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ABSTRACT

Motivation: In the field of biomolecular text mining, black box
behavior of machine learning systems currently limits understanding
of the true nature of the predictions. However, feature selection (FS)
is capable of identifying the most relevant features in any supervised
learning setting, providing insight into the specific properties of
the classification algorithm. This allows us to build more accurate
classifiers while at the same time bridging the gap between the black
box behavior and the end-user who has to interpret the results.
Results: We show that our FS methodology successfully discards a
large fraction of machine-generated features, improving classification
performance of state-of-the-art text mining algorithms. Furthermore,
we illustrate how FS can be applied to gain understanding in the
predictions of a framework for biomolecular event extraction from
text. We include numerous examples of highly discriminative features
that model either biological reality or common linguistic constructs.
Finally, we discuss a number of insights from our FS analyses that
will provide the opportunity to considerably improve upon current
text mining tools.
Availability: The FS algorithms and classifiers are available in Java-
ML (http://java-ml.sf.net). The datasets are publicly available from the
BioNLP’09 Shared Task web site (http://www-tsujii.is.s.u-tokyo.ac
.jp/GENIA/SharedTask/).
Contact: yves.vandepeer@psb.ugent.be

1 INTRODUCTION
Biomedical text mining tools are crucial to process the vast
amount of information currently buried in millions of scientific
articles. During the last decade, natural language processing (NLP)
techniques have been implemented and successfully employed to
extract protein–protein interactions (Airola et al., 2008; Krallinger
et al., 2008; Van Landeghem et al., 2008) and gene–disease
associations (Krallinger et al., 2009; Reverter et al., 2008).

Recently, a more extensive event extraction challenge has
been proposed during the BioNLP’09 Shared Task (Kim et al.,
2009). The goal of this challenge is to reliably extract several
fundamental biological events from text. These events concern
protein metabolism (e.g. transcription and catabolism), protein
modification (e.g. phosphorylation) and fundamental molecular
events (e.g. binding and localization). Furthermore, regulatory
events and causal relations are represented by specific regulation
events. This extraction challenge provides the opportunity to model
more complex regulatory pathways than ever before. However,
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the increased complexity of the challenge severely degrades the
predictive capabilities of existing text mining algorithms.

The BioNLP’09 Shared Task provides the community with
standardized evaluation measures on a publicly available dataset,
enabling a meaningful comparison between various systems.
Analysis of the official results of the 24 participating groups
has indicated that supervised machine learning (ML) systems
using support vector machines (SVMs) dominate the top-ranked
systems (Kim et al., 2009). The most popular approach, using
carefully designed rules, generally provides higher precision (Cohen
et al., 2009). However, SVMs can also be tuned to achieve such
high levels of precision, while maintaining high overall performance
(Van Landeghem et al., 2010). As a consequence, SVMs are gaining
popularity in the BioNLP community.

Even though ML algorithms have been shown to achieve excellent
performance, their typical characteristic of being a ‘black box’
often prohibits the end-user to fully understand the nature of the
predictions. This is definitely the case for event extraction from text,
as typical datasets contain thousands of instances and thousands
of features. Feature selection (FS) can help to gain more insight
into this data abundance, by identifying features that are highly
discriminative and marking these for the end-user. At the same time,
this insight can be applied to develop more accurate NLP tools.

In this article, we present the first extensive study of FS in the
domain of BioNLP. Related work has mainly been involved with
feature-type selection (Saetre et al., 2008). In contrast, our study
analyzes not only the contribution of different feature types, but
also investigates the most important features within one specific
type, revealing interesting results both from a linguistic and a
biological point of view. This work builds on our previous study
that included preliminary experiments using a much less advanced
FS method (Van Landeghem et al., 2010).

