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Abstract

A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a
trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute
settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences
between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with
IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells
exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by
an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a
reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals
evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to
controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that
chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability.
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Introduction

A major paradox exists in the current understanding of how

insulin-like growth factors affect the aging process. Mammalian

insulin-like growth factor 1 (IGF-I) is critical for cellular

proliferation, muscle and adipose tissue differentiation, and neural

development [1–9]. Moreover, IGF-I enhances cell survival in the

face of numerous physiologic insults that include DNA damage

[10,11] and loss of cell adhesion [12–14]. The IGF-I paradox lies

in the fact that despite the proliferation- and survival-enhancing

properties attributed to IGF-I, it is a reduction in IGF-I signaling

that has been shown to extend lifespan in multiple organisms

including nematodes, flies, and mammals [15–21]. The paradox-

ical effects of IGF-I on cell survival, differentiation, and lifespan

suggest that there may be a tradeoff between short-term benefit

and long-term survival. However, the molecular mechanisms that

underlie this tradeoff remain unclear. It is possible that long-term

negative consequences of IGF-I stimulation cannot be fully

appreciated in the culture systems presently used to study cell

growth, survival, and differentiation. In vivo, these consequences

may be difficult to identify due to the pleiotrophic effects of IGF-I.

In order to examine the possible consequences of increased

IGF-I signaling over extended periods, a fibroblast culture model

was developed that allows human fibroblasts to be maintained in a

quiescent state over a period of weeks. This model takes advantage

of MCDB 105 culture medium, which has been specifically

formulated for survival and growth of human fibroblasts in low

serum [22]. The medium provides all essential amino acids,

glucose, nutrients, and trace elements required for proliferation.

When growth factors are withdrawn, fibroblast cells enter a non-

dividing quiescent state that is fully reversible upon the addition of

growth factors or serum. Using similar conditions, human

fibroblasts cultures have been maintained under serum free

conditions for up to 3 weeks without impacting growth potential

[23]. We have utilized this in vitro approach to examine cellular

responses to unopposed signaling through the IGF-I receptor over

a period of weeks. We report here that human fibroblast cultures

maintained in MCDB 105 medium responded to IGF-I with a

reduction in long-term viability as judged by colony forming assays

and an increased percentage of cells expressing senescence-

associated beta-galactosidase (SA-b-gal). These changes are

accompanied by a reduction in autophagy and the accumulation

of a subpopulation of cells that display reduced mitochondrial

potential. Using a mouse model with reduced IGF-I production,

we find evidence for enhanced autophagy in several tissues

including liver and kidney. Furthermore, fibroblast cells cultured
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from these animals show an increase in mitochondrial mass

relative to fibroblasts derived from control animals.

Results

In order to examine the consequences of prolonged IGF-I

stimulation, viability and clonal growth was examined in cultures

exposed to IGF-I for 14 days. Under these conditions, human

fibroblasts remain quiescent even in the presence of IGF-I due to

the need for additional stimulation with EGF for entry into S

phase [24] and no cell loss was observed in any of the conditions

used. Colony forming ability was significantly reduced in cultures

treated with IGF-I in relation to parallel cultures that were

maintained in the nutrient rich MCDB 105 media without growth

factors (Fig 1a,c). In addition, IGF-I–treated cultures contained

cells that stained positive for SA-b-gal, a marker of replicative

senescence, suggesting that cells within the population had been

driven into a senescent state during the incubation period (Fig 1b).

During the period of IGF-I exposure we observed unexpected

changes such as cellular inclusions and vacuolization, which began

to appear in cells after 5-7 days (not shown). Both the number of

cells with vacuoles and the number of vacuoles per cell increased

with increased time in culture. Parallel cultures that were

maintained in serum free medium without IGF-I did not

accumulate intracellular vacuoles although it should be noted

some intracellular inclusions do appear. Because mitochondria are

critical to cellular viability and IGF-I is known to influence

mitochondria through several signaling pathways, we postulated

that mitochondrial damage may occur with extended exposure to

IGF-I. As a marker of mitochondrial integrity, mitochondrial

membrane potential was examined using the cationic dye JC-1.

