1} and bla_{SHV-5} ESBL genes were located on the same plasmid (1). The bla_{TLA-1} gene was identified on a 150-kb conjugative plasmid named pRZA92, but its genetic context had not been further characterized (8). Considering that many ESBL genes may be transposon or integron associated, the aim of this study was to characterize the genetic elements at the possible origin of acquisition of the bla_{TLA-1} gene from isolates of members of the family Enterobacteriaceae recovered from several hospitals in Mexico City, Mexico.

The 150-kb plasmid pRZA92 of *E. coli* R170 (8) was extracted by using the Qiafilter plasmid purification maxikit (Qiagen, Courtaboeuf, France) and partially sequenced using the primers indicated in Table 1. A sequence of 5,923 bp was identified through a primer-walking approach and contained several open reading frames (ORFs) (Fig. 1). Upstream of the bla_{TLA-1} gene, another gene (named *orf432*) was identified; this gene encoded a 432-amino-acid protein sharing 86% sequence identity with an uncharacterized *orf430* gene (83% amino acid identity) located in a class 1 integron from a *Proteus mirabilis* isolate recovered from Mediterranean herring gulls in Italy (GenBank accession number DQ520941) (3). The *orf432* gene encoded a putative transposase belonging to the IS91 family of transposases that includes the newly described ISCR elements.

* Corresponding author. Mailing address: Service de Bactériologie-Virologie, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France. Phone: 33-1-45-21-36-32. Fax: 33-1-45-21-63-40. E-mail: nordmann.patrice@bct.aphp.fr. The Orf432 transposase shared 20%, 21%, and 18% amino acid identity with the transposases encoded by the ISCR1, ISCR2, and ISCR3 elements, respectively. Detailed analysis allowed us to identify the orf432 gene as part of a novel ISCR element, termed ISCR20 according to the official nomenclature (http://medicine.cf.ac.uk/en/research/research-groups/ i3/research/antibacterial-agents/iscr-elements/). The ISCR20 element is 1,705 bp long and possesses a G+C content of 47.1% (Fig. 1). A putative oriIS sequence was identified 255 bp downstream of the stop codon of the transposase gene and shared 10 identical bp (5'ACTGATAGGAACTGTCATTTC3' [the identical bases are shown in boldface type and underlined]) with the 19-bp consensus sequence reported for the other ISCRs (5'XXGTATAGGAAGTTCAAACGC3') (10) (Fig. 1). A putative terIS sequence forming a hairpin structure (5'GGACCCGCACGCAGGGTGTT3' [the boldfaced and underlined nucleotides indicate the complementary nucleotides forming the hairpin structure]) was also evidenced 136 bp upstream of the transposase start codon. The transposase of ISCR20 shared an overall significant degree of identity with members of the IS91 family transposases especially in the five functional domains previously described (Fig. 2). A tyrosine residue at position 218, which has been shown to be critical for the transposase activity of IS91 and speculated to be also critical for those of the ISCR elements, was present in motif IV of the ISCR20 transposase.

The bla_{TLA-1} gene was followed by part of a gene encoding a methyl-accepting chemotaxis protein that shares 58% amino acid identity with that found in *Desulfovibrio magneticus* RS-1 (GenBank accession number YP_002952376). A group II intron, containing an *orf458* gene, was identified at the left extremity of the IS*CR20* element (Fig. 1). The *orf458* gene encoded a putative reverse transcriptase and maturase sharing 69% amino acid identity with those of *Vibrio cholerae* (GenBank accession number ABV21790). Analysis of the nucleotide sequence surrounding the bla_{TLA-1} gene did not yield other insertion sequences that could be part of a transposon or any class 1 integron.

^v Published ahead of print on 28 June 2010.

TABLE 1. Sequences of primers used for detection of the bla_{TLA-1} gene and its circular form with ISCR20 and for mapping the genetic environment

