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Riboflavin significantly enhanced the efficacy of simulated solar disinfection (SODIS) at 150 watts per
square meter (W m�2) against a variety of microorganisms, including Escherichia coli, Fusarium solani, Candida
albicans, and Acanthamoeba polyphaga trophozoites (>3 to 4 log10 after 2 to 6 h; P < 0.001). With A. polyphaga
cysts, the kill (3.5 log10 after 6 h) was obtained only in the presence of riboflavin and 250 W m�2 irradiance.

Solar disinfection (SODIS) is an established and proven
technique for the generation of safer drinking water (11). Wa-
ter is collected into transparent plastic polyethylene terephtha-
late (PET) bottles and placed in direct sunlight for 6 to 8 h
prior to consumption (14). The application of SODIS has been
shown to be a simple and cost-effective method for reducing
the incidence of gastrointestinal infection in communities
where potable water is not available (2–4). Under laboratory
conditions using simulated sunlight, SODIS has been shown to
inactivate pathogenic bacteria, fungi, viruses, and protozoa (6,
12, 15). Although SODIS is not fully understood, it is believed
to achieve microbial killing through a combination of DNA-
damaging effects of ultraviolet (UV) radiation and thermal
inactivation from solar heating (21).

The combination of UVA radiation and riboflavin (vitamin
B2) has recently been reported to have therapeutic application
in the treatment of bacterial and fungal ocular pathogens (13,
17) and has also been proposed as a method for decontami-
nating donor blood products prior to transfusion (1). In the
present study, we report that the addition of riboflavin signif-
icantly enhances the disinfectant efficacy of simulated SODIS
against bacterial, fungal, and protozoan pathogens.

Chemicals and media were obtained from Sigma (Dorset,
United Kingdom), Oxoid (Basingstoke, United Kingdom), and
BD (Oxford, United Kingdom). Pseudomonas aeruginosa
(ATCC 9027), Staphylococcus aureus (ATCC 6538), Bacillus
subtilis (ATCC 6633), Candida albicans (ATCC 10231), and
Fusarium solani (ATCC 36031) were obtained from ATCC
(through LGC Standards, United Kingdom). Escherichia coli
(JM101) was obtained in house, and the Legionella pneumo-
phila strain used was a recent environmental isolate.

B. subtilis spores were produced from culture on a previously
published defined sporulation medium (19). L. pneumophila
was grown on buffered charcoal-yeast extract agar (5). All

other bacteria were cultured on tryptone soy agar, and C.
albicans was cultured on Sabouraud dextrose agar as described
previously (9). Fusarium solani was cultured on potato dextrose
agar, and conidia were prepared as reported previously (7).
Acanthamoeba polyphaga (Ros) was isolated from an unpub-
lished keratitis case at Moorfields Eye Hospital, London,
United Kingdom, in 1991. Trophozoites were maintained and
cysts prepared as described previously (8, 18).

Assays were conducted in transparent 12-well tissue culture
microtiter plates with UV-transparent lids (Helena Bio-
sciences, United Kingdom). Test organisms (1 � 106/ml) were
suspended in 3 ml of one-quarter-strength Ringer’s solution or
natural freshwater (as pretreated water from a reservoir in
United Kingdom) with or without riboflavin (250 �M). The
plates were exposed to simulated sunlight at an optical output
irradiance of 150 watts per square meter (W m�2) delivered
from an HPR125 W quartz mercury arc lamp (Philips, Guild-
ford, United Kingdom). Optical irradiances were measured
using a calibrated broadband optical power meter (Melles
Griot, Netherlands). Test plates were maintained at 30°C by
partial submersion in a water bath.

At timed intervals for bacteria and fungi, the aliquots were
plated out by using a WASP spiral plater and colonies subse-
quently counted by using a ProtoCOL automated colony
counter (Don Whitley, West Yorkshire, United Kingdom).
Acanthamoeba trophozoite and cyst viabilities were deter-
mined as described previously (6). Statistical analysis was per-
formed using a one-way analysis of variance (ANOVA) of data
from triplicate experiments via the InStat statistical software
package (GraphPad, La Jolla, CA).

The efficacies of simulated sunlight at an optical output
irradiance of 150 W m�2 alone (SODIS) and in the presence of
250 �M riboflavin (SODIS-R) against the test organisms are
shown in Table 1. With the exception of B. subtilis spores and
A. polyphaga cysts, SODIS-R resulted in a significant increase
in microbial killing compared to SODIS alone (P � 0.001). In
most instances, SODIS-R achieved total inactivation by 2 h,
compared to 6 h for SODIS alone (Table 1). For F. solani, C.
albicans, ands A. polyphaga trophozoites, only SODIS-R
achieved a complete organism kill after 4 to 6 h (P � 0.001).
All control experiments in which the experiments were pro-
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tected from the light source showed no reduction in organism
viability over the time course (results not shown).

The highly resistant A. polyphaga cysts and B. subtilis spores
were unaffected by SODIS or SODIS-R at an optical irradi-
ance of 150 W m�2. However, a significant reduction in cyst
viability was observed at 6 h when the optical irradiance was
increased to 250 W m�2 for SODIS-R only (P � 0.001; Table
1). For spores, a kill was obtained only at 320 W m�2 after 6-h
exposure, and no difference between SODIS and SODIS-R
was observed (Table 1). Previously, we reported a �2-log kill
at 6 h for Acanthamoeba cysts by using SODIS at the higher
optical irradiance of 850 W m�2, compared to the 0.1-log10 kill
observed here using the lower intensity of 250 W m�2 or the
3.5-log10 kill with SODIS-R.