The emission spectrum of JC-1 monomers is 525 nm while

aggregates that form in the mitochondria due to the membrane

potential fluoresce at 590 nm. Cells with a decreased fluorescence

of JC-1 aggregates (590 nm), indicative of decreased membrane

potential (and dysfunctional mitochondria), accumulated in

cultures exposed to IGF-I beginning at 7–10 days in culture up

to the maximum time examined, at 14 days (Fig 2). Interestingly,

this population of cells was significantly smaller in cultures that

were exposed to EGF rather than IGF-I for the same period,

Figure 1. IGF-I decreases long-term viability of human fibroblasts. Long-term IGF-I treatment reduces colony formation potential. Colony
forming assays were performed on cells that had been maintained in either MCDB 105 medium without additions or with IGF-I (40 ng/ml) for 2
weeks. Cells were seeded in full growth medium to allow colony growth and results are presented in panel A. Bars are number of colonies per 36103

cells plated (*, P,0.01) B. Representative micrograph (20X) of senescence-associated b-galactosidase staining of fibroblast colonies. C. Crystal violet
stained colonies of plates seeded with 36103 cells for colony forming assays.
doi:10.1371/journal.pone.0012592.g001
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indicating that specific signals generated by the IGF-I receptor are

responsible for the effect on mitochondrial membrane potential.

Under conditions of stress it is thought that intracellular

components such as mitochondria are targeted for degradation

by autophagy and we postulated that a basal level of autophagy

may be required for normal cellular homeostasis in quiescent

cultures. Accordingly, we examined the process of autophagy to

determine whether it was active in the quiesecent cultures despite

the fact that all essential nutrients were provided. In order to

visualize the process of autophagy, we introduced a fluorescent-

tagged version of the LC-3 protein, a key component of the

autophagosome, into human fibroblast cells. The accumulation of

GFP-LC3 as intracellular puncta is thought to represent the

formation of autophagosomes [25]. Fluorescent puncta could be

visualized in fibroblast cells maintained for 14 days in MCDB 105

medium and addition of IGF-I decreased the appearance of these

puncta significantly (Fig 3a,b). Interestingly, the IGF-I treated

cultures contained very high levels of the GFP-LC3 protein,

however, there were few puncta and the GFP-LC3 protein

appeared to be associated primarily with the cytoskeleton (Fig 3b).

Proteolytic processing to remove a C-terminal portion and

conjugation with phosphatidyl ethanolamine is required for LC-

3 incorporation into autophagosome membranes and the 2 forms,

LC3-I (cytosolic) and LC3-II (membrane bound) can be visualized

by Western blot analysis. Fibroblasts incubated in MCDB 105

with or without IGF-I were examined for LC3-I and LC3-II using

an antibody that recognizes both forms of the protein. IGF-I

treated cells contained higher levels of LC3 (Fig 3c). Over the

course of multiple experiments we observed a consistent increase

in the levels of LC3-I and LC3-II, suggesting that processing of the

protein occurs but that autophagosome formation is suppressed.

To confirm that the changes in LC-3 were indicative of a

reduction in autophagy, we examined the levels of p62/A170/

SQSTM1, a long lived protein that is degraded through

autophagosomes. This protein accumulates when autophagy is

inhibited [26]. The levels of p62 progressively increase in IGF-I

treated cultures consistent with an inhibition of autophagy (Fig 3c).

In addition, we examined the degradation of cellular proteins over

a 1-week time course (Fig 3d). Similar to our results with p62, we

find that the degradation of long-lived cellular proteins is reduced

Figure 2. IGF-I treatment increases mitochondrial depolarization. WI-38 fibroblasts were maintained for 14 days in MCDB 105 medium,
MCDB 105 medium with IGF-I (40 ng/ml), or MCDB 105 medium with EGF (40 ng/ml). Medium with or without growth factors was replenished every
3 days and cells were stained for mitochondrial potential at that time as described in materials and methods. Cells with depolarized mitochondria
were visualized by flow cytometry as described in Material and Methods. A. Percentage of cells with depolarized mitochondria as assessed by JC-1
staining (*, P,0.001). B. Representative dot blot of JC-1-stained cultures in MCDB 105 with or without IGF-I or EGF. Y-axis, fluorescence at 590 nm; X-
axis, fluorescence at 525 nm. A downward shift on the X-axis is indicative of mitochondrial membrane depolarization.
doi:10.1371/journal.pone.0012592.g002
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in the presence of IGF-I consistent with a reduced rate of

autophagy.