Primer name	Primer sequence	Position ^a
TLA-1F	TGTGTGCTTTTTGCTTCTGC	1
TLA-1R	GCTTCCGGTTTTATGAGCAA	2
TLA-1-5'-TR1	TACTGCTTTTTAAGCGAATCCG	3
TLA-1-5'-TR2	TTAGCCGCAAAAGCAGAAGC	4
TLA-1-5'-TR3	AAGCAAAAAGCACACAAAATGC	5
IS91-5'-TR1	ACAACCGACATTGACCGTGG	6
IS91-5'-TR4	CTAAAACATGCCAGTGCGGG	7
IS91-5'-TR5	AATGCTCTAGGCGGTCAAGG	8
IS91-5'-TR6	GACATGGCTTTTTGCTGGCG	9
IS91-5'-TR7	GATATTGCTTCGATGCAGCAC	10
TLA1-3'-TR1	CATTGCTGTTTATGTGTCGG	11
TLA1-3'-TR4	CATCGCGTCATTAATCCTGC	12
TLA1-3'-TR5	GATCGAACAGATTTCCGCCT	13
TLA1-3'-TR6	ACGAACAACAGAAAAGCGCC	14
IS91-3'extR	CTTTTGTAACAACCTTGCCC	15
TLA1-3'extF	GTATTATTACTCTGCCGAACGG	16
IS91-5'extR	TCTGAAGTACGAATGGCCAC	17
IS91-3'extF	ACCAAGATTATTGACTGGGC	18
ICR20F	CAAAGCTGATCGTGAAGCCC	19
Maturase F	AACATCATGCTCGACCCAC	20
Methyl R	CATCGAATTGAGCGAGTCG	21

 $^{\it a}$ Positions of the primers indicated in Fig. 1. All the primers were designed in this study.

A collection of 11 TLA-1-producing Enterobacteriaceae clinical strains (3 E. coli strains [including E. coli R170], 1 K. pneumoniae strain, and 7 Enterobacter cloacae strains) isolated from different samples (urine, blood, and tracheal fluid samples) from 11 patients hospitalized over a 10-year period since 1991 from several hospitals in Mexico City, Mexico, were retrospectively analyzed. These isolates were selected among clinical ESBL-producing enterobacterial isolates on the basis of two criteria: their ESBL profile and their production of a β-lactamase with an isoelectric point of 9.0. By DNA restriction with XbaI endonuclease, followed by pulsed-field gel electrophoresis (PFGE) analysis, we showed that most of the isolates were not clonally related, with four distinct E. cloacae PFGE types and three distinct E. coli PFGE types, suggesting a diffusion of bla_{TLA-1} -positive plasmids. The bla_{TLA-1} gene was transferred from seven of those distinct PFGE types to E. coli J53 by conjugation performed as described previously (6). Together with the expression of an ESBL phenotype, the E.

coli transconjugants were resistant to trimethoprim, sulfamethoxazole, and tetracycline, and some of these transconjugants were resistant to amikacin (n = 5) or gentamicin (n = 1). Plasmid analysis performed by the Kieser technique (4) allowed us to visualize several plasmids in all the clinical isolates but only a single plasmid from each *E. coli* transconjugant. Southern blot hybridization with a bla_{TLA-1} -specific probe indicated that this ESBL gene was located on a single plasmid, being of either ca. 110 or 150 kb. PCR-based replicon typing (PBRT) analysis performed on the *E. coli* transconjugants (2) showed that the plasmids carrying the bla_{TLA-1} gene belonged to the IncA/C, IncL/M, or IncN incompatibility group, corresponding to the 150-, 150-, and 110-kb plasmids, respectively, highlighting that three different plasmid types were at the origin of the diffusion of the bla_{TLA-1} gene.

Except for E. coli isolate R2915 and its transconjugant, PCR amplification identified in all cases the same ISCR20 element upstream of the bla_{TLA-1} gene. It has been suggested that the promoter of the bla_{TLA-1} gene was located 71 bp from the translational start site by researchers using a computer-based promoter analysis (8). However, by using a 5' rapid amplification of cDNA end PCR system (Invitrogen, Cergy-Pontoise, France) and primers TLA-1-5'-TR1 to TLA-1-5'-TR3 (Table 1), the initiation site of transcription of the bla_{TLA-1} gene was mapped from E. coli R170. Promoter sequences were located 144 bp upstream of the translational start codon, corresponding to the -35 promoter sequence TTGACA separated by the 17-bp distance from the -10 promoter sequence TTAAAG. This result showed that the bla_{TLA-1} gene expression was driven by the ISCR20 element. One pair of outward primers chosen at each end of the ISCR20 insertion sequence was used to detect the circular form of this novel ISCR associated with the bla_{TLA-1} gene. The amplifications performed using strain R170 and its transconjugant as templates failed.

