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Abstract
The prenatal testosterone (T)-treated adult female rhesus monkey is one animal model of polycystic
ovary syndrome (PCOS) in women, with early prenatal T excess programming a permanent PCOS–
like phenotype characterized by luteinizing hormone (LH) hypersecretion from reduced
hypothalamic sensitivity to steroid negative feedback and relative insulin excess from increased
abdominal adiposity. These combined reproductive and metabolic abnormalities are associated with
ovarian hyperandrogenism and follicular arrest in adulthood, as well as premature follicle
differentiation and impaired embryo development during gonadotropin therapy for in vitro
fertilization (IVF). A second animal model for PCOS, the prenatal T-treated sheep also is
characterized by LH hypersecretion from reduced hypothalamic sensitivity to steroid negative
feedback, persistent follicles and insulin resistance, but also is associated with intrauterine growth
retardation and compensatory growth after birth. The ability of prenatal T excess in both species to
alter the developmental trajectory of multiple organ systems in utero provides evidence that the
hormonal environment of intrauterine life programs target tissue differentiation, raising the
possibility that T excess in human fetal development promotes PCOS in adulthood. Such a hypothesis
must include data from clinical studies of PCOS women to clarify the homology between these
PCOS-like animal models and PCOS per se in reproductive and metabolic function. Future studies
should develop new clinical strategies that improve pregnancy outcome and minimize pregnancy
loss in women with disorders of insulin action, including PCOS, obesity and diabetes mellitus as
well as minimize transgenerational susceptibility to adult PCOS and its metabolic derangements in
male close relatives.
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I. Introduction
Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome in women characterized by
luteinizing hormone (LH) hypersecretion, ovarian hyperandrogenism, hyperinsulinemia from
insulin resistance and reduced fecundity. Given a 6.6% estimated prevalence of PCOS in
reproductive-aged women in the United States (i.e., at least 4 million affected women), the
annual economic burden of PCOS is at least $4.4 billion, of which $1.8, $1.4 and $0.5 billion
are for treating type 2 diabetes mellitus, menstrual dysfunction and infertility, respectively.
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These estimates do not consider the greater frequency of pregnancy-related complications,
including gestational diabetes, preeclampsia and miscarriage (1). Based upon the 1990 NIH
definition of PCOS as hyperandrogenic chronic anovulation, the consequent annual health-
care costs in the United States of evaluating and treating PCOS are at least 3-fold that of
hepatitis C and one-third that of morbid obesity (1). These costs undoubtedly underestimate
the expense of managing other PCOS phenotypes, defined by the Rotterdam criteria as any
two of the three findings: clinical/biochemical hyperandrogenism, ovulatory dysfunction,
polycystic ovaries (2).

While its peripubertal onset and familial clustering suggest a heritable etiology for PCOS,
several candidate genes, including those regulating insulin action, androgen biosynthesis and
gonadal function, have failed to fully explain its prevalence. Emerging data also implicate
epigenetic changes in fetal life in the developmental origins of PCOS, with the most notable
being the ability of discrete experimentally-induced prenatal testosterone (T) excess to program
a permanent PCOS-like phenotype in several species. That T excess in utero programs multiple
fetal organ systems agrees with the increased prevalence of PCOS in women with classical
congenital adrenal hyperplasia (CAH) from 21 hydroxylase deficiency and with congenital
adrenal virilizing tumors (3–6), confirming that the steroid milieu of intrauterine life programs
differentiation of fetal target tissue.

In this regard, fetal programming of PCOS traits can be experimentally induced in several
species by prenatal T excess, which permanently alters female reproductive and metabolic
physiology and provides a means to assess molecular mediators involved in these perturbations.
Evidence to date suggests that prenatal T-treated monkeys and sheep, like PCOS patients,
manifest anovulatory infertility (7–9), adiposity-dependent compensatory hyperinsulinemia
(10,11), hypergonadotropism (12–15), neuroendocrine feedback defects (11,13,14,16–20,21),
functional hyperandrogenism (22–25) and polycystic ovaries (26,27). This chapter emphasizes
prenatally T-treated monkey and sheep as models of PCOS because follicular differentiation
in these species, as in humans and unlike rodents, is completed during fetal life. Data from
these studies implicate critical times during fetal development when the steroidal status of the
mother permanently alters the physiology of the fetus and modify its genetic susceptibility to
disease after birth.