If the accumulation of depolarized mitochondria was due to

changes in autophagy, then one would expect that inducers of

autophagy would prevent this accumulation. We tested the effect

of rapamycin, a strong inducer of autophagy, in the human

fibroblasts treated with IGF-I. Rapamycin prevented the accu-

mulation of cells with depolarized mitochondria induced by IGF-I

treatment, as judged by JC-1 staining (Fig. 4a) and restored long-

term viability (Fig. 4b,c). Rapamycin treatment alone increased

colony forming potential in cultures that did not receive IGF-I

suggesting that rapamycin was able to increase viability of cells in

serum free conditions although this difference was not statistically

significant. In addition, rapamycin restored autophagy in IGF-I

treated cells, as judged by the numbers of GFP-LC3 puncta

(Fig 5a,b) and the levels of LC3-I and p62 (Fig 5c) Thus, a specific

inhibitor of mTOR, an important regulator of autophagy,

prevented the negative aspects of long-term IGF-I treatment. An

independent assessment of the influence of autophagy on

mitochondrial changes was provided by introducing into WI-38

cells an shRNA plasmid vector that targets ATG5, an essential

gene for autophagy [27]. Knock down of ATG5 transcript was

confirmed using real time PCR analysis of mRNA levels for ATG5

and the cells were placed into long-term quiescence. Consistent

with a role for autophagy in mitochondrial clearance, ATG5

knock down produced an increase in the population of cells with

depolarized mitochondria after 2 weeks of quiescence (Fig 6).

In order to determine whether altering IGF-I levels in the whole

organism results in similar changes in autophagy as those observed

in culture, we examined mice that produce reduced levels of IGF-

I. These mice harbor a hypomorphic allele of the Igf1 gene due to

an insertion in exon 3 [28]. We have confirmed that the mice

Figure 3. IGF-I treatment impairs autophagy. WI-38 fibroblasts stably expressing the GFP-LC3 fusion protein were maintained for 14 days in
MCDB 105 medium, or MCDB 105 medium with IGF-I (40 ng/ml). Medium with or without growth factor was replenished every 3 days. A. Number of
LC3 puncta per cell in WI-38 GFP-LC3 cells with or without 40 ng/ml IGF-I (**, P,0.01) At least 25 fields and 100 cells per slide were examined. B.
Representative fluorescence micrograph (40X) of WI-38 GFP-LC3 cells with or without IGF-I treatment. C. Accumulation of LC3 and p62/SQSTM1 over
time in IGF-I-treated cells as assessed by western blot. D. Protein degradation in control and IGF-I-treated cells measured as percentage of the
residual 35S-Methionine radioactivity at the indicated time points over time 0 (*, P,0.01).
doi:10.1371/journal.pone.0012592.g003
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produce 40–50% lower levels of IGF-I in both the serum and all

tissues tested (kidney, brain, muscle liver, heart) (data not shown).

We examined tissues from the IGF-I deficient mice for evidence of

autophagy by staining for LC-3 puncta. We found increased

numbers of LC-3 containing puncta in the tissues of the IGF-I

deficient mice relative to controls (Fig 7a,b). In addition, we found

increased LC3-I when total protein extracts are examined by

Western blot analysis (Fig 7b). Thus, in the low IGF-I mice we find

an increase in LC-3 levels combined with an increase in LC3

containing puncta suggesting an increase in autophagy, while in the

cell cultures LC3 levels tended to be lower in conditions of increased

autophagy, in serum free medium. This suggests that there are some

differences in the dynamics of autophagy in vivo and in vitro but the

consistent finding was that high IGF-I levels lead to reduced

autophagy. In order to determine whether mitochondrial differ-

ences occur in cells derived from the low IGF-I environment present

in the IGF-I deficient mice, we examined embryo fibroblast cells

derived from either IGF-I deficient mice or controls. Mitochondrial

mass was examined using mitotracker green, a fluorescent dye

which preferentially localizes to the mitochondrial membrane and

can be used to estimate mitochondrial mass. Flow cytometry

analysis revealed that embryo fibroblasts derived from the IGF-I

deficient mice had a significantly greater mitochondrial mass than

fibroblasts derived from control mice. This difference was greatest at

low passage and decreased with increasing passages in culture

presumably as the cells became acclimatized to culture conditions

and the influence of the altered hormone environment in the whole

animal was lost (Fig 8A). Mitochondrial DNA copy number was also

compared in the MEF cultures at passage 2. A qPCR analysis using

primer sets targeting either the mitochondrial or nuclear genome

indicated that MEFs derived from the IGF-I deficient mice

contained a higher mitochondrial DNA content than the control

MEFs (Fig 8B).

