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SUMMARY
The normal aging process is a complex phenomenon associated with physiological alterations in
the function of cells and organs over time. Although an attractive candidate for mediating
transcriptional dysregulation, the contribution of epigenetic dysregulation to these progressive
changes in cellular physiology remains unclear. In this study, we employed the genome-wide
HELP assay to define patterns of cytosine methylation throughout the rat genome, and the LUMA
assay to measure global levels of DNA methylation in the same samples. We studied both liver
and visceral adipose tissue, and demonstrated significant differences in DNA methylation with age
at >5% of sites analyzed. Furthermore, we showed that epigenetic dysregulation with age is a
highly tissue-dependent phenomenon. The most distinctive loci were located at intergenic
sequences and conserved non-coding elements, and not at promoters nor at CG-dinucleotide dense
loci. Despite this, we found that there was a subset of genes at which cytosine methylation and
gene expression changes were concordant. Finally, we demonstrated that changes in methylation
occur consistently near genes that are involved in metabolism and metabolic regulation,
implicating their potential role in the pathogenesis of age-related diseases. We conclude that
different patterns of epigenetic dysregulation occur in each tissue over time and may cause some
of the physiological changes associated with normal aging.
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INTRODUCTION
Aging is a complex phenomenon characterized by progressive loss of tissue homeostasis
with decline of normal cellular functions and capacity for replication (Van Zant & Liang
2003; Chen 2004; Pelicci 2004; Sharpless & DePinho 2004; Campisi 2005). The liver
exhibits age-dependent decay in overall structure, regenerative capacity, and function
(Jackson et al. 1988; Schmucker 2005), while visceral fat depots expand with increasing age
and contribute to the pathogenesis of late-onset diseases such as diabetes, dyslipidemias, and
cardiovascular disease (Hayashi et al. 2003; Nieves et al. 2003; Carr et al. 2004; Huffman &
Barzilai 2009). On both a tissue-specific and whole-organism level, aging is associated with
accumulated genomic damage over time accompanied by progressive physiological decline
(de Boer et al. 2002; Maslov & Vijg 2009).

Variation in an individual’s phenotypic age and lifespan is due in part to genetic influences
(Gurland et al. 2004; Karasik et al. 2004; vB Hjelmborg et al. 2006), but epigenetics and the
environment play major roles in determining physiological changes over a lifetime (Gartner
1990; Kennedy 2006; Whitelaw & Whitelaw 2006; Ordovas & Shen 2008; Vogt et al.
2008). Monozygotic twins show inherent epigenetic variability (Kaminsky et al. 2009) that
increases with age (Fraga et al. 2005), a finding supported by longitudinal studies of DNA
methylation in single individuals (Bjornsson et al. 2008). In animals, DNA methylation
differences are acquired in multiple tissues with age (Golbus et al. 1990; Ahuja et al. 1998;
Peng et al. 2001; Kwabi-Addo et al. 2007). Moreover, epigenetic dysregulation occurs in a
locus-specific manner, with some hepatic genes showing age-dependent DNA
hypermethylation, and other loci exhibiting no changes with age (Akintola et al. 2008; Jiang
et al. 2008). It is now well-established that different tissues have specific patterns of
epigenetic regulation (Song et al. 2005; Eckhardt et al. 2006b; Khulan et al. 2006; Lister et
al. 2008; Yagi et al. 2008; Song et al. 2009), and there is some evidence that there exist
genes whose methylation patterns do not change with age in liver but exhibit significant
differences in methylation with age in other cell types, raising the possibility of a tissue-
specific effect of age on the epigenome (Akintola et al. 2008).

In this study, we applied an epigenome-wide approach (the HELP assay (Khulan et al.
2006)) to interrogate DNA methylation patterns in aging F344*BN rats, and investigated
whether significant changes in methylation status arise with increasing age. We used two
tissues with distinct metabolic and cell growth characteristics (liver and visceral adipose
tissue) to explore whether tissue-specific dysregulation of the epigenome occurs with age.
We wanted to explore whether such changes were global and random, or whether certain
loci emerged with specific patterns of hyper- or hypomethylation with age, and whether the
patterns observed were globally or locally concordant between tissues.