II. Reproductive Defects
II.A. Hyperandrogenism

Ovarian hyperandrogenism is the cardinal feature of PCOS, with in vitro studies of PCOS theca
cells showing intrinsically increased androgen biosynthesis and augmented expression of
several steroidogenic enzymes, including cytochrome P450 cholesterol side chain cleavage,
17α-hydroxylase/17–20 lyase (P450 c17) and 3β-hydroxysteroid dehydrogenase (28,29).
Hyperandrogenism is widely variable among the various PCOS phenotypes, as defined by
Rotterdam criteria, and is more severe in “classic” PCOS (i.e., hyperandrogenic anovulation)
than ovulatory PCOS patients (30). A similar hyperandrogenic anovulation can be induced by
reprogramming adult ovarian morphology during prenatal development (11,31). Female rhesus
monkeys (32), sheep (7,8,33), mice (34) and rats (35) exposed prenatally to excessive levels
of T exhibit ovulatory dysfunction in adulthood Table 1). Ovaries are enlarged and
polyfollicular in prenatally T-treated monkeys and sheep, and also are hyperandrogenic in
prenatally T-treated monkeys and mice (26,34,36), while androgen receptor expression is
upregulated in ovaries of prenatally T-treated sheep (25).

A PCOS–like phenotype can be produced by injecting pregnant rhesus monkeys carrying
female fetuses with 10 to 15 mg T propionate (TP) for 15 to 35 days starting on either days
40–60 (early-treated) or days 100–115 (late-treated) postconception (total gestation, 165 days),
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which elevates circulating T levels in fetal females to those normally found in fetal males
(37,38). These prenatal T treatments coincide with target tissue differentiation and the
beginning of neuroendocrine development in early-treated females, and with ovarian follicle
development and functional acquisition of hypothalamic sensitivity to hormone negative
feedback in late-treated females. Early prenatally T-treated female monkeys exhibit basal
hyperandrogenemia (32,39) (Figure 1), while both early (22) and late (11) prenatally T-treated
females demonstrate an exaggerated T response to recombinant human (rh) chorionic
gonadotropin (CG) administration. Regardless of the timing of prenatal T treatment, prenatally
T-treated female monkeys have a ten-fold increase in the risk of anovulation as adults and have
double the normal incidence of polyfollicular ovaries, with 33–50% of anovulatory prenatally
T-treated females having such polyfollicular ovaries (36,39)(Table 1). These traits correspond
with the clinical diagnosis of PCOS by either the 1990 NIH or the Rotterdam criteria (1,2).
PCOS-like phenotype also can be produced in sheep by injecting pregnant sheep with 100 mg
of T propionate twice per week from days 30–90 of gestation, which exposes fetal females to
circulating T levels to those normally found in fetal males. (Padmanabhan V and Abbott DH,
unpublished). As in monkeys, this time interval corresponds to when neuroendocrine feedback
systems are established and ovarian differentiation occurs (31,40).

II.B. Abnormal follicle development
II.B.1. Increased follicle recruitment—Several morphological findings in PCOS patients
implicate increased recruitment of growing follicles from the primordial follicle pool with the
development of the polycystic ovaries. One of three histological studies of human ovaries with
polycystic morphology shows an increased proportion of primary follicles and a reciprocally
decreased proportion of primordial follicles, independent of ovulatory status or atresia (41–
43). Experimental evidence for adult hyperandrogenism causing increased recruitment of
ovarian follicles comes from T administration to adult female rhesus monkeys increasing the
number of primary, growing preantral and small antral follicles and the proliferation of
granulosa cells within them (44,45). Androgen treatment in such adult female monkeys also
increases mRNA expression of follicle-stimulating hormone (FSH) receptor, insulin-like
growth factor I (IGF-I) and IGF-I receptor in granulosa cells (46,47), while enhancing IGF-I
and its receptor mRNA expression in primordial follicle oocytes (48). Androgens also program
enhanced follicle recruitment in utero since prenatal T treatment of sheep from days 30 to 90
of gestation (total gestation, 147 days) increases the proportion of growing follicles (i.e.,
primary, preantral, and antral follicles combined), decreases the proportion of primordial
follicles and induces a polyfollicular phenotype (49) (Figure 2; Table 1).