Discussion

We provide evidence that autophagy occurs in quiescent cells

even when sufficient nutrients are available and that inhibition of

autophagy through IGF-I signaling can lead to the accumulation

of cells with dysfunctional mitochondria and decreased long-term

viability. Rapamycin, which enhances autophagy, can ameliorate

the effects of IGF-I while inhibition of autophagy recapitulates

some of these effects. Furthermore, it appears that a reduction in

IGF-I in mice leads to enhanced autophagy and a similar decrease

in depolarized mitochondria. Interestingly, this is accompanied by

an increase in total mitochondrial mass.

In total, the results indicate that inhibition of autophagy by

IGF-I decreases cell viability through interference with mitochon-

Figure 4. Rapamycin restores mitochondrial clearance and long-term viability. WI-38 fibroblasts were maintained for 14 days in MCDB 105
medium, or MCDB 105 medium with IGF-I (40 ng/ml). Medium with or without growth factor was replenished every 3 days. Mitochondrial potential
and colony forming assays were performed at the end of the 14 day period. A. Rapamycin reduces the effect of IGF-I on mitochondria depolarization
as assessed by JC-1 staining (*, P,0.05). B. Rapamycin restores long-term viability in IGF-I-treated cells as measured by colony forming assay. Bars are
number of colonies per 36103 cells plated. C. Crystal violet stained colonies of plates seeded with 36104 cells after 2 weeks in full growth medium.
doi:10.1371/journal.pone.0012592.g004
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Figure 5. Rapamycin restores autophagy in IGF-I-treated cells. WI-38 fibroblasts stably expressing the GFP-LC3 fusion protein were
maintained for 14 days in MCDB 105 medium, or MCDB 105 medium with IGF-I (40 ng/ml). Medium with or without growth factor was replenished
every 3 days. A. Representative fluorescence micrographs of WI-38 GFP-LC3 cells with or without 40 ng/ml IGF-I and/or 10 nM rapamycin. B. Number
of LC3 puncta per cell in WI-38 GFP-LC3 cells (*, P,0.05). At least 25 fields and 100 cells per slide were examined C. Levels of LC3 and p62/SQSTM1 in
WI-38 with or without 40 ng/ml IGF-I and/or 10 nM rapamycin as assessed by Western blot analysis.
doi:10.1371/journal.pone.0012592.g005

Figure 6. Impairment of autophagy increases mitochondrial depolarization. WI-38 fibroblasts and WI-38 cells expressing either an shRNA
construct targeting Atg5 (shAtg5) or the same targeting vector expressing a scrambled sequence (Scramble) were maintained for 14 days in MCDB
105 medium. As a control, parallel cultures were maintained in MCBD 105, or MCDB 105 medium with IGF-I (40 ng/ml). Medium with or without
growth factor was replenished every 3 days. Cells were stained for mitochondrial potential at that time as described in materials and methods. Cells
with depolarized mitochondria were visualized by flow cytometry as described in Material and Methods. Differences in the percent of cells with
depolarized mitochondria between cell populations were significant for shAtg5 versus scramble or control cells (*, P,0.05). The difference in the
percent of cells with depolarized mitochondria between IGF-I treated and either control or scramble was also significant (*, P,0.05).
doi:10.1371/journal.pone.0012592.g006
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drial turnover. These observations suggest that increased IGF-I

signaling over long periods have unanticipated consequences that

are distinct from the pro survival effects observed in acute settings.

Autophagy has been identified as a process for the turnover of

intracellular components which can be negatively regulated

through the intracellular signaling pathway associated with

mTOR [29]. It involves a series of lysine-linked conjugation steps

analogous to the ubiquitin conjugation required for proteasome

targeting [30]. This process is important for proper cellular

function and defects in autophagy have been linked to several

types of degenerative diseases [31]. Although direct evidence that

autophagy can influence longevity in mammals is lacking,

experimental evidence suggests that an enhanced rate of

autophagy during aging enhances liver function [32] and

appropriate levels of autophagy are essential for cardiac function

[33]. Autophagy has been linked to aging, and a reduction in

autophagy during aging has been observed in rodents and other

organisms [34,35]. Caloric restriction increases autophagy in

rodents [36], and genetic studies in Caenorhabditis elegans indicate

that autophagy may be required for life-span extension by caloric

restriction [37]. Autophagy also increases during dauer formation

in C. elegans and is required for life-span extension in daf-2 mutants

[38]. Genetic studies in C. elegans have found that autophagy genes

are required for life-span extension in response to mutations in the

insulin/insulin-like growth factor (IGF) receptor [38] and to

mutations that induce caloric restriction [37], although there may

be caveats to this connection that have not been fully appreciated

since other studies indicate that suppression of autophagy in the

adult may extend life span [39]. Autophagy is an important

mechanism for the clearance of mitochondria [40] following

damage and IGF-I has been reported to influence this process [41]