In Section 2 of this article, we first present the methods used for
event extraction from text, feature generation, FS and classification.
Next, we demonstrate the stability of our FS algorithm, present the
classification results and analyze in depth the most discriminating
features for various event types (Section 3). We will indicate how
these results lead to more accurate models as well as provide
interesting insights for the end-user. Finally, Section 4 summarizes
the main conclusions of our work.

2 METHODS

2.1 Overview
In this study, we aim at extracting six distinct biomolecular event types from
literature: phosphorylation, binding, localization, catabolism, transcription
and (gene) expression. Each event can be characterized by one or more trigger
words, such as ‘heterodimerization’ or ‘binding partner’ for binding events.
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Fig. 1. Overview of the general event extraction pipeline. For each event type, candidate events in the training data are used to create a feature selector, which
is subsequently applied for FS of both training and testing instances. Finally, a classifier is built with the filtered training samples and applied for predicting
events in the test set.

These triggers are marked in the text and consequently linked to a set of gene
or protein names to define the full event. While most event types involve
only one specific gene or gene product (GGP), binding events can have any
arbitrary number of arguments (e.g. a complex formation of three GGPs). In
this work, we will only consider binding events involving one GGP (‘unary
binding’, e.g. protein–DNA binding) or two GGPs (‘binary binding’, e.g.
protein–protein interaction), as the training data does not contain sufficient
instances to extract more complex binding events.

After having extracted candidate events from the text (Section 2.3),
we generate a wide variety of features, including lexical and syntactic
patterns from the sentence (Section 2.4). This procedure results in rich
vectors containing thousands of features. Unfortunately, some of these
features create unnecessary noise for the classifier. To compensate, our FS
algorithm only keeps the most informative features, drastically reducing the
dimensionality of the feature vectors (Section 2.5) and thus the complexity
of the classification algorithm (Section 2.6).

Figure 1 presents a schematic overview of the extraction pipeline.

2.2 Text processing
To extract events from scientific articles, the text first has to be transformed
into a machine readable format. The experiments described in this article
are all conducted on the dataset provided by the BioNLP’09 Shared Task,
consisting of 800 training articles and 150 test articles, all indexed by
PubMed. The distribution of this data by the Shared Task organizers also
contains additional data useful for text processing.

For each article in this dataset, sentence and word boundaries are
unambiguously defined. Furthermore, GGPs are annotated in both training
and testing data, while trigger words are only marked in the training set.
Finally, each word is annotated with its part-of-speech tag, e.g. ‘noun’ for
‘expression’. These annotations are produced by syntactic parsers and are
crucial to understand the semantics of a sentence, as part-of-speech tags can
discriminate between various word meanings (e.g. ‘form’ being either a noun
or a verb).

To enable in-depth analysis of grammatical structures using dependency
parsing, we have included the Stanford parser (de Marneffe et al., 2006) in
our framework. The dependency graph of a sentence contains the informative
words of the sentence as nodes, while the edges express grammatical relations
between those words. Dependency parsing is widely used for extracting
relations from text, as it provides a compact and informative representation
of the sentence structure. An exemplary dependency graph is depicted in
Figure 2.

2.3 Instance creation
Candidate events are formed by combining a trigger with GGPs co-occurring
in the same sentence. These trigger words are selected from a dictionary
created from training data. To compose such a dictionary, we calculate the
importance of an event trigger ti for a particular event type T : Imp(tT

i )=
f (tT

i )/
∑n

p=0 f (tT
p ), where f (tT

i ) is the frequency of the event trigger ti of

Fig. 2. Dependency graph for the sentence ‘The tyrosine phosphorylation of
STAT1 was enhanced significantly.’ Words of the sentence form the nodes
of the graph, while edges denote their syntactic dependencies. The most
frequently occurring dependency abbreviations are listed on the right.

event type T in a training corpus, divided by the total number n of all event
triggers of that type T in the training corpus (i=0,...,n). Subsequently, we
apply a cut-off value of 0.005, keeping only those triggers that are sufficiently
informative.