RESULTS
Tissue-Specific Differences in DNA Methylation with Age

We performed a genome-wide analysis of cytosine methylation at almost 40,000 unique
sites using the HELP assay (Khulan et al. 2006). We studied cytosine methylation in liver
and adipose tissue isolated from young and old animals. Our interest in adipose tissue was
prompted by our recent demonstration that removal of an adipose fat pad in young animals
increases their longevity by ~30%, suggesting that the biology of adipose tissue maybe
linked to aging, and could be in part the the explanation of how caloric restriction extends
life (Muzumdar et al. 2008). Adipocytes have, however, a limited capacity to divide, so for
comparison we chose liver as being representative of a more actively-dividing tissue that has
been extensively studied for its changes with aging. We created four experimental groups:
young liver (n=6), young adipose tissue (n=3), old liver (n=5), old adipose tissue (n=3). We
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confirmed overall experimental quality for each sample as described previously (Thompson
et al. 2008). To detect global patterns of epigenomic change occurring with age, we
compared one thousand randomly selected loci to generate a representative heatmap. This
unsupervised clustering approach demonstrated that DNA methylation is globally
comparable across all samples and tissues (not shown). Tissue-specific differences
distinguishing liver and adipose tissue were present at ~5.5% of loci overall (using a
Bonferroni correction for multiple testing with α=0.05).

Each of the first three figures presents the results and analysis in complementary ways, with
heatmaps for visualizing patterns of global DNA methylation (Figure 1), volcano plots for
visualization of the statistical results (Figure 2) and the discordance from expected results
demonstrated by a significance analysis of microarrays (SAM) study (Figure 3). We used
the top 5% of loci at which tissue-specific differences in cytosine methylation had been
identified for a subsequent unsupervised clustering analysis, revealing not only the clear
differences between liver and adipose tissue but also age-related changes that appear to be
more marked in liver than in fat (Figure 1A). As a complementary approach, we identified
the loci at which the most marked changes in methylation are occurring with age and
performed an unsupervised clustering analysis, again showing that the degree of difference
of cytosine methylation due to tissue type exceeds that due to aging (Figure 1B).

The distinct tissue-specific patterns observed using unsupervised clustering analysis of
HELP data prompted us to investigate age-related differences in fat and liver separately. In
Figure 2 we show the fat and liver-specific distributions of age-related methylation
differences, respectively, along with the degree of significance associated with each of these
changes (volcano plots). At stringent thresholds determining the most widely divergent and
highly significant loci in each tissue, we find that liver has 50% more highly significant age-
associated changes than visceral adipose tissue (378 compared with 240 sites, all of which
are combined and shown as a heatmap in Figure 1B). Moreover, the degree, extent, and
significance of age-related differences in liver are all much greater than the differences
observed in perinephric fat (Figure 2), demonstrating that age preferentially induces
epigenomic dysregulation in the liver with relatively fewer differences observed in adipose
tissue. We confirmed these findings using the SAM approach (Tusher et al. 2001) (Figure
3). We estimate that the top 378 differentially methylated sites in liver (δ=0.688) are
associated with a false discovery rate (FDR) less than 0.1%, indicating it is unlikely that any
of these changes occur by chance alone, whereas the differences observed in visceral fat
(240 identified with δ=0.496) are not comparably robust (FDR of 46.1%). Interestingly, the
majority of epigenetic dysregulation in the liver skewed towards age-dependent
hypermethylation (Figures 1B, 2A, and 3A).

We then asked whether any of the liver-specific and fat-specific differentially methylated
loci were consistently dysregulated with age in both tissues. The large majority of changes
appeared to be unique to each tissue (Figure 1B), with only five loci that were identified as
differentially methylated in both tissues (Figure 2). However, contrary to any expectation
that these sites may change methylation status concordantly, four out of the five loci become
hypomethylated in fat but hypermethylated in the liver with increasing age (Figure 2, blue
points). This observation is consistent with the overall tendency towards age-related
hypermethylation in the liver (Figure 1B, 2A, and 3A).

Global Levels of DNA Methylation by Luminometric Methylation Assay
Using HELP, we demonstrated that liver exhibits global hypermethylation with age at the
unique sequences interrogated using the microarray approach (Figure 2A), while adipose
tissue shows no global tendency towards either hyper- or hypomethylation (Figure 2B). To
test whether these changes reflect those of the genome as a whole, we measured global
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levels of DNA methylation in both tissues from young (age 3.2 ± 0.2 months) and old (age
18 months) F344*BN rats, a genetically homogeneous F1 hybrid strain, using the
Luminometric Methylation Analysis (LUMA) assay (Karimi et al. 2006). As with HELP,
this analysis revealed tissue-specific differences in methylation, with increased methylation
in liver compared with visceral adipose tissue (p=0.09) (Figure 4). We estimated the percent
of methylated HpaII sites by comparison of the data with corresponding MspI data, and
found that 58.7±1.4% and 48.0±7.3% (± SEM) of HpaII sites were methylated in liver and
fat, respectively. No aging-related effect on global DNA methylation levels was shown in
adipose tissue, but we observed a small degree of hypomethylation in liver with age
(p=0.03) (Figure 4). As LUMA should be more influenced by methylation status at
repetitive elements than HELP (which predominantly samples unique sequences), the
hypomethylation we observe is consistent with the demethylation and activation of specific
repetitive elements seen in other aging rodents and in humans (Barbot et al. 2002; Bollati et
al. 2009). The LUMA data therefore indicate that cytosine methylation changes in aging
liver occur distinctively in different genomic sequence contexts.