Nineteen ISCR elements with weak structural relationship (18 to 96%) have been found to be associated with different families of antibiotic resistance genes. As demonstrated with the transposition model of the IS1294 elements (9), it is proposed that a transposase encoded by the ISCR has the ability to cotranspose DNA adjacent to its terminal terIS sequence through a rolling-circle (RC) transposition mechanism (10). It has been suggested that the mobilization by ISCR elements of adjacent DNA sequences likely involving sequences located

FIG. 1. Schematic representation of the sequences surrounding the *bla*_{TLA-1} gene in *E. coli* X170. The positions of primers shown in Table 1 are indicated by arrows; primers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21 are primers TLA-1F, TLA-1R, TLA-1-5'-TR1, TLA-1-5'-TR2, TLA-1-5'-TR3, IS91-5'-TR4, IS91-5'-TR5, IS91-5'-TR6, IS91-5'-TR7, TLA-1-3'-TR1, TLA-1-3'-TR4, TLA-1-3'-TR5, TLA-1-3'-TR6, IS91-3'-extR, TLA-1-3'extF, IS91-5'-extR, IS91-3'extF, ISCR20F, maturase F, and methyl R, respectively. Genes are shown by large arrows, and the transcription orientations of the genes are indicated. The putative origin of replication, ori*IS*, and termination of transposition, ter*IS*, of the IS*CR20* element are indicated by a solid black circle and a black hairpin, respectively.

		MOTIF I				MOTIF	' II	
IS <i>91</i>	38	IMACGTTLMCKTOWCCBSPICCHTKKVCFRCKS	SCPHCGVK	80	96	PWOHIVETIP	OYWSL 1	12
ISCR20	40	FTECADWSKGVARIRCED - CGHSYFRPFSCKVE	HLCPSCOOK	80	98	PHROEVETIP	ILRPY 1	14
ISCR1	62	LLCCGRLEYGFMRVRCED CHHERLVAFSCKR	GFCPSCGAR	102	119	PIROWVLSFP	OLRFL 1	35
ISCR2	61	FLCCGRLEHGFLRVRCES - CHAEHLVAFSCKR	GFCPSCGAR	101	118	PMROWVLSFP	OLRFL 1	34
ISCR3	53	YLRCGVLEHGFLRVVCEH - CRAERLVAFSCKK	GFCPSCGAR	93	110	PVROWVLSFP	PLRFL 1	26
ISCR5	53	YLRCGVLEHGFLRVVCEH CRAERLVAFSCKK	GFCPSCGAR	93	110	PVROWVLSFP	PLRFL 1	26
IS <i>CR</i> 7-tr			┠╺┠╺┠┨╴┠╶╸			PVRQWVLAVP	RLRYF	
IS <i>CR8</i>	60	YLECGIFAHGFARARCGD - CGHDYFVAFSCKG	GVCPSCITR	100	118	PVROWVLSVP	RLRYF 1	34
ISCR19	69	YLRCGVLEHGFLRVVCEH-CRAERLVAYSCKK	GLCPSCGAR	109	127	PVRQWVLSFP	PLRFL 1	43
		MOTIF III			MOTIF IV		MOTIF	v
IS <i>91</i>	139	VEPGIFTVIHTWGRDQQWHPHIHLSTTAGGVT	171 2	249	YFGSYLKK 2	257 310	RMVRYYGFL	5 320
ISCR20	144	LLCASVVSYQSFGEFARFHPHVHVLVLEGGFT	176 2	241 2	ALGOYVVR 2	249 301	QLVRRYGVY2	A 311
ISCR1	168	AQTGSVTLIQRFGSALNLNVHVHVLFLDGVYA	200 3	323 1	RLCRYISR 3	331 382	NLTRFHGVF2	A 392
ISCR2	167	AKTGAVTLIQRFGSALNLNVHFHULFLDGVYV	199 3	320 1	RLCRYISR 3	328 379	NLTRFHGVF2	A 389
ISCR3	159	AQCGAVTLIQRFGBALNLNIHFHMLWLDGVYV	191 3	315 1	KLCRYITR 3	323 374	HLTRFHGVF2	A 384
ISCR5	159	AQCGAVTLIQRFGSALDLNVHFHILWLDGVYD	191 3	315 1	KLCRYLTR 3	323 374	HLTRFHGVF2	A 384
ISCR7-tr		AHSGAVAFIHRFGSSLNEHVHFHCCVIDGVFE		1	RLLRYCAR		HRHRYYGVL	A
ISCR8	171	LHIGAIAFIHRFGSSLNEHVHFHVCVVDGVFE	203 2	289	RLLRYCAR 2	297 355	HRHRYFGVL	A 365
IS <i>CR19</i>	176	AQCGAVTLIQRFGSALNLNVHFHNLWLDGVYD	208 3	333 1	KLCRYITR 3	341 392	HLTRFHGVF	A 402