2.4 Feature generation
For each candidate event in the training data, the feature generation module
extracts various patterns, including bag-of-word (BOW) features, trigrams,
vertex walks and information about the event trigger. These patterns are
subsequently used as matching criteria when building the feature vectors for
the test set.

As the various feature types and their relative importance for classification
are the main topic of this article, we present a short overview in this section,
while referring to Van Landeghem et al. (2010) for details.

2.4.1 Trigram features Trigrams are formed by combining three
consecutive words in the subsentence delimited by the trigger and GGP
offsets in the text. They capture common phrases, e.g. ‘high levels of’. GGP
names are blinded in the text, meaning that the GGP name is substituted by
the string ‘protx’, e.g. ‘transcription of protx’.

2.4.2 Trigger features

(1) The specific event trigger is highly relevant to the classifier, thus its
lexical tokens are added as features (e.g. ‘degradation’).

(2) The part-of-speech tags of the trigger words are also included as
syntactic features (e.g. ‘noun’).
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Table 1. Dimensionality of the various datasets

Dataset Total number Percentage Size of
of instances of positives (%) feature set

Catabolism 264 39 1826
Phosphorylation 318 51 2121
Binary binding 2332 8 10 958
Unary binding 3612 14 20 058
Localization 3791 39 18 537
Expression 6347 25 28 384
Transcription 6895 7 29 941

Binding events are covered by two distinct data sets, involving either one (‘unary’) or
two (‘binary’) distinct GGPs.

2.4.3 Vertex walks To incorporate information derived from dependency
parsing, we analyze the smallest subgraph including all relevant nodes for
the trigger and the GGP names. For each edge in this subgraph, we create a
pattern using the information from the nodes in combination with the specific
dependency relation.

(1) For the lexical variant, blinding is applied to trigger words and
GGP names, resulting in highly general patterns such as ‘trigger
preposition-of protx’.

(2) The syntactic counter-part uses the part-of-speech tags of the words
on the nodes, e.g. ‘noun preposition-of noun’.

2.4.4 BOW features BOW features incorporate all words occurring as
nodes on the dependency subgraph. They include highly informative words
such as ‘heterodimers’.

A final post-processing step in the feature generation module applies
stemming to all lexical patterns, using the Porter stemming algorithm (Porter,
1980). This algorithm maps words to their stem by applying a suffix-striping
algorithm (e.g. ‘homodimer’ is the stem of ‘homodimerization’). On top of
blinding certain words (e.g. protein names), stemming further generalizes
the feature patterns. Generalization is crucial for a text mining framework,
as it enables extraction and prediction of events concerning previously
unpublished genes.

Table 1 presents an overview of the datasets. The number of instances
ranges from 264 to 6895, while the dimensionality of the feature sets lies
between 1826 and 29 941 features, correlating strongly with the number
of instances. Finally, class balance varies from only 7% positives to 51%
positives.

2.5 Feature selection
To perform FS we used the recently introduced concept of ensemble
FS (Saeys et al., 2008) for which implementations are available in Java-
ML (Abeel et al., 2009). Ensemble FS builds on the idea of ensemble
classification by using multiple weak feature selectors to build a single robust
one. These weak feature selectors are created by bootstrapping the training
data and then building an SVM. The weights of the support vectors determine
the rank of the features, and individual rankings are aggregated in a consensus
ranking using linear aggregation (Abeel et al., 2010). Bootstrapping is done
as sampling with replacement to obtain a bootstrap of the same size as the
training set. Training sets for the individual runs are created by sampling
without replacing 90% of the entire training set.

Stability of feature rankings is measured using the consistency index as
defined by Kuncheva (2007):

KI(fi,fj)= r ·N −s2

s ·(N −s)

where fi and fj are the top features of ensemble ranking i and j, s=|fi|=|fj|
denotes the signature size, r =|fi ∩fj| equals the number of common elements

in both signatures and N represents the original number of features. A higher
Kuncheva index indicates a larger number of commonly selected features in
both signatures.