Genomic Distributions of Cytosine Methylation
We therefore tested how our cytosine methylation data from the HELP experiments
distributed by annotated DNA sequence features, studying both liver and adipose tissue at
young and old timepoints. The data were partitioned into five non-overlapping subsets: 1)
consistently hypomethylated sites in all animals; 2) consistently hypermethylated sites; 3)
loci with tissue-specific differences in methylation; 4) loci with age-associated differences in
methylation in liver; and 5) loci with age-associated differences in methylation in adipose
tissue. The number of whole and partial sequence overlaps with CpG islands, CG clusters
(Glass et al. 2007), conserved elements, repeat-masked sequences, gene bodies, and
promoters (defined as the proximal 10 kb sequence upstream of RefSeq transcription start
sites) were measured for each of these sets of loci (Supp. Table 2). The probability that
each observed frequency could arise by random sampling of an equivalent number of loci
from the array was calculated using the tailed hypergeometric distribution function (Supp.
Table 2) (Johnson et al. 1992).

First we investigated the consistent patterns of cytosine methylation in both liver and
adipose tissue, focusing on sites that are hypo- or hypermethylated in all samples. The
epigenomic patterns we observed for these loci are concordant with prior expectations, with
enrichment of hypomethylated sequences at CpG islands and CG clusters (Fig. 5A), a direct
agreement with the generally hypomethylated nature of these CG-dense elements (Bird et al.
1985;Glass et al. 2007). Additionally, hypomethylated loci were enriched at promoters and
conserved sequences, as well as in gene bodies (Fig. 5A). Repetitive elements by contrast
tended to be hypermethylated (Supp. Table 2), as were intergenic sequences (Fig. 5A).
Overall, these methylation patterns are typical of normal primary tissues from eutherian
mammals.

We next investigated how these normal patterns of cytosine methylation differ between
tissues. When we studied ~1,000 of the loci most distinctively methylated between liver and
adipose tissue, (p<0.0001 and |liver – adipose| > 1.5), we found them to be highly depleted
at CpG islands, CG clusters, and to a lesser extent, promoters and conserved sequences, but
most strikingly enriched at gene bodies (Fig. 5A), which may be the consequence of
transcriptional differences in gene expression between the two tissues (Zilberman et al.
2007;Ball et al. 2009).

Finally, we tested where age-related changes in methylation were occurring in each tissue.
Overall, liver generated more significant data than adipose tissue, with a significant
enrichment in dysregulated loci at intergenic and conserved sequences, and under-
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representation of dysregulated loci at promoters and CG-dense sequences (Fig. 5B).
Similarly, conserved non-coding elements tend to be enriched among age-related differences
in methylation in both tissues (Fig. 5B). The cytosine methylation data from these analyses
are provided as a UCSC genome browser track available as an open-access resource at
http://greallylab.aecom.yu.edu/ratAgeing/, and through the GEO database (accession
number GSE17332).

Quantitative Validation of DNA Methylation States
We confirmed our HELP results with a quantitative validation approach, bisulphite
MassArray (Ehrich et al. 2005), testing four loci representing pairs of constitutively-
hypomethylated and constitutively-methylated sites identified by the HELP assay, and three
loci at which tissue-specific differences in methylation were observed, two of which were
hypomethylated and one of which was hypermethylated in liver compared to adipose tissue.
Supplementary Figure 1 shows the expected inverse correlation between methylation values
determined independently for these loci by HELP and MassArray, confirming our ability to
discriminate methylation status in these samples, defining our hypermethylated category as
greater than approximately 60% methylation, and hypomethylation as lower values.

Transcriptional profiling reveals concordant changes in gene expression at epigenetically-
dysregulated loci

Gene expression studies were performed in liver tissue using a long oligonucleotide
microarray approach, identifying genes with robust differences in expression with age. Our
question was whether the epigenetic changes we observed, frequently located at non-
promoter regions, were associated with changes in gene expression, implying a functional
consequence to the underlying epigenetic dysregulation. We therefore compared loci with
the most robust changes in cytosine methylation to corresponding gene expression
differences with age. As demonstrated in Figure 6, a number of loci (31) exhibit robust
changes in both DNA methylation and gene expression. A detailed description of these loci
can be found in Table 1.