but the relative importance of mitochondrial clearance under

physiologic conditions is less clear. Surprisingly, we find that even

in the absence of starvation, autophagy may play an important

role in the normal turnover of mitochondria and that inhibition of

autophagy by IGF-I can lead to mitochondrial dysfunction and

decreased cell viability. Because mitochondrial mutations and

dysfunction may increase with age [42,43], the reduced clearance

of dysfunctional mitochondria in settings where IGF-I is elevated

may be significant to age-related pathologic conditions.

Materials and Methods

Cell culture
All culture reagents were from Cellgro (Manassas, VA) unless

otherwise stated. WI-38 human diploid fibroblasts were grown and

in MEM supplemented with 10% fetal bovine serum, 1% L-

glutamine, MEM non essential amino acids, MEM vitamins and

Figure 8. Mouse embryo fibroblasts from IGF-I-depleted mice show increased mitochondrial mass and DNA content. Mouse embryo
fibroblasts (MEFs) were growth from IGF-I deficient mice or control animals as described in materials and methods. The relative mitochondria content
in wild type and IGF-I-depleted mice measured by staining with the mitochondrial specific mitotracker green fluorescent dye as described in the
Materials and Methods. A. Mean mitochondrial mass of the cell populations at passage 2 and 10 is presented as analyzed by flow cytometery.
Differences between the mitochondrial mass in the IGF-I deficient mice and controls was significant (P,0.01 at passage 2 and P,0.05 at passage 10).
B. Relative mitochondrial DNA content at passage 2 is presented. The experiment presented is representative of the results of 2 independent
measurements on 4 DNA isolates using independent primer sets [45] that amplify mitochondrial and nuclear DNA. The difference in mitochondrial
DNA content was significant (P,0.05).
doi:10.1371/journal.pone.0012592.g008

Figure 7. IGF-I-depleted mice show markers of increased autophagy. Tissue sections from IGF-I deficient mice and controls were examined
for LC3 containing puncta as described in the Material and Methods section. A. Representative fluorescence micrograph of liver, kidney, and
quadriceps tissue slides from wild type and IGF-I-depleted mice stained with anti-LC3 rabbit polyclonal antibody. B. Number of LC3 puncta per nuclei
in tissues from wild type and IGF-I-depleted mice. At least 100 nuclei and 25 fields per slide were examined. C. Western blot analysis of LC3 protein
levels in liver, kidney, and skeletal muscle tissue lysates. 1,2,3: IGF-I-depleted mice starved for 24 hours. 4,5: IGF-I-depleted mice fed. 6,7,8: wild type
mice starved for 24 hour. 9,10: wild type mice fed.
doi:10.1371/journal.pone.0012592.g007
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1% penicillin-streptomycin according to standard culture protocol

[44]. For long term IGF-I stimulation experiments, cells were

plated at 16104 cells/cm2 and placed in MCDB 105 (Sigma, St

Louis, MO) with or without 40 ng/ml IGF-I (Gemini Biosciences,

West Sacramento, CA) and/or 10 nM rapamycin (Enzo Biolog-

icals, Plymouth Meeting, PA) for the indicated times after 24–

48 hours. Culture medium was replaced every 3–4 days. Mouse

Embryonic Fibroblasts (MEFs) from wild type and IGF-I deficient

mice were isolated from E19 embryos by trypsin digestion and

grown in MEM supplemented with 10% fetal bovine serum, 1%

L-glutamine, MEM non essential amino acids, and 1% penicillin-

streptomycin according to standard culture protocol [44]. All

experiments with MEFs were performed on log phase cultures 48–

72 hours after seeding at 16104/cm2.

Clonal growth
For clonal growth assay, cells maintained in MCDB 105

medium for 2 weeks +/2 IGF-I and/or rapamycin were harvested

in 2.5% trypsin-EDTA, resuspended in full growth medium and

36103 or 36104 cells were seeded in 10 cm2 plates and cultured in

full growth medium for 2 weeks. Plates were then rinsed with PBS

and stained with a 0.05% crystal violet-50% methanol solution.