II.B.2. Impaired follicle growth—In PCOS, growth of follicles is impaired at the 6–8 mm
size when granulosa cells normally begin to express aromatase and convert androgens produced
by luteinizing hormone (LH)-stimulated theca cells to estradiol (E2) in the presence of FSH
(50,51). An endogenous inhibitor of estrogen synthesis likely exists in small estrogen-deplete
PCOS follicles with sufficient bioactive FSH (52) because cultured granulosa cells from these
follicles are hyperresponsive to FSH in vitro (53,54). New sonographic ovarian studies in
PCOS patients show that the number of 2–5 mm follicles positively correlates with serum T
levels, while that of 6–9 mm follicles negatively correlates with fasting serum insulin and T
levels, as well as body mass index (BMI) (55). Taken together, these findings associate
hyperandrogenism with excessive early follicular growth that will not progress to the dominant
stage due to androgen excess and/or hyperinsulinemia (55). In this regard, small PCOS follicles
have elevated 5α-reductase activity, which increases 5α-reduced androgen levels to
concentrations capable of inhibiting aromatase activity in vitro (56,57). Increased 5α-reductase
and decreased aromatase activities also occur in estradiol (E2)-deficient follicles of early
prenatally T-treated female rhesus monkeys receiving rhFSH therapy (58). Even in cycling
female rhesus monkeys, dihydrotestosterone (DHT) impairs gonadotropin-stimulated E2
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secretion (59) and inhibits proliferation of cultured rat granulosa cells (60). Persistent follicular
cysts in prenatally T-treated sheep further implicate impaired follicular growth as a contributing
factor in developing polycystic ovaries (33) (Figure 3).

Impaired follicle growth also is associated with hyperinsulinemia from insulin resistance
(61). Anovulatory PCOS patients have a greater BMI than their ovulatory sisters despite a
similar degree of ovarian hyperandrogenism (62), and weight loss in obese PCOS patients
reverses anovulatory infertility (63). Since insulin enhances FSH-induced upregulation of LH
receptors in granulosa cells and increases their progesterone (P4) responsiveness to LH (64,
65), hyperinsulinemia presumably induces premature follicle luteinization, which arrests cell
proliferation and follicle growth. Consequently small antral PCOS follicles exhibit P4
hypersecretion and overexpress LH receptors (66,67), causing an exaggerated steroidogenic
shift from E2 to P4 production (68). Similarly, exaggerated follicle differentiation occurs in
early prenatally T-treated female rhesus monkeys undergoing rhFSH stimulation followed by
hCG administration, in which LH hypersecretion and relative insulin excess from increased
abdominal adiposity accompany an exaggerated shift in intrafollicular steroidogenesis from
androgen and E2 to P4 (69). Conversely, improving hyperinsulinemia in PCOS patients with
insulin sensitizing agents lowers serum androgen concentration (70,71) and restores ovulation
in approximately 50% of patients (72), as it does in prenatally T-treated female rhesus monkeys
(9,73).

Also implicated in impaired growth of PCOS follicles are transforming growth factor-β
(TGFβ) family members, including activins, inhibins, anti-mullerian hormone, growth
differentiation factor 9 (GDF-9) and bone morphogenetic protein 15, which interact with each
other to coordinate follicle growth and oocyte development. Activins promote follicular
development by enhancing granulosa cell responsiveness to FSH, suppressing androgen
synthesis and stimulating oocyte maturation, while inhibins produced by the dominant follicle
stimulate theca cell androgen production for E2 synthesis (74,75). Consequently a shift from
an activin-dominant to an inhibin-dominant microenvironment occurs during follicle growth
(76), which is impaired in some, but not all, PCOS follicles (77–79). Moreover, low activin A
levels and high follistatin levels in the circulation of some PCOS patients (80,81) correspond
with diminished intrafollicular activin in prenatally T-treated sheep (26) and activin β subunit
responsiveness to steroid in neonatal mice (82). These findings emphasize the further need to
understand how TGFβ family members affect intraovarian paracrine signaling during fetal
developmental programming.