Molecular Interaction Network Analysis of Genes Associated with Age-Related Epigenetic
Dysregulation

Using Ingenuity Pathway Analysis (IPA) software (Redwood City, CA), we carried out a
network analysis to investigate whether genes associated with age-related epigenetic
dysregulation shared any common functional roles or relationships. We linked loci with age-
associated dysregulation of cytosine methylation to RefSeq genes if they mapped within 10
kb upstream of the transcription start site or anywhere within the body of the gene. We
performed a filtered Ingenuity Pathway Analysis (IPA) on 102 genes (exclusively
representing changes identified in liver, p<0.0000001) from an input list of 65,000 genes
(p<0.37842) which provided a dataset-specific context for the enrichment analysis. Twenty-
seven of the 102 input genes were removed from consideration as IPA possessed insufficient
information to include them in the network analysis. The remaining 75 genes (Supp. Table
3) associated most strongly with a functional network relevant to metabolism (Figure 7).
Among the nodes central to this network are Hnf4a and Leptin, the first being highly
important in liver development and function (Duncan et al. 1994;Odom et al. 2004;Rhee et
al. 2006), and the second an important adipokine mediator between visceral fat and liver
metabolism (Szanto & Kahn 2000;Fishman et al. 2007). IPA further revealed that these 75
genes that have the most consistent epigenetic dysregulation with age are significantly
enriched for functions in lipid metabolism (p<0.0001) and metabolic disease (p<0.0001).
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DISCUSSION
We investigated the effects of age on cytosine methylation throughout the genome using a
genome-wide assay of a type not previously exploited in the study of aging metabolically-
active tissues such as liver and visceral fat. This study represents one of the first such
genome-wide studies of the aging epigenome, and is the first to demonstrate not only
genome-wide but also locus-specific differences in cytosine methylation in both liver and
adipose tissue. We find that normal aging in genetically identical rats exposed to the same
environment throughout life causes consistent tissue-specific dysregulation of cytosine
methylation, and that these changes skew globally towards hypermethylation of unique
sequences in the liver. This increased methylation is accompanied by hypomethylation at a
smaller set of loci, and less pronounced effects in perinephric visceral fat. The epigenomic
dysregulation appears to be non-random in terms of genomic sequence context,
preferentially affecting specific loci and genomic compartments such as intergenic and
conserved sequences. These epigenetic changes may be adaptive and secondary to other
alterations in cellular physiology, in which case they represent potential biomarkers of the
aging process and indicators of the heterogeneity of the pathophysiology of aging between
tissues. However, as many of these changes occur in proximity to genes with well-
established roles in metabolism and metabolic dysregulation, epigenomic dysregulation is a
clear candidate for being a primary mediator of the pathogenesis of age-related metabolic
disease.

The extremely limited overlap that we observe between liver- and fat-specific epigenetic
dysregulation is fundamentally due to the limited epigenetic variability observed in fat with
age (Figures 3, 4), and results in an extremely small number of loci that are dysregulated in
both tissues with age. Identification of loci that are jointly dysregulated in different tissues
with age may suggest a common age-response mechanism operating in both tissues, but our
results do little to shed light on such a mechanism with such a small number of loci involved
and the high false-positive rate in adipose tissue in the current study. Furthermore, the
preponderance of unique changes in each tissue suggests that a common mechanism might
explain only a part of the story. Instead, we hypothesize that varying tissue environments
with age, as well as varying mitotic activity and cellular susceptibilities to accumulated
damage, are the hallmarks of tissue-specific epigenomic dysregulation with age.

Why liver as opposed to fat should be subject to large epigenomic changes (Figures 3, 4) is
somewhat counterintuitive, given that visceral fat is centrally involved in the pathogenesis of
age-related diseases (Muzumdar et al. 2008), and our prior expectation was that adipose
tissue would have greater potential for epigenetic dysregulation due to the proximity of the
nuclear DNA in adipocytes to free fatty acid flux and the accumulation of tissue
macrophages, a phenomenon typical of aging (Einstein et al. 2008). However, the tissue-
specific epigenetic differences may be related to the distinct cell proliferation properties of
the tissues, analogous to the distinct tissue-specific DNA mutational rates previously
observed in brain and small intestine (Busuttil et al. 2007). As liver is a relatively highly
proliferative tissue type (Duncan et al. 2009), it may be more susceptible than adipose tissue
to the accumulation of mutations, not just those of DNA but also those of epigenetic
organization, or ‘epimutations’. DNA replication involves the propagation of cytosine
methylation patterns to daughter chromatids, with restoration of symmetrical methylation
from an initially hemimethylated state by DNA methyltransferase 1 (DNMT1), thus
preserving the pattern of methylation present in the parental cell. However, DNMT1 has
measurable de novo methylation activity and an estimated error rate of 0.3–5% (Vilkaitis et
al. 2005; Goyal et al. 2006), thus epimutations are likely to occur with each cell division. A
prior study has indicated that less mitotically-active cell types may be less prone to age-
associated changes in cytosine methylation (Chu et al. 2007), results concordant with our
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data. The age-related epigenomic dysregulation that arises in a non-dividing cell type such
as mature adipocytes (Neese et al. 2002) is more likely to reflect changes that occur within a
single cell’s lifespan such as DNA repair-mediated loss of methylation (Barreto et al. 2007;
Meulle et al. 2008).