The signature size can either be expressed as the total number of retained
features, or as the percentage of the feature space that is retained after FS. For
knowledge discovery, we typically want the signature size to be small enough
to analyze manually. For classification, however, classification performance
and feature reduction have to be optimized jointly.

2.6 Classification and evaluation
Our datasets consist of thousands of instances and thousands of features
(Table 1). On top of these high-dimensional properties, there is a class
imbalance of up to 93% negatives. To classify this data, we used the
SVM implementation from LibSVM (Chang and Lin, 2001) as provided
in WEKA (Hall et al., 2009). A radial basis function is selected as kernel
for this binary classifier and parameter tuning is implemented with a 5-fold
cross-validation loop on the training data (Van Landeghem et al., 2010).

The final predictions are evaluated by the golden standard evaluation script
provided by the BioNLP’09 ST organizers, which provides precision, recall
and F-measure for each event type individually, while also calculating global
performance over all event types together.

3 RESULTS
This section presents the main results of our study. First, we
discuss the results for FS stability (Section 3.1) and describe the
classification results of the enhanced framework (Section 3.2).
Further, Section 3.3 discusses the relative importance of the various
feature types and finally, Section 3.4 offers many in-depth analyses
of the discriminative power of individual features.

3.1 Stable FS
Figure 3 plots the distribution of the FS stability in function of the
number of bootstraps used for the consensus ranking. From this
figure, it is clear that using more bootstraps to create the consensus
ranking has a beneficial effect on the stability of the selected features.
Even though there are still small gains, the stability improvements
seem to saturate at about 60 bootstraps.

While the figure is generated from the dataset on unary binding,
similar graphs are obtained for the other six datasets (data not
shown). The increase in stability from baseline to a 100 bootstrap
consensus ranking is between 20% (on the transcription set) and
43% (on the protein catabolism set). More stable FS means less
variation of the selected features, which has two main benefits.
First of all, stable FS identifies more meaningful features and
allows the construction of better performing classifiers (Section 3.2).
Furthermore, it enhances the interpretability of the selected features
(Sections 3.3 and 3.4).

3.2 Enhanced accuracy and reduced dimensionality of
event classification

When irrelevant features can be eliminated from the dataset, an SVM
should have an easier task distinguishing true predictions from false
ones, resulting not only in faster classifiers but also in enhanced
performance. To test this hypothesis, we evaluated the performance
of the classifier when using only a small fraction of the original
feature space. We compare these results with the global baseline
performance of our system (65.02% F-score). This baseline is a
strong performing classifier to compare against, as it is produced by
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Fig. 3. FS stability improvements by using more bootstraps for the unary
binding event. Distributions are plotted for 10, 30, 60 and 100 bootstraps and
the baseline FS when retaining 25% of the features. The stability is measured
with the Kuncheva index between all pairwise combinations of consensus
rankings. Similar graphs are obtained for the other six datasets.

Table 2. Classification performance for all 100 FS runs, showing minimum,
maximum and average performance for global event extraction

Signature Minimum Maximum Average
size (%) F-measure (%) F-measure (%) F-measure (%)

75 64.85 65.33 65.26
50 65.60 66.43 65.88
30 64.94 66.60 65.86
25 65.51 66.82 66.14
20 65.08 66.56 65.85
10 61.75 64.90 63.59

The initial baseline without FS is 65.02 F-score.

the system ranking third out of 24 participants in this subchallenge
of the BioNLP’09 Shared Task (Kim et al., 2009).

Table 2 presents the classification results when incorporating FS.
Evaluation is performed on 100 distinct FS runs, and the table reports
on minimum, maximum and average performance across these
runs. The calculated average values clearly show that FS improves
the classification performance: the combined model consistently
outperforms the baseline performance at signature sizes of ≥20%.
Further experiments indicated that performance peaks around 25%
of the feature space with minimal variance between the folds (data
not shown). Performance starts dropping below baseline with a
signature size of about 10%.