II.C. LH hypersecretion
A neuroendocrine hallmark of PCOS is enhanced LH hypersecretion from enhanced
gonadotropin-releasing hormone (GnRH) pulsatility. Consequently serum immuno- and
bioactive LH levels are increased in about 70% of PCOS patients (83), with elevated LH pulse
amplitude and increased LH pulse frequency causing a two- to three-fold elevation in
circulating LH versus FSH levels (84). PCOS patients also show an increased LH response to
GnRH stimulation (83), along with a sexually dimorphic pattern of exaggerated early LH
responsiveness to GnRH analog that more closely resembles that of men and women with
congenital adrenal virilizing disorders (e.g., classical CAH and adrenal virilizing carcinoma)
than normal women (3,85). As further evidence of neuoendocrine dysregulation, PCOS
patients show reduced hypothalamic sensitivity to P4 negative feedback on LH secretion (86,
87), which can be restored with the androgen receptor blocker, flutamide (88). Moreover,
reduced hypothalamic sensitivity to P4 negative feedback on LH secretion in some girls with
PCOS during adolescence (87) suggests that prepubertal hyperandrogenism may program
reduced hypothalamic feedback inhibition, leading to rapid GnRH pulsatility in early
development.
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Neuroendocrine dysregulation of LH release also occurs in prenatally T-treated females of
several species, including rhesus monkeys (15), sheep (14,17,40,89,90), hamsters (91) and
rodents (35) (Table 1). Early prenatally T-treated female rhesus monkeys exhibit basal LH
hypersecretion ((Figure 1), increased pituitary LH responsiveness to GnRH (11,15) and
reduced hypothalamic sensitivity to E2 and P4 negative feedback on LH release (11,20,21,
92). Late prenatally T-treated female rhesus monkeys show reduced hypothalamic sensitivity
to P4 negative feedback on LH release alone (92). As in PCOS patients, prenatal T-treatment
in primates does not abolish the E2-induced LH surge, which nevertheless can be exaggerated
and delayed (15,21). Prenatal T-treatment in sheep also induces LH hypersecretion from
reduced hypothalamic sensitivity to E2 and P4 negative feedback (14,17,18,24) as well as
increased pituitary responsiveness to GnRH (93) and delays the onset of an otherwise truncated
LH surge in Suffolk sheep (13). In Dorsett sheep, E2 fails to generate an LH surge (18,19).
The collective data from both species of prenatally T-treated animals, therefore, demonstrate
programming of LH hypersecretion from reduced hypothalamic sensitivity to steroid negative
feedback with enhanced GnRH pulsatility (14,17,18,24) and disrupted surge mechanism (13,
18,19).

II.D. Oocyte developmental competence
Enhanced theca cell androgen biosynthesis (28,29), increased initiation of primordial follicle
growth (43) and exaggerated granulosa cell responsiveness to FSH (54) are features of follicle
development in PCOS patients undergoing in vitro fertilization (IVF). With more retrieved
oocytes and cleaved embryos available to select for embryo transfer, PCOS patients undergoing
IVF often achieve a clinical pregnancy rate comparable to that of similarly-treated normal
women (94–96). Nevertheless, such PCOS patients also have increase risks of implantation
failure and pregnancy loss (97) as well as impaired oocyte fertilization unrelated to gross
chromosomal abnormalities or nuclear maturation (95,96,98–100). Moreover, obese PCOS
patients experience low oocyte fertilization and failure of embryos to implant in their own
uterus or those of their surrogates (101), implicating impaired oocyte developmental
competence.

Terminally differentiated follicles of PCOS patients undergoing GnRH analog/rhFSH for IVF
are hyperandrogenic with reduced intrafollicular FSH levels; they also contain meiotically-
competent (metaphase II) oocytes with abnormal gene expression profiles (102,103). Based
upon timing of the oocyte to T programming in utero, prenatally T-treated female rhesus
monkeys undergoing gonadotropin stimulation for IVF also experience abnormal follicle
development and impaired oocyte development (20,58). All prenatally T-treated female
monkeys show abnormal intrafollicular steroidogenesis with reduced blastocyst formation
(20,58), neither of which can be predicted by circulating hormone levels, or from number and
maturity of oocytes collected (Figure 4). Differing from the hormonal profile of PCOS follicles,
low intrafollicular E2 and androstenedione (A4) levels in late prenatally T-treated female
monkeys receiving rhFSH therapy alone (58) are accompanied by a subtle impairment of
blastocyst development after combined rhFSH/hCG therapy (20), consistent with E2-enhanced
oocyte development in primates (104,105).

In early prenatally T-treated female monkeys, low follicle fluid E2 and A4 levels after both
stimulation protocols are accompanied by an elevated P4/E2 ratio and a profound impairment
of blastocyst development following combined rhFSH/hCG therapy. These findings suggest
that as in humans both the E2 concentration and the P4/E2 ratio in the follicle affects oocyte
development (104,106) (Figure 4). Equally important, early, but not late, prenatally T-treated
female monkeys undergoing rhFSH therapy for IVF show LH hypersecretion ((Figure 1,Table
1) and relative hyperinsulinemia at oocyte retrieval (20), an important finding since insulin
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together with FSH upregulates LH receptor expression in cultured murine cumulus-oocyte
complexes and reduces blastocyst development (107).