FIG. 2. Comparison of the sequence motifs of ISCR20 and those of the IS91 family transposases. The sequences (with their GenBank accession numbers shown in parentheses) shown are as follows: ISCR1 (FJ187822), ISCR2 (AY055428), ISCR3 group, including ISCR3, ISCR4, ISCR6, ISCR14, and ISCR16 (FJ183463), ISCR7 (AJ250371), ISCR8 (AF028594), ISCR15 (AM998375), and ISCR19 (EU503121). The five motifs found within IS91 group elements are indicated. The amino acid residues conserved in all IS91 group elements are shown boxed. Gaps introduced to maximize alignment are indicated by dashes.

only at their left extremities and the frequent observation of resistance genes bracketed by two copies of ISCR may be the consequence of secondary recombination events (10). This has been recently shown with the identification of the bla_{VEB-1a} ESBL gene flanked by two copies of ISCR2 in Acinetobacter baumannii (7). Here, no ISCR20 element was identified downstream of the *bla*_{TLA-1} gene, casting doubt on the involvement of that element in the mobilization process of the bla_{TLA-1} gene. Further work is needed to understand the process that gave rise to the mobilization of the bla_{TLA-1} gene.

Besides describing a novel ISCR element, our study indicates its involvement in the expression of the bla_{TLA-1} gene and its likely role in its acquisition. In addition, we showed here that the dissemination of the bla_{TLA-1} gene may have already occurred in Mexico and that it was related to different plasmid backbones. Further screening of TLA-1-positive isolates should be performed at least in neighboring countries, such as countries in Central America and in the southern United States. We showed a heterogeneity of plasmid backgrounds, supporting the hypothesis that the bla_{TLA-1} gene was very likely harbored by a mobile genetic structure.

Nucleotide sequence accession number. The nucleotide sequence reported in this study has been deposited in the GenBank database under accession number GU441460.

We thank M. Toleman for providing us with an ISCR number.

REFERENCES

- 1. Alcantar-Curiel, D., J. C. Tinoco, C. Gayosso, A. Carlos, C. Daza, M. C. Perez-Prado, L. Salcido, J. I. Santos, and C. M. Alpuche-Aranda. 2004. Nosocomial bacteremia and urinary tract infections caused by extendedspectrum β-lactamase-producing Klebsiella pneumoniae with plasmids carrying both SHV-5 and TLA-1 genes. Clin. Infect. Dis. 38:1067-1074.
- 2. Carattoli, A., A. Bertini, L. Villa, V. Falbo, K. L. Hopkins, and E. J. Threlfall. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63:219-228.
- 3. Gionechetti, F., P. Zucca, F. Gombac, C. Monti-Bragadin, C. Lagatolla, E. Tonin, E. Edalucci, L. A. Vitali, and L. Dolzani. 2008. Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Microb. Drug Resist. 14:93-99.
- 4. Kieser, T. 1984. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:19-36.
- 5. Naas, T., L. Poirel, and P. Nordmann. 2008. Minor extended-spectrum B-lactamases, Clin, Microbiol, Infect, 14(Suppl, 1):42-52.
- 6. Poirel, L., M. Guibert, S. Bellais, T. Naas, and P. Nordmann. 1999. Integronand carbenicillinase-mediated reduced susceptibility to amoxicillin-clavulanic acid in isolates of multidrug-resistant Salmonella enterica serotype typhimurium DT104 from French patients. Antimicrob. Agents Chemother. 43:1098–1104.
- 7. Poirel, L., P. D. Mugnier, M. A. Toleman, T. R. Walsh, M. J. Rapoport, A. Petroni, and P. Nordmann. 2009. ISCR2, another vehicle for blaveB gene acquisition. Antimicrob. Agents Chemother. 53:4940-4943.
- 8. Silva, J., C. Aguilar, G. Ayala, M. A. Estrada, U. Garza-Ramos, R. Lara-Lemus, and L. Ledezma. 2000. TLA-1: a new plasmid-mediated extendedspectrum β-lactamase from Escherichia coli. Antimicrob. Agents Chemother. 44:997-1003
- 9. Tavakoli, N., A. Comanducci, H. M. Dodd, M. C. Lett, B. Albiger, and P. Bennett. 2000. IS1294, a DNA element that transposes by RC transposition. Plasmid 44:66-84.
- 10. Toleman, M. A., P. M. Bennett, and T. R. Walsh. 2006. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70: 296-316.

This work was funded mostly by a grant from the INSERM (U914) and by grants from the European Community (TROCAR, HEALTH-F3-2008-223031) and from the Ministère de l'Education Nationale et de la Recherche (UPRES-EA3539), Université Paris XI, France.