These results prove that our FS algorithm successfully discards
irrelevant features, producing a dimensionality reduction of 75%
and average classification improvement of 1.12% F-score. As this
result validates the output of the FS algorithm, it also creates the
opportunity to analyze the top-ranked features in more detail. By
analyzing which features are highly important to the SVM, we
will be able to gain some insight into this ‘black box’ algorithm.
This is not only beneficial for the end-user, providing clues why
events are predicted, but will also be applicable for enhancing
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Fig. 4. FS order for the dataset on unary binding. The x-axis shows the total
fraction of selected features in the feature set, while the y-axis displays the
fraction of features of one specific feature type. The black line indicates a
random FS baseline method.

the implementation of ML frameworks for event extraction. Both
applications are discussed in the next two sections.

3.3 Relative importance of feature types
Section 2.4 discussed the various classes of feature types used in
our framework. To assess the relative importance of each type, we
have analyzed the consensus ranking produced by aggregating the
results of the 100 FS runs. Figure 4 details the results for the dataset
on unary binding. Highly similar graphs were obtained for the other
datasets and overall conclusions follow the same trend.

Figure 4 depicts the relative rate at which each of the feature types
is being selected at each step of the FS algorithm. This analysis
shows that the features expressing syntactic information about the
trigger words (Section 2.4.2.2) are overrepresented in the top-ranked
features, i.e. they are being selected first. About 90% of all syntactic
triggers are present in the top 5% of the consensus ranking and all
of them are present within the top 20% features.

At <50% of the total feature space, all lexical information about
triggers (Section 2.4.2.1) as well as all BOW features (Section 2.4.4)
are also selected. Consequently, these feature types appear to be
highly relevant and include practically no irrelevant features.

Vertex walks express grammatical relations between the words of
the dependency graphs. The features of the syntactic variant (Section
2.4.3.2) are highly overrepresented in the top 20% of the ranking, but
their relative increase diminishes afterwards. The lexical counterpart
(Section 2.4.3.1) appears to be much less informative in general.

Finally, trigrams (Section 2.4.1) resemble the baseline in the top
70% of the features, and form the entire last 20% of the ranking.
Obviously, the feature generation method produces many irrelevant
trigrams. We have analyzed these bottom-ranked trigrams and found
that many originated from three subsequent words spanning multiple
phrases, such as ‘subunits and the’. Here, the conjunctive ‘and’ links
two distinct noun phrases, and it could thus be more beneficial to
extract trigrams only from within the same noun or verb phrase (e.g.
‘interacts directly with’).
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abund,accumul,appear,express,import,

local, mobil,presenc,present,releas,
secret, tax-express, transloc,

Fig. 5. The most discriminative lexical triggers for localization events.

3.4 Individually discriminating features
To gain even deeper insight into the most discriminating features, we
have analyzed the feature ranking for each distinct event type across
all 100 folds. For each ranking, the top 100 features were taken into
account. Even though this top 100 is generally too small to capture
the complexity of event extraction in a classification setting, analysis
of the most frequently occurring features in the top 100 provides
strong clues of the most discriminating features and allows us to
learn interesting aspects of the feature generation process.

Each individual feature appearing at least once in the top 100
is assigned a score, by counting the number of times it occurs in
a top 100 and assigning higher weights to higher ranked features.
Subsequently, we have generated tag clouds of these features, scaling
their font size according to their weight, and applying a color-coding
scheme that shows whether the feature mainly occurs in negative
samples (bright red), in positive samples (blue) or equally in both
(purple). To correct for the large class imbalance present in most
datasets, we have normalized the actual rate with the expected rate
in each dataset, by taking into account the specific class distribution.