While the locus-specific changes we observed are potentially valuable insights into the
pathophysiology of aging, it is the striking tissue-specificity we observe that represents the
most novel finding of our study. Because of these findings, we propose that epigenomic
dysregulation in aging should be studied in a tissue-specific context, and that the lessons
learned from one tissue cannot necessarily be applied to other tissues. The failure of a large-
scale, quantitative study of cytosine methylation to find changes in DNA methylation with
age (Eckhardt et al. 2006a) may be due to their measurement of age-related differences as
average values across the many loci and tissue types they studied, whereas our results
indicate that a locus and cell type-specific approach to the same dataset may yield different
results. The changes we observe in our study are unlikely to be due to a random pattern of
loss of epigenetic regulation, as might be concluded from a study of age effects on the
epigenomes of twins (Fraga et al. 2005). Indeed, with an estimated false discovery rate of
about 2.5% in liver and 21.3% in fat (δ=0.5), the epigenetic dysregulation we observe with
age is likely due to reproducible, non-random biological differences.

The changes in methylation that we observed included but were not limited to promoter-
proximal loci, making it difficult to predict whether these changes would have any
consequences in terms of local transcription. We addressed this question by performing gene
expression microarray studies on young and old rat livers, demonstrating a subset of loci at
which changes were concordant. The role of intergenic loci in transcriptional regulation
remains difficult to assess, but our data indicate that at least some such loci are potentially
cis-reguatory and involved in cellular aging. Studies of the aging epigenome should not
therefore be limited to promoter regions but should include other genomic contexts also.

We have to consider the possibility that fat- and more notably liver-specific dysregulation
could be a product of a controlled tissue-specific response to accumulated stress with aging.
This idea is supported by the results from our ontological and pathway analyses, which
showed the enrichment of physiologically relevant loci in functional networks associated
with metabolism and age-related diseases. The extremely limited overlap that we observe
between liver- and fat-specific epigenetic dysregulation (Figure 3) suggests that each tissue
responds differently to the damage and physiological insults that accumulate with age, with
the potential additional contribution of distinct cellular environments during the aging
process. We hypothesize that a combination of differences in mitotic activity, tissue
environments and cellular susceptibilities to accumulated damage, define the reasons for cell
type-specific differences in epigenomic dysregulation with age.

While this study provides us with new insights into the contribution of epigenetic
dysregulation in aging, many questions remain unanswered. In prioritizing future directions,
it is clear that the study in isolation of one epigenetic regulatory mechanism such as cytosine
methylation is of less value than integrative studies of chromatin organization and gene
expression, with orthogonal, quantitative single-locus studies to validate results at individual
loci. Our results highlight the importance of testing a range of tissues and taking into
account their replicative characteristics when assessing results. A focus on stem cells for
analysis has the potential for greater insights than using differentiated cells, but carries the
inherent problem of limited cell numbers for these genome-wide assays.

We conclude that the epigenomic dysregulation associated with aging is non-random and
highly tissue-specific. Genome-wide assays focused on promoters or CG dinucleotide-dense
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regions would have failed to identify many of the changes we have found in this study,
emphasizing the need for unbiased studies of the genome when exploring the role of
cytosine methylation and the many other regulators of the epigenome in aging. More
comprehensive studies of the epigenome integrated with transcriptomic assays performed on
individual tissues has significant potential for identifying genes and pathways that are the
targets for modification with aging, and thus insights into this aspect of the pathophysiology
of aging in humans.

EXPERIMENTAL PROCEDURES
Animals

Young (3 months old, n=6) and old (18 months old, n=6) male Fischer 344/Brown Norway
F1 Hybrid (F33XBN) rats (Harlan Worldwide, Somerville, NJ) were housed in individual
cages and were subjected to a standard light (6:00 a.m. to 6:00 p.m)-dark (6:00 p.m to 6:00
a.m.) cycle. All rats were fed ad libitum using regular rat chow that consisted of 64%
carbohydrate, 30% protein, and 6% fat with a physiological fuel value of 3.3 kcal/g chow.
They were chronically catheterized 1 week before the study, recovered and were euthanized
rapidly (by pentobarbital sodium, 60 mg/kg body weight intravenously) when unstressed
and conscious in order to avoid prolonged severe stress that might potentially affect
epigenetic characteristics (Barzilai et al. 1998). The abdomen was quickly opened, and
adipose and liver tissues were freeze-clamped in situ with aluminum tongs pre-cooled in
liquid nitrogen (Rossetti & Giaccari 1990). The study protocol was reviewed and approved
by the Animal Care and Use Committee of the Albert Einstein College of Medicine.