Interestingly, reduced follicle fluid E2 and A4 levels in early prenatally T-treated rhesus
monkeys undergoing rhFSH/hCG therapy for IVF (20) resemble those of IVF patients with
diminished ovarian reserve (108) more than those of similarly-treated PCOS patients (102) and
probably represent paracrine dysregulation of thecal cell P450 c17 activity (109). Nevertheless,
prenatal T treatment appears to perturb follicle growth and oocyte development by limiting the
production of E2 or its action in the presence of androgen (20,58,110,111). These findings in
concert with the observation that prenatally T-treated sheep also are subfertile (112) raises
concern that the effects of prenatal T treatment on oocyte development ((Figure 2) might have
transgenerational consequences for female offspring ((Figure 4).

III. Metabolic Defects
As major risk factors for type 2 diabetes mellitus and atherosclerosis (113), PCOS and obesity
have independent and additive adverse effects on insulin action, with PCOS patients being
more insulin resistant than weight-matched normal women (114). These defects appear to stem
from intrinsic abnormalities of post-receptor insulin signaling (e.g. excess serine
phosphorylation), abnormal insulin secretion (114,115), or polymorphic genes controlling
insulin action (116–118). While several factors influence insulin sensitivity, including
ethnicity, history of diabetes mellitus and BMI (114,119–121), increased abdominal adiposity
is a common feature of PCOS that impairs insulin sensitivity and it is largely responsible for
the increased insulin resistance observed in obese PCOS patients versus BMI-matched normal
women (120). Moreover, increased abdominal adiposity is central to metabolic syndrome, a
constellation of cardiovascular risk factors also including dyslipidemia, hyperglycemia and
hypertension that is highly prevalent in adolescent PCOS patients (122).

Like humans, rhesus monkeys are susceptible to obesity and its glucoregulatory impairments
(123). Prenatally T-treated female rhesus monkeys selectively deposit fat intra-abdominally
and exhibit impaired insulin secretion or action in ways that closely resemble those of PCOS
women, depending on whether the androgen excess occurred during early or late gestation
(124–126) (Table 2). Detailed measures of body composition using computerized tomography
with dual X-ray absorptiometry show that early T-treated females have increased visceral fat
compared to control females, even when corrected for BMI and total body fat (125). Late T-
treated females have increased total body and non-visceral abdominal fat compared to control
females (126). Interestingly, both early and late T-treated PA females preferentially accumulate
visceral fat with increasing BMI, while normal females preferentially accumulate non-visceral
fat (126). Metabolic studies further show that early T-treated females have impaired insulin
secretion, liberate more fatty acids than control females during a frequently sampled
intravenous glucose tolerance test (73,127) and exhibit basal serum insulin levels that are
positively correlated with the amounts of total body, total abdominal and visceral fat stores
(126). Late T-treated females show decrements in insulin sensitivity with increasing BMI, with
preservation of insulin secretory function (14). The resulting metabolic abnormalities from
adiposity-related insulin resistance in prenatally T-treated female monkeys contribute to an
increased risk of diabetes mellitus (27.3% and 11.1% in early-treated and late-treated females,
respectively). Moreover, prenatally T-treated sheep develop impaired insulin sensitivity in
early postnatal life (10), together with hypertension and hypercholesterolemia after puberty
(128) as additional components of the metabolic syndrome as seen in PCOS patients (Table 1
and Table 2).

Ameliorating impaired insulin action has beneficial glucoregulatory effects in both PCOS
patients and prenatally T-treated female monkeys, as evidenced by the abilities of metformin
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and thiazolidinediones to improve insulin action in PCOS patients (70,129,130) and of
pioglitazone to improve insulin action in both early and late prenatally T-treated monkeys
(73). Such parallels in metabolic dysfunction between PCOS patients and prenatally T-treated
female monkeys as well as sheep provide additional evidence of fetal androgen excess
programming of metabolic function. Studies in sheep suggest programming of insulin
resistance is facilitated by androgenic action of T (131).

IV. Barker Hypothesis
According to the developmental origins of adult disease hypothesis (i.e., the Barker
hypothesis), adverse influences in early development lead to permanent changes in physiology
and metabolism, resulting in increased disease risk in adulthood (Table 2). Original
observations that regions of England having the highest rates of infant mortality in the early
20th century also had the highest rates of mortality from coronary heart disease decades later
have been further supported by subsequent studies showing an association between low birth
weight and adult development of cardiovascular disease (CVD), hypertension, insulin
resistance and type 2 diabetes mellitus (132). Teleologically, fetal undernutrition would favor
genes important for energy conservation (i.e., thrifty genotype), which would be beneficial in
times of food scarcity, but would lead to obesity and diabetes when food becomes abundant
later in life (133). Alternatively, fetal undernutrition might lead to an organized process in
which fetal brain development is spared to the detriment of other organ systems (i.e., thrifty
phenotype), perhaps as an adaptive response for postnatal survival in a nutrient-deplete
environment (134). Evidence for such a phenomenon in PCOS can be found in poor intrauterine
growth and low birth weight accompanying precocious puberty and PCOS in northern Spanish
women (135) and PCOS pregnancies in Chilean women (136), but not in larger groups of
Finnish (137) and Dutch individuals (138). Theoretically, maternal T excess could reduce fetal
growth and birth weight through impaired placental function since experimentally-induced
maternal T excess decreases rodent and sheep offspring birthweight (24,139,140); impaired
placental aromatization in women also accompanies diminished uteroplacental perfusion and
low infant birthweight (141,142). Advanced placental differentiation to reduce intrauterine
growth restriction also is a feature of T-treated pregnant sheep (143).