Mitochondrial potential, mitochondrial mass, and
mitochondrial DNA content

For mitochondrial potential studies, cells were incubated with

5 mg/ml JC-1 (Molecular Probes, Carlsbad, CA) at 37 C in 5%

CO2 for 30 minutes, harvested in 2.5% trypsin-EDTA, resus-

pended in 200 ml full growth medium and analyzed immediately

with a Guava Easy-Cyte Mini using the Guava Express Plus

program. For mitochondrial mass evaluation, cells were incubated

for 30 minutes in 100 nM Mitotracker Green FM (Molecular

Probes, Carlsbad, CA) at 37 C, harvested in 2.5% trypsin-EDTA

and resuspended in 200 ml full growth medium and analyzed

immediately with a Guava-Easy-Cyte Mini using the Guava

Express Plus program.

Relative mitochondrial DNA content was evaluated according

to published methods [45]. Total DNA was extracted using

phenol/chloroform extraction using the phase-lock gel system

(5Prime Inc. Gaithersburg, MD) followed by ethanol precipitation

and a second phenol/chloroform extraction. Primers used to

amplify mitochondrial and nuclear DNA targeted the mitochon-

drial cytochrome C oxidase 1 subunit and the nuclear encoded

NADH dehydrogenase [ubiquinone] flavoprotein 1 gene or a

portion of the D loop in the mitochondrial genome and a

noncoding region of the telomerase gene [45,46].

Western blotting
30 mg of protein extracts were run on SDS-PAGE and

transferred onto Immobilon P PVDF membranes (Millipore,

Billerica, MA). Blots were incubated with antibodies against

LC3B, beta-Tubulin (Cell Signaling, Danvers, MA), p62 (Biomol,

Plymouth Meeting, PA), beta-actin (Sigma, St Louis, MO),

according to manufacturer’s instructions.

Fluorescence microscopy
Cells were plated at 104 cells/cm2 on coverslips. For LC3-GFP

live imaging, the coverslips were placed onto microscope slides

and micrographs were acquired immediately. For immunofluo-

rescence studies, cells were fixed in 4% paraformaldehyde,

permeabilized in 0.25% Triton, incubated overnight with rabbit

polyclonal anti-LC3B antibody (Cell Signaling, Danvers, MA),

stained with goat anti-rabbit Alexa Fluor 488 conjugated

(Invitrogen, Carlsbad, CA), counterstained with DAPI (Sigma,

St Louis, MO) and the coverslips mounted on microscope slides

with Vectashield mounting medium (Vector Laboratories,

Burlingame, CA).

Paraffin embedded formalin fixed tissue slides from wild type

and IGF-I-deficient mice were incubated overnight with rabbit

polyclonal anti-LC3 B antibody (Cell Signaling, Danvers, MA),

stained with a 1:2 mixture or goat anti-rabbit/donkey anti-goat

Alexa Fluor 488 conjugated (Invitrogen, Carlsbad, CA), coun-

terstained with DAPI (Sigma, St Louis, MO) and mounted with

Vectashield mounting medium (Vector Laboratories, Burlin-

game, CA). Images were acquired with an Olympus BX61

fluorescence microscope using the Slidebook 4 (version 4.0.1.44)

software.

Metabolic labeling
WI-38 cells were labeled in normal growth medium supple-

mented with 66 mCi/ml of 35S-Methionine (Perkin Elmer,

Bridgeville, PA) for 30 hour, washed with PBS and chased in

MCDB 105 with or without 40 ng/ml IGF-I for the indicated time

points. Protein lysates were subject to tri-chloro-acetate precipi-

tation and radioactivity was assessed through scintillation

counting.

Expression plasmids
The MigR1-GFP-LC3 retroviral plasmid was kindly provided

by Dr. Mauricio Reginato (Drexel University COM). The Mission

shRNA against ATG5 (cat: TRCN0000150645) was purchased

from Sigma Aldrich, St Louis, MO. The scramble shRNA

lentiviral plasmid was from Addgene, cat 1864, [24].

RNA extraction and qRT-PCR
Total RNA from shATG5 infected cells was extracted 72 h post

infection and qRT-PCR was performed using the Verso Sybr 1

step qRT kit (Thermo Scientific, Waltham, MA) in a Stratagene

Mx3000P thermocycler.

Statistical analysis
Unless otherwise stated in figure legend, all results are expressed

as average plus or minus standard deviation of three independent

samples. Significance was assessed with the unpaired, 2 tailed

Student’s t test.

Ethics Statement
This study was carried out in accordance with the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health under protocols approved by the IACUC committee of

Drexel University.
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