HELP Assay
HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assays were performed
as described previously (Khulan et al. 2006). High molecular weight genomic DNA was
isolated from liver and perinephric fat tissues of young and old rats, digested to completion
by HpaII and by MspI separately, and then amplified by ligation-mediated PCR (LM-PCR).
Following PCR, the HpaII and MspI representations were labeled with different
fluorophores using random priming and were cohybridized on a customized genomic
microarray representing HpaII/MspI fragments of 200–2,000 bp in unique sequence. This
microarray was designed specifically to target the 5’ regions of all known RefSeq genes in
the rat genome as well as imprinted regions and a number of gene bodies, until the number
of probes on the array was filled to the ~380,000 capacity.

HELP Microarray Data Analysis
Microarray data were pre-processed and subject to quality control and quantile
normalization as previously described (Thompson et al. 2008). HpaII/MspI ratio values were
subsequently normalized by RMA (Irizarry et al. 2003) for each of four distinct subgroups
of rats/tissues: young liver, young fat, old liver, old fat (n=6, n=3, n=5, and n=3,
respectively). This extra analytical step was used for inter-array normalization and to reduce
within-group variability, ensuring a more conservative approach to interpretation of our
data. Changes in methylation state were defined using a HpaII/MspI ratio threshold of zero,
where methylated loci and hypomethylated loci had ratio values less than zero and greater
than zero, respectively.

MassArray Validation
Target regions were amplified by PCR using the primers and cycling conditions described in
Supplementary Table 1. Primers were selected with MethPrimer
(http://www.urogene.org/methprimer/) using parameters as follows: 250–450 bp amplicon
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size, 56–60°C Tm, 24–30 bp length, and ≥1 CG in product. 50 µl PCR reactions were
carried out using the Roche FastStart High Fidelity Kit. In cases where products showed
primer-dimer or other contaminants, the bands of appropriate predicted size were excised
from 2% agarose gels, purified by the Qiagen Gel Extraction Kit, and eluted with 1X Roche
FastStart High Fidelity Reaction Buffer (+MgCl2). All PCR products (5 µl) were aliquotted
onto 384-well microtiter plates and were treated with 2 µl Shrimp Alkaline Phosphatase
(SAP) mix for 20 minutes at 37°C to dephosphorylate unincorporated dNTPs. Microtiter
plates were processed by the MassARRAY Matrix Liquid Handler. A 2 µl volume of each
SAP-treated sample was then heat-inactivated at 85°C for 5 minutes and subsequently
incubated for 3 hours at 37°C with 5µl of Transcleave mix (T or C Cleavage Mix) for
concurrent in vitro transcription and base-specific cleavage. Samples were transferred onto
the spectroCHIP array by nanodispensation calibrated to ambient temperature and humidity,
and analysis with the Sequenom MALDI-TOF MS Compact Unit following 4-point
calibration with oligonucleotides of different mass provided in the Sequenom kit. Matched
peak data were exported using EpiTYPER software and analyzed for quality and single
nucleotide polymorphisms according to analytical tools that we have developed (Thompson
et al. 2009).

Luminometric Methylation Assays
This protocol was adapted from that previously described (Karimi et al. 2006). Genomic
DNA (1 µg) was cleaved with HpaII + EcoRI or MspI + EcoRI (5 µl each enzyme) in two
separate 200 µl reactions containing 20 µl NEB buffers 1 and 2, respectively. The reactions
were incubated at 37°C overnight, and purified by phenol-chloroform extraction and
isopropanol precipitation, resuspended in 20 µl H2O. 20 µl of annealing buffer (20 mM Tris-
acetate, 2 mM Mg-acetate pH 7.6) was added to the purified cleavage reactions, and samples
were placed in a PSQ96™MA system (Biotage AB, Uppsala, Sweden). The instrument was
programmed to add dNTPs in twelve consecutive steps: 1) dTTP, 2) dGTP, 3) dATP, 4)
dCTP, 5) dATP, 6) dCTP, 7) dTTP, 8) dGTP, 9) dTTP, 10) dGTP, 11) dATP, and 12)
dCTP. Peak heights were calculated using the PSQ96™A software. The HpaII/EcoRI and
MspI/EcoRI ratios were calculated for each respective reaction as follows:

Gene expression microarray assays and analysis
Total RNA isolated from livers of rats of 2 weeks and 10.5 months of age was isolated and
purified using Qiagen RNAEasy kit. The RNA was converted to cDNA and to dsDNA using
the Superscript Double Stranded cDNA kit. These samples were labeled in our institutional
Epigenomics Shared Facility using the Roche-Nimblegen One Color DNA labeling kit and
co-hybridised in pairs to a rat gene expression microarray (Roche-Nimblegen design 090901
Rat HX12 expr HX12) which represents 26,419 genes with five long (60 nt)
oligonucleotides per gene. The microarrays were scanned and analyzed using the Nimblegen
Hybridization System. Genes showing robust differences in expression with age were
identified following RMA normalization, and classified as those genes exhibiting a >2.5 SD
increase or decrease in age-related expression beyond the average difference observed with
age. Integration of this dataset with the HELP microarray dataset was performed by a
genome-wide mapping approach, wherein all methylation loci found between 50 kb
upstream and 50 kb downstream of the gene body were linked to the containing gene.
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Ingenuity Pathway Analysis
The most significantly differentially methylated loci were mapped to RefSeq gene identifiers
by chromosomal position (i.e. within 10 kb upstream of the transcription start site, or
overlapping the gene body). The list of RefSeq identifiers was then uploaded to the
Ingenuity Pathway Analysis program (Redwood City, CA), enabling exploration of ontology
and molecular interaction networks. Each uploaded gene identifier was mapped to its
corresponding gene object (focus genes) in the Ingenuity Pathways Knowledge Base. Core
networks were constructed for both direct and indirect interactions using default parameters,
and the focus genes with the highest connectivity to other focus genes were selected as seed
elements for network generation. New focus genes with high specific connectivity (i.e.
overlap between the initialized network and gene’s immediate connections) were added to
the growing network until the network reached a default size of 35 nodes. Non-focus genes
(i.e. those that were not among our differentially methylated input list) that contained a
maximum number of links to the growing network were also incorporated.