While prenatally T-treated female sheep (49,140,144) and rats (145) exhibit intrauterine growth
retardation (IUGR) and low birth weight, prenatal T-treated rhesus monkeys do not (39,146)
(Table 2). Furthermore the IUGR in prenatally T-treated fetal sheep near term is characterized
by an increased head to fetal weight ratio (49) corresponding with a brain-sparing effect
(147) and is followed by postnatal weight gain (or catch-up growth) (140) and with insulin
resistance in adulthood (24) (Table 2). Early prenatally T-treated female rhesus monkeys
(39), on the other hand, show an increase in body weight during early infancy (Abbott and
Tarantal, unpublished results), as well as during late adolescence/early adulthood and undergo
delayed puberty in a manner similar to that of male puberty. Therefore, prenatally T-treated
sheep and rats may be suitable models for PCOS with placental insufficiency, particularly since
the former have enlarged left cardiac ventricles, kidneys and adrenals suggestive of CVD
(24), while the latter have increased mortality (148).

V. Adrenal
Resembling the 25–60% prevalence of adrenal hyperandrogenism in PCOS (149,150), early
prenatally T-treated female monkeys show adrenal hyperandrogenism, presumably from
enhanced 17α-hydroxylase/17,20 lyase activity of the zona reticularis in adulthood (23). Basal
and ACTH-stimulated cortisol levels, however, are normal in prenatally T-treated monkeys.
Basal and ACTH-stimulated cortisol levels are also normal in prenatally T-treated adult sheep
(Padmanabhan, unpublished). Moreover, prenatally T-treated sheep demonstrate a
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proportionate increase in fetal adrenal weight with IUGR near term, demonstrating an altered
trajectory of adrenal development accompanying fetal growth retardation (49).

VI. Alternate mechanisms of developmental programming
During the second trimester of human development, serum T levels are elevated into the male
range in 40% of female fetuses (151). Therefore the wide variation in androgenic exposure that
normally occurs during human development could certainly influence developmental
programming of the fetus. Mechanisms beyond T-induced developmental programming,
however, also may exist since close male relatives of PCOS patients exhibit metabolic
dysfunction similar to that of their female kin (152–154). In support of this, prenatally T-treated
male monkeys exhibit insulin resistance and diminished insulin response to glucose in
adulthood (155), despite normal male levels of circulating T during fetal life (38). Therefore
the combination of steroid and metabolic abnormalities in utero might perturb development of
several fetal organ systems and increase the risk of developing reproductive and metabolic
diseases in later life. Consistent with this hypothesis, genes for receptors to insulin, IGF-I and
IGF-II and protein for P450c17 enzyme exist in second trimester human fetal ovaries (156,
157). In addition, female stillbirth offspring of diabetic mothers have increased birth weight
and pancreatic beta cell hyperplasia with hirsutism, ovarian theca-lutein cysts and thecal cell
hyperplasia (158,159), while elevated amniotic fluid levels of the β-hCG and T occur in
pregnant diabetic mothers receiving insulin (160).

Moreover, while direct androgen action in the female fetus may account for some aspects of
adult reproductive function, some elements of fetal developmental programming may be
mediated by conversion of T to E2 through placental or fetal gonadal aromatization. Cancer
and infertility have long been recognized in women exposed prenatally to diethylstilbestrol
(DES) (161,162), as have paraovarian cysts and infertility in rodents exposed perinatally to
DES, allyl E2, or E2-17β or E2 benzoate (163–165). More recently, persistent follicular cysts
have been noted in sheep exposed prenatally to T, but not to DHT (33,166), while IUGR and
LH surge defects occur in similarly-treated sheep exposed to bisphenol, an estrogenic
endocrine-disrupting compound (167). At the ovarian level, reduced primordial follicle
numbers occur in ovaries of late gestational fetal baboons following maternal exposure to an
aromatase inhibitor (168), while decreased oocyte-granulosa cell microvilli, and presumably
perturbed oocyte-granulosa cell signaling, characterize the maturing fetal ovary following
diminished estrogen exposure (169,170).