Inactivation experiments performed with Acanthamoeba
cysts and trophozoites suspended in natural freshwater gave
results comparable to those obtained with Ringer’s solution
(P � 0.05; Table 1). However, it is acknowledged that the
findings of this study are based on laboratory-grade water and
freshwater and that differences in water quality through
changes in turbidity, pH, and mineral composition may signif-

icantly affect the performance of SODIS (20). Accordingly,
further studies are indicated to evaluate the enhanced efficacy
of SODIS-R by using natural waters of varying composition in
the areas where SODIS is to be employed.

Previous studies with SODIS under laboratory conditions have
employed lamps delivering an optical irradiance of 850 W m�2

to reflect typical natural sunlight conditions (6, 11, 12, 15, 16).
Here, we used an optical irradiance of 150 to 320 W m�2 to
obtain slower organism inactivation and, hence, determine the
potential enhancing effect of riboflavin on SODIS.

In conclusion, this study has shown that the addition of
riboflavin significantly enhances the efficacy of simulated
SODIS against a range of microorganisms. The precise mech-
anism by which photoactivated riboflavin enhances antimicro-
bial activity is unknown, but studies have indicated that the
process may be due, in part, to the generation of singlet oxy-
gen, H2O2, superoxide, and hydroxyl free radicals (10). Further
studies are warranted to assess the potential benefits from
riboflavin-enhanced SODIS in reducing the incidence of gas-
trointestinal infection in communities where potable water is
not available.

TABLE 1. Efficacies of simulated SODIS for 6 h alone and with 250 �M riboflavin (SODIS-R)

Organism Conditiona
Log10 reduction in viability at indicated h of exposureb

1 2 4 6

E. coli SODIS 0.0 � 0.0 0.2 � 0.1 5.7 � 0.0 5.7 � 0.0
SODIS-R 1.1 � 0.0 5.7 � 0.0 5.7 � 0.0 5.7 � 0.0

L. pneumophila SODIS 0.7 � 0.2 1.3 � 0.3 4.8 � 0.2 4.8 � 0.2
SODIS-R 4.4 � 0.0 4.4 � 0.0 4.4 � 0.0 4.4 � 0.0

P. aeruginosa SODIS 0.7 � 0.0 1.8 � 0.0 4.9 � 0.0 4.9 � 0.0
SODIS-R 5.0 � 0.0 5.0 � 0.0 5.0 � 0.0 5.0 � 0.0

S. aureus SODIS 0.0 � 0.0 0.0 � 0.0 6.2 � 0.0 6.2 � 0.0
SODIS-R 0.2 � 0.1 6.3 � 0.0 6.3 � 0.0 6.3 � 0.0

C. albicans SODIS 0.2 � 0.0 0.4 � 0.1 0.5 � 0.1 1.0 � 0.1
SODIS-R 0.1 � 0.0 0.7 � 0.1 5.3 � 0.0 5.3 � 0.0

F. solani conidia SODIS 0.2 � 0.1 0.3 � 0.0 0.2 � 0.0 0.7 � 0.1
SODIS-R 0.3 � 0.1 0.8 � 0.1 1.3 � 0.1 4.4 � 0.0

B. subtilis spores SODIS 0.3 � 0.0 0.2 � 0.0 0.0 � 0.0 0.1 � 0.0
SODIS-R 0.1 � 0.1 0.2 � 0.1 0.3 � 0.3 0.1 � 0.0
SODIS (250 W m�2) 0.1 � 0.0 0.1 � 0.1 0.1 � 0.1 0.0 � 0.0
SODIS-R (250 W m�2) 0.0 � 0.0 0.0 � 0.0 0.2 � 0.0 0.4 � 0.0
SODIS (320 W m�2) 0.1 � 0.1 0.1 � 0.0 0.0 � 0.1 4.3 � 0.0
SODIS-R (320 W m�2) 0.1 � 0.0 0.1 � 0.1 0.9 � 0.0 4.3 � 0.0

A. polyphaga trophozoites SODIS 0.4 � 0.2 0.6 � 0.1 0.6 � 0.2 0.4 � 0.1
SODIS-R 0.3 � 0.1 1.3 � 0.1 2.3 � 0.4 3.1 � 0.2
SODIS, naturalc 0.3 � 0.1 0.4 � 0.1 0.5 � 0.2 0.3 � 0.2
SODIS-R, naturalc 0.2 � 0.1 1.0 � 0.2 2.2 � 0.3 2.9 � 0.3

A. polyphaga cysts SODIS 0.4 � 0.1 0.1 � 0.3 0.3 � 0.1 0.4 � 0.2
SODIS-R 0.4 � 0.2 0.3 � 0.2 0.5 � 0.1 0.8 � 0.3
SODIS (250 W m�2) 0.0 � 0.1 0.2 � 0.3 0.2 � 0.1 0.1 � 0.2
SODIS-R (250 W m�2) 0.4 � 0.2 0.3 � 0.2 0.8 � 0.1 3.5 � 0.3
SODIS (250 W m�2), naturalc 0.0 � 0.3 0.2 � 0.1 0.1 � 0.1 0.2 � 0.1
SODIS-R (250 W m�2), naturalc 0.1 � 0.1 0.2 � 0.2 0.6 � 0.1 3.4 � 0.2

a Conditions are at an intensity of 150 W m�2 unless otherwise indicated.
b The values reported are means � standard errors of the means from triplicate experiments.
c Additional experiments for this condition were performed using natural freshwater.
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