The ranking score for each network was then computed by a right-tailed Fisher's exact test
as the negative log of the probability that the number of focus genes in the network is not
due to random chance. Similarly, significances for functional enrichment of specific genes
were also determined by the right-tailed Fisher’s exact test, using all input genes as a
reference set.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heatmap representation of global tissue-specific differences in DNA methylation in
young and old animals
(A) A heatmap of the top 5% of tissue-specific differences is shown, with each row
corresponding to data from a single locus, and each column representing an organ sample
(ADIPOSE and LIVER) obtained from a single rat (several young next to several old rats for
each tissue). The branching dendrogram at the top represents the result of unsupervised
clustering using these tissue-specific sites. Liver and adipose tissue show clear differences in
methylation, with hyper- and hypomethylation shown on a continuum from red to yellow,
respectively. While the profile of older adipose tissue is relatively similar to young, cytosine
methylation in older liver tissue diverges more strongly from livers of young rats. (B) This
panel shows a heatmap of the most significant age-related changes in DNA methylation
identified in either liver (378 loci shown below the horizontal dividing line) or adipose
tissue (240 loci shown above the horizontal dividing line). The loci included in this heatmap
are identical to those identified in Figure 2 (red and blue datapoints). It is apparent that the
large majority of changes in cytosine methylation with age occur distinctly in either liver or
adipose tissue, and rarely in both tissues concordantly.
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Figure 2. Volcano plot representation to assess age-related changes in global DNA methylation
measured by HELP
Volcano plots reveal differences in DNA methylation with age that are highly dependent
upon the tissue in which they are found, liver (A) and adipose tissue (B). Every locus
analyzed corresponds to a dot, showing the average differences between young and old (on
x-axis, values below zero represent loss of methylation with increasing age, above zero
hypermethylation with increasing age) with negative log-transformed significance (p-values)
along the y-axis. Thresholds were determined from the magnitude of methylation or
significance differences as ≥95th percentile of values. Red dots indicate those loci
exceeding both the magnitude of difference and significance thresholds and therefore
correspond with the most consistent differentially-methylated sites. Blue-labeled loci are
those that exceed threshold values in both the liver and adipose tissue datasets.
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Figure 3. Significant age-related changes in DNA methylation in liver and adipose tissue
Significance analysis of microarrays (SAM) was performed for young and old rats in two
different tissues (liver and perinephric fat). (A) The panel shows a standard Q-Q plot with
expected T statistic along the x-axis and observed T-statistic along the y-axis. Values were
calculated using a two-class unpaired model comparing young and old liver data, with s0
(~0.59) automatically generated. The solid diagonal line indicates a 45-degree line of
equivalent observed:expected ratios, and two dashed lines indicate thresholds of confidence
corresponding to δ=0.688. Green and red datapoints represent significant hyper- and
hypomethylation, with age, respectively. Thus, SAM identifies a large number of highly
significant changes in DNA methylation that occur in liver specifically (380 total loci with
estimated false discovery rate (FDR)<0.1%). (B) As before, a Q-Q plot generated from a
comparison of young and old adipose tissue (two-class unpaired T statistic, s0~0.22)
demonstrates the extent to which differences in DNA methylation occur beyond what one
would expect to see by random chance alone (242 significant loci, δ=0.496). However, a
direct comparison of both tissues demonstrates that the age-related changes observed in liver
are much greater than those observed in perinephric fat, both in terms of their extent (380 in
liver, with only 3 in fat, for δ=0.688 as shown in panel (A)) and significance (estimated FDR
of 2.1% in liver compared to 46.1% in fat, for δ=0.496 as shown in panel (B)).
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Figure 4. LUMA as a technology to assess age-related changes in global DNA methylation
DNA methylation was measured by the luminometric methylation assay (LUMA) in two
tissues (Fat and Liver) from young and old rats. Each corresponding boxplot is a
representation of the group-specific levels of methylation, shown along the y-axis (range
from 0 to 100 with 0 indicating complete methylation). Within each boxplot, the solid black
line indicates median methylation, with the upper and lower limits of each box
corresponding to the 75% and 25% quantiles of the data. The bars associated with each box
represent the extremes of the data. The distributions of methylation levels in each tissue
were compared, demonstrating that liver tends to be more methylated than adipose tissue
irrespective of age (p=0.09). Moreover, age-related differences were observed in liver, with
relative hypomethylation in older animals (p=0.03). Note that p-values were obtained by
two-group unpaired t-test.
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Figure 5. Genomic distributions of DNA methylation in normal and aging tissues
HELP data were divided into five different subsets representing constitutively
hypomethylated loci, constitutively hypermethylated loci, and tissue-specific differentially-
methylated regions (DMR, Liver compared with Adipose) in panel (A), as well as age-
related DMRs (Young compared with Old) specific to either liver or adipose tissue in panel
(B). Overlap of these subsets with six different genomic features (gene bodies, promoters
including 10 kb upstream of transcription start sites, intergenic regions, CpG islands, CG
clusters, and conserved non-coding elements) was measured and is shown from left to right
in both panels. We also show genomic distributions for the whole microarray (All Loci, both
panels), and are thus able to determine if a given subset of HELP data is enriched or
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depleted for any given genomic feature beyond what one might expect to see by random
chance. Many of the differences shown are associated with negligible probability that they
might occur with random sampling of the data (tailed hypergeometric distribution; *, **,
***, and **** indicate P<1%, P<0.01%, P<0.00000001%, and P~0, respectively) (Supp.
Table 2).
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Figure 6. Identification of loci at which cytosine methylation and gene expression are both
altered with aging
We focused on the loci identified in Figure 2A, plotting HELP data along the x-axis and
corresponding gene expression data for these loci along the y-axis. A total of 378 loci with
significant differences in cytosine methylation were analyzed, 347 of which were mapped to
RefSeq genes, and 31 of which demonstrated a corresponding robust difference in gene
expression with age (> 2.5 SD from the mean of the overall distribution of gene expression
data). Solid gray horizontal lines indicate the 2.5 SD cutoffs for these gene expression data,
while solid gray vertical lines indicate the 95th percentile (approximately 2 SD) cutoffs for
cytosine methylation data. Numerical labels appear in each of the four corners of the plot,
corresponding to the number of datapoints meeting the defined criteria.
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Figure 7. Ingenuity Pathway Analysis (IPA) reveals that many of the most differentially-
methylated genes form a molecular interaction network of particular relevance for metabolism
RefSeq identifiers for 75 of the top 102 sites (filtered from an input list of 65,000, by
p<0.0000001) that mapped to gene bodies and promoters were analyzed using the “Core
Analysis” tool of IPA. This molecular interaction network was constructed with 35 nodes,
19 of which were among the top differentially methylated sites (red nodes). In alphabetical
order, this network consists of ABCG4, ABCG5, ABCG8, Abcg5/Abcg8, AGT, BACE2, β-
estradiol, C1ORF109, CPA1, FBP1, FBP2, Fructose 1,6 Bisphosphatase, Fructose 2,6
Bisphosphatase, GLE1, GMPPB, HBS1L, HNF4A, HSPH1, IKBKB, IP6K1, KRT10, LEP,
LEPROT, NOXO1, NTHL1, NUDT1, PFKL, PROZ, RNMTL1, SERPINA10, SLC22A1,
SLC22A3, SLC2A2, SLC38A4, XPA.
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