Conclusions
• Prenatal T-treatment in monkeys and sheep programs a permanent PCOS-like

phenotype characterized by LH hypersecretion from reduced hypothalamic sensitivity
to sex steroid negative feedback, functional hyperandrogenism, ovulatory
dysfunction, polycystic ovaries and impaired glucose-insulin homeostasis.

• Prenatal T-treatment in both species induces female subfertility, which in part
represents the impaired developmental competence of primate oocytes.

• Mechanisms beyond T-induced developmental programming likely exist since
exposure of monkeys to prenatal T excess also impairs glucose-insulin homeostasis
without affecting body weight in both adult sexes, while similarly-treated fetal sheep
show intrauterine growth retardation with compensatory growth after birth.

• Critical times exist during fetal development when the steroidal status of the mother
permanently alter the physiology of the fetus and modify its susceptibility to disease
after birth.
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• Optimizing the effects of the maternal diet and hormonal environment on fetal growth
and development might minimize transgenerational susceptibility to PCOS and to its
metabolic derangements in male close relatives and could improve the fertility of
PCOS women while reducing their risk of pregnancy-related complications.

Key unanswered questions
The prenatally T-treated animal models of PCOS implicate hyperandrogenism or
hyperestrogenism during critical times of fetal development in the pathogenesis of PCOS and
of its metabolic derangements in male close relatives. They agree with the increased prevalence
of PCOS in women exposed to fetal T excess, including CAH from 21-hydroxylase deficiency
and congenital adrenal virilizing tumors (3–6) and of insulin resistance in men with 21-
hydroxylase deficiency (171). As such, T excess programming probably leads to at least two
abnormalities, namely reproductive and metabolic, which may interact to increase
susceptibility to an adult PCOS phenotype (Figure 5). Equally important and evident in
prenatally T-treated animal models of PCOS, variation in gestational timing of T excess
programming in utero, along with differences in target tissue sensitivity to steroid action, also
may contribute to heterogeneity in the adult phenotype.

Unfortunately, experimental constraints on the use of human fetal tissue for biomedical
research limit our knowledge of the relationships between the human fetus and its maternal
environment. Consequently, understanding how developmental programming affects human
growth and development continues to require animal models to pioneer the probable fetal
origins of adult disease. In doing so, future animal studies need to clarify the neuroendocrine
mechanisms governing hypothalamic sensitivity to hormone negative feedback and the
endocrine/paracrine signaling and their effects on follicle growth and oocyte development. At
the ovarian level, knowledge of how developmentally relevant endocrine/paracrine factors and
genes interact to promote optimal gene expression in the fetal oocyte for later fertilization and
successful preimplantation embryogenesis also is necessary. With such information, new
clinical strategies targeting long-term correction of follicle growth and development could
improve fertility, optimize ovarian responsiveness to gonadotropin therapy and enhance
pregnancy outcome by IVF, thereby promoting the transfer of fewer embryos into the uterus
and decreasing the risk of multiple gestation and its adverse consequences on maternal-fetal
health.