In this section, we will discuss some of the most interesting tag
clouds in detail. The chosen tag clouds represent various event types
as well as various feature types, and the words appearing in them
are transformed to their stemmed and lowercase variants.

Figure 5 shows the most informative trigger words for the
Localization dataset, identifying crucial words such as
‘local(ization)’ and ‘secret(ion)’ as highly relevant trigger
words for this dataset. However, at the same time we notice that
‘express’ and ‘presenc/t’ also rank high, but indicate negative
events. Consequently, these trigger words should probably have
been eliminated from the dictionaries in the first place. Indeed, the
formula for Imp(tTi ) does not take into account the balance between
positive and negative examples for a certain trigger (Section 2.3).
It would thus be beneficial to incorporate this information into
the formula, eliminating negative candidate events even before
classification, while at the same time reducing the dimensionality of
the datasets. However, this is a complex problem as the frequency
of trigger words is likely to be different in the training and testing
data.

There is another lesson to be learned from Figure 5: two stemmed
words ‘presenc’ and ‘present’ are treated as distinct triggers, even
though they refer to a similar concept. This finding indicates an
important shortcoming of stemming, which applies simple suffix-
striping rules but does not map similar concepts to the same word.
However, lemmatization could solve this problem and provide even
better generalization of the feature vectors.

As a next example, Figure 6 presents the most informative
trigrams for the transcription dataset. The pattern ‘transcript factor
protx’ strongly hints toward a negative example, as it indicates that
the text defines the protein as a particular transcription factor rather
than actually discussing transcription of that protein.

Fig. 6. The most discriminative trigrams for transcription events.

Fig. 7. The most discriminative trigrams for phosphorylation events.

In contrast, the framework has found several interesting positive
patterns involving mRNA expression. ‘mRNA’is also selected as the
most informative BOW feature for transcription (data not shown).
This clearly shows that our framework is capable of deducing
relevant biological knowledge from the training data, without having
to turn to external databases or expert knowledge. This characteristic
is very valuable, as an ideal text mining framework does not rely on
any external information, but can instead process information not
yet indexed in external databases.

The tag cloud for trigrams in the phosphorylation dataset shows
similar examples involving ‘i kappa b alpha’ (Fig. 7), while
immediately indicating a limitation of the feature representation:
patterns of more than three words cannot be efficiently captured.
While the various parts are present (‘i kappa b’ and ‘kappa b
alpha’), it could be valuable to create additional features considering
N-grams with N >3 in a new version of the text mining algorithm.

An additional problem is caused by the heterogeneity of word
usage by various authors, an intrinsic property of natural language.
Indeed, in some of the text, ‘i kappa b alpha’ is referred to as
‘iKappaBAlpha’, ‘IkappaB-alpha’ or ‘I kappa B-alpha’. Our current
feature vectors are incapable of linking these terms to the same
concept. Again, a lemmatization or dictionary look-up approach
could prove to be of value in these cases.

Further analyzing other lexical patterns of the Phosphorylation
trigrams, we find the pattern ‘phosphoryl of protx’ to indicate
a strong positive, while ‘phosphoryl by protx’ leads to negative
events. While this seems counter-intuitive at first sight, it can be
explained by taking the definition of the Phosphorylation event into
account: the argument of the event should always be the protein
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Fig. 8. The most discriminative lexical vertex walks for (binary) binding
events.

that is phosphorylated. In terms of the BioNLP’09 Shared Task
data, the pattern ‘phosphoryl by protx’ would lead to a regulation
event in which a protein regulates phosphorylation of yet another
protein. Even though these regulation events are out-of-scope for the
current study, we conclude that the classifier correctly labels them
as negatives in the Phosphorylation dataset.