Also important is recognizing how the maternal environment affects fetal growth and
development. With obesity the fastest-growing medical problem in America and two-thirds of
American adults being overweight, impaired glucose-insulin homeostasis in pregnancy from
insulin-resistance diseases, including obesity, PCOS and diabetes mellitus, also have
implications on fetal developmental programming. Whether such programming events are
secondary to altered abdominal adiposity or additional pancreatic or insulin receptor-mediated
events, the implications are that genetically-determined hyperandrogenism can be modified by
both maternal and environmental factors to program an adult PCOS phenotype and its male
equivalent. In support of this, nutrient-deficient diets also can adversely affect long-term
physiology of the offspring (172,173) and alter DNA methylation in the human placenta
(174), suggesting detrimental outcomes from epigenetic and metabolic abnormalities.
Therefore additional clinical strategies that optimize the effects of the maternal diet and
environment on fetal growth and development may be able to minimize transgenerational
susceptibility to acquiring the adult PCOS phenotype and its metabolic derangements in male
close relatives.
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Figure 1.
Mean (±SEM) serum values in early (open bars) and late (grey bars) treated prenatally T-treated
and control (black bars) adult female rhesus monkeys reflecting (a) testosterone, (b) estradiol,
(c) testosterone:estradiol ratio, (d) bioactive LH, (e) immunoactive LH and (f) immunoactive
FSH during either the early follicular phase of the menstrual cycle or equivalent time during
a 30-day anovulatory period. * p<0.05, versus controls, δ p<0.08 versus controls (Data from
reference 39).
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Figure 2.
Effect of prenatal T treatment from days 30 to 90 of gestation on the distribution of follicles
(top panel) and oocyte diameter (bottom panel) in fetal ovine ovaries at 140 d of gestation.
Each bar represents mean ± SEM. Asterisks indicate significant differences (P < 0.05) (Data
from reference 31).
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Figure 3.
Ovarian follicular dynamics determined by ultrasonography in both ovaries of a representative
control and prenatal T-treated sheep are shown in the left panel. Each line represents one
follicle. Only follicles that reached a size of 3 mm and persisted for at least 2 days are shown.
Note the increase in maximum size and duration of the larger follicles on the ovary in prenatal
T-treated sheep. Mean number (bottom right) and duration (top right) of persistent follicles in
ovaries of control (n=8) and prenatal T-treated (n=14) sheep. Numbers within bottom
histogram indicate number of animals in each group showing persistent follicles (Data from
reference 31).
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Figure 4.
A). Mean (upper 95% confidence limit) percentage of zygotes developing to the 5–8 cell (open
bars) and blastocyst (solid bars) stages in 5 early prenatally T-treated, 5 late prenatally T-treated
and 5 control adult female rhesus monkeys following ovarian hyperstimulation for IVF. a:
p<0.05 versus control and late prenatally T-treated females at the same stage; b: p<0.05 versus
5–8 cell stage (Data modified from reference 20). B) Histograms on the right shows percentage
of prenatal T-treated sheep (n=12) that successfully mated or conceived following estrus
synchronization with two injections of PGF2α administered 11 days apart. To overcome mating
preference, ram access was limited to only prenatal T-treated females. First service mating and
pregnancy results for the breeding herd (n=109; hatched bar) bred during the same time are
provided for comparison (Data modified from reference 112).
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Figure 5.
Diagrammatic representation of possible early gestation, fetal androgen excess programming
of adult PCOS traits. Genetic or environmental mechanisms induce fetal hyperandrogenism
causing permanent changes in reproductive and metabolic function. Reproductive
consequences include: (1) altered hypothalamic-pituitary function causing LH hypersecretion,
(2) ovarian hyperandrogenism with or without LH hypersecretion, (3) reduced steroid hormone
negative feedback regulation of LH, (4) adrenal hyperandrogenism, and (5) ovulatory
dysfunction. Metabolic consequences include: (1) increased abdominal adiposity with elevated
circulating total free fatty acid levels, (2) impaired pancreatic insulin secretory response to
glucose, (3) impaired insulin action and compensatory hyperinsulinemia, (4) hyperglycemia,
and (5) increased incidence of type 2 diabetes. Insulin resistance and compensatory
hyperinsulinemia may be functionally implicated in the anovulatory mechanism (Data from
reference 39).
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Table 1

Reproductive and metabolic PCOS-like abnormalities in prenatally androgenized female rhesus monkeys and
sheep. Details of the traits are discussed in the text. ?: trait yet to be assessed.

PCOS trait1
Prenatally Androgenized Female Rhesus Monkeys Prenatally Androgenized Female Sheep

Early treated Late treated

Reproductive

Ovarian hyperandrogenism Yes Yes Ovarian androgen receptor upregulation

Anovulation Yes Yes Yes

Enlarged polyfollicular ovaries Yes Yes Yes

LH hypersecretion Yes No Yes

Reduced steroid negative feedback on LH Yes Yes Yes

Impaired embryonic development Yes Yes Impaired fertility

Metabolic

Insulin resistance Yes No Yes

Beta cell impairment Yes No ?

Hyperglycemia Yes Yes No

Increased type 2 diabetes Yes No Unknown

Increased abdominal fat Yes With increasing BMI Unknown

Hypertension Unknown Unknown Yes

Hyperlipidemia Yes Unknown Yes

1
Details provided in the text
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Table 2

Prediction of abnormal traits expected in prenatally androgenized female rhesus monkeys and sheep from the
Barker hypothesis. Details of the traits are discussed in the text. +: trait present, −: trait absent, ?: trait yet to be
assessed.

Abnormal traits Barker hypothesis prediction Early treated PA female
observation

Late treated PA female
observation

PA female sheep
observation

Low birthweight + − − +

Catch-up growth + − ? +

Visceral obesity + + + with high BMI ?

Insulin resistance + + − +

Beta cell impairment + + − ?

Glucose intolerance + + + ?

Hypertension + ? ? +
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