Finally, interesting linguistic patterns can be found when
analyzing the tag cloud of lexical vertex walks in the dataset on
binary binding (Fig. 8). When a direct link exists between the
two proteins involved, this strongly points to a negative example
(e.g. ‘protx conj_and protx’ or ‘protx abbrev protx’). On the other
hand, the nature of the link between a trigger and a protein is
highly informative (e.g. ‘trigger prep_between protx’or ‘protx nsubj
protx’). We note that most of the highly ranked vertex walks involve
nodes that have been blinded, confirming the usefulness of the
blinding step to improve generalization (Section 2.4).

4 DISCUSSION AND CONCLUSION
This article presents the first extensive study on FS applied to
event extraction from biomedical texts. Thorough analyses have
shown that our FS method based on SVMs correctly models feature
interdependencies and is thus well suited to tackle text mining
challenges. We have shown that our FS approach can eliminate up
to 90% of all features before it drops below the baseline without FS.
Classification improves most when eliminating 75% of all features,
considerably reducing dimensionality of the datasets. This peak is
not at the same cutoff for all datasets and future work could explore
how this signature size can be optimized for each individual event
type.

While FS stability is a valuable asset of an analysis as it improves
the analytical power of experts, it is crucial to optimize it in
conjunction with classification performance. It is trivial to create
a perfectly stable feature selector by always taking the first x
features, but such a feature selector would never offer new insights.
However, we have shown that our ensemble FS approach not
only provides more robust feature selectors, but also improves

Fig. 9. Text example from PMID:9278334. Three distinct event types are
discussed: transcription (green, previous sentence), binding (purple, first
sentence) and phosphorylation (red, second sentence). The relevant trigger
words are ‘binding complex’ and ‘phosphorylation’ (underlined). Relevant
BOW features include ‘mRNA’, ‘DNA’, ‘binds’, ‘promoter’ and ‘tyrosine’.
Finally, there is a match with the trigram ‘tyrosin kinas protx’. All highlighted
words help the reader find relevant clues for each event type.

classification performance and provides insight into the predictions
of the black box model of ML methods.

Analysis of the top selected features has shown various interesting
characteristics, both in terms of biology and from a linguistic point
of view. Some of these insights are illustrated in Figure 9, which
depicts a text sample highlighting top-ranked features. These lexical
constructs provide interesting clues about predicted events and help
the reader to better understand the nature of the predictions made
by the SVM classifier.

Furthermore, the feature analysis has given us an in-depth
understanding of the feature generation algorithms and ideas on
how to improve on these. Our analyses have shown a number of
interesting shortcomings in current feature generation algorithms.
As an example, improvements to the trigger detection algorithm
would allow us to reduce the number of candidate events as these
sentences will no longer be considered to be putative candidate
events and the classification model can focus in truly distinguishing
between candidates. However, due to the complex nature of the event
extraction task and varying properties between training and test set,
improving trigger dictionaries is far from trivial.

Another shortcoming that should be addressed is the use of
stemming. Clearly ‘present’ and ‘presenc’ both represent the same
concept, but they occur as separate features when using stemming,
which—though widely used—essentially just removes suffixes.
Lemmatization would provide a viable alternative, further reducing
the sparseness of the feature vectors and creating more general
feature patterns. Unfortunately, lemmatization requires a lot more
work up-front as it needs a complete vocabulary and morphological
analysis to correctly lemmatize words.

An additional improvement for the lexical features could be the
inclusion of N-grams for N >3. Trigrams are unable to capture word
groups longer than three words, while the feature clouds indicate
that such features could be relevant for classification. It would
additionally make sense for all N-grams to only include patterns
extracted from within a single phrase. We regard the numerous
opportunities for improvement discussed in this article as interesting
future work.

To conclude, we would like to reiterate that stable FS enables an
in-depth analysis of discriminative features and provides insight in
the different steps of biomedical text mining. Furthermore, our FS
algorithms allow us to build more cost-efficient classifiers which
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outperform baseline classifiers while only using a fraction of the
features. Finally, stable feature selectors can guide the user of
prediction software through the results of automatic discovery by
highlighting discriminative features used during classification.
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