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Abstract
NMR chemical shifts provide important local structural information for proteins and are key in
recently described protein structure generation protocols. We describe a new chemical shift
prediction program, SPARTA+, which is based on artificial neural networking. The neural network
is trained on a large carefully pruned database, containing 580 proteins for which high-resolution X-
ray structures and nearly complete backbone and 13Cβ chemical shifts are available. The neural
network is trained to establish quantitative relations between chemical shifts and protein structures,
including backbone and side-chain conformation, H-bonding, electric fields and ring-current effects.
The trained neural network yields rapid chemical shift prediction for backbone and 13Cβ atoms, with
standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25 and 0.49 ppm for δ15N, δ13C′, δ13Cα, δ13Cβ,
δ1Hα and δ1HN, respectively, between the SPARTA+ predicted and experimental shifts for a set of
eleven validation proteins. These results represent a modest but consistent improvement (2–10%)
over the best programs available to date, and appear to be approaching the limit at which empirical
approaches can predict chemical shifts.
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Introduction
NMR chemical shifts have long been recognized as important sources of protein structural
information (Saito 1986; Spera and Bax 1991; Wishart et al. 1991; Iwadate et al. 1999; Wishart
and Case 2001). During protein structure calculations, chemical shift derived backbone φ/ψ
torsion angles (Luginbühl et al. 1995; Cornilescu et al. 1999; Shen et al. 2009) are often used
as empirical restraints, complementing the more traditional restraints derived from NOEs, J
couplings and RDCs. More recently, several approaches for generating protein structures have
been developed which rely on backbone chemical shifts as the only source of experimental
input information (Cavalli et al. 2007; Shen et al. 2008; Wishart et al. 2008). The success of
these methods hinges on the accuracy at which chemical shifts can be related to protein
structure. Although chemical shifts can be computed for known structures by de novo
computational methods (Dedios et al. 1993; Xu and Case 2001; Vila et al. 2008; Vila et al.
2009), database-derived empirically optimized methods yield lower root-mean-square (rms)
differences between observed and predicted values. Recent programs of this latter class include
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ShiftX (Neal et al. 2003), SPARTA (Shen and Bax 2007), and Camshift (Kohlhoff et al.
2009), and these are the chemical shift prediction methods used in chemical shift based
structure prediction efforts.

The ShiftX program actually derives predicted 1H, 13C, and 15N chemical shifts from atomic
coordinates using a hybrid approach which employs a pre-calculated, database-derived
chemical shift hypersurface in combination with classical or semi-classical equations for ring
current, electric field, hydrogen bonding and solvent effects. SPARTA is an empirical method
which searches a database of assigned proteins of known structure for triplets of residues that
most closely match structural and sequence characteristics of any triplet of residues in the query
protein. Camshift is a recently introduced program which predicts chemical shifts using an
empirically derived complex polynomial function to correlate interatomic distances with
chemical shifts. A neural network based method, known as PROSHIFT (Meiler 2003), also
makes good chemical shift predictions, albeit at an accuracy slightly below those of the more
recent programs.

In this work we introduce the program SPARTA+, also based on the artificial neural network
protocol, to predict chemical shifts for backbone and 13Cβ atoms in proteins. Compared to
PROSHIFT, SPARTA+ uses an approximately two-fold larger protein database, recently
developed for the program TALOS+, which establishes the inverse correlation, i.e., predicts
backbone torsion angles from experimental chemical shifts (Shen et al. 2009). As described
below, the input parameters for the neural network training procedure differ from those of
PROSHIFT, and are more similar to those used by the program SPARTA, hence the naming
of the new program.

SPARTA+ employs a well-trained neural network algorithm to make rapid chemical shift
prediction on the basis of known structure. Validation on proteins not included in the training
set shows modestly improved agreement between the experimental chemical shifts and the
SPARTA+ predicted chemical shifts, over chemical shifts predicted by the original SPARTA,
Camshift, and ShiftX methods.

Methods
Preparation of the NMR database

This work utilizes the protein structure and chemical shift database, originally used to develop
the TALOS program (Cornilescu et al. 1999), and subsequently expanded to 200 proteins for
the SPARTA and TALOS+ programs (Shen and Bax 2007; Shen et al. 2009), and most recently
expanded further to 580 proteins for developing an empirical relation between chemical shifts
and the cis or trans conformation of Xxx-Pro peptide bonds by the program Promega (Shen
and Bax 2010). Nearly complete backbone NMR chemical shifts (δ15N, δ13C′, δ13Cα,δ13Cβ,
δ1Hα and δ1HN) for these proteins are taken from the BMRB (Doreleijers et al. 1999;
Doreleijers et al. 2005), with atomic coordinates taken from the corresponding high-resolution
X-ray structures in the PDB (Berman et al. 2000). Residues containing two or less assigned
chemical shifts were removed from the database. To minimize the influence of chemical shift
outliers, chemical shift values that deviate by more than five standard deviations from the
SPARTA-predicted values were also removed from the database. Details regarding the
preparation of the database, including calibration of reference frequencies, correction of 2H
isotope effects on δ13Cα and δ13Cβ, identification of H-bonds, etc., have been described
previously (Shen and Bax 2007; Shen et al. 2009).
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Neural network architecture and training
A single-level feed-forward multilayer artificial neural network (ANN) is used in this work to
identify the dependence of 15N, 13C′, 13Cα, 13Cβ, 1Hα and 1HN chemical shifts on the local
structural and dynamic information as well as amino acid type, and those of its immediate
neighbors.

This single-level neural network has an architecture very similar to that of the first level neural
network used by TALOS+ (Shen et al. 2009). The input signals to the first layer consist of tri-
peptide structural parameter sets derived from the above described protein structural database.
For predicting the chemical shifts of any given residue by SPARTA+, the structural input
parameters include (1) the backbone and side-chain torsion angles of this residue and its two
immediate neighbors, (2) information on interactions such as H-bonding, ring-current effects,
and electric field effects, and (3) predicted backbone flexibility (Fig 1A; Table 1, column
“Full”). Specifically, each tripeptide is represented by up to 113 nodes, which include for each
residue the twenty amino acid type similarity scores, ten numbers representing φ/ψ/χ1/χ2
torsion angles of each tripeptide (the φ value of the first and ψ value of the last residue of the
tripeptides are not used), three numbers for the structure-derived predicted N-H order
parameter S2 (Zhang and Brüschweiler 2002) of each residue, and twenty numbers representing
the H-bonding pattern for the tripeptide (Fig 1B). As was done for the TALOS+ program,
amino acid type similarity scores are taken from the 20×20 BLOSUM62 matrix, commonly
used for calculating sequence alignment (see
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=sef.figgrp.194). Considering the periodic
nature of the torsion angles, each of the φ/ψ/χ1/χ2 torsion angles is represented by its sine and
cosine values, thereby avoiding problems associated with the numerical discontinuities that
exist when defining torsion angles in the −180° to +180° range (Meiler 2003). For each of the
side-chainχ1/χ2 torsion angles, an additional Boolean number [1 or 0] is used to indicate
whether a χ1 or χ2 torsion angle is defined for any given residue. For example, [sin(χ), cos(χ),
1] denotes a valid χ1 or χ2 torsion angle; [0, 0, 0] is used for residues lacking χ1 or χ2 torsion
angles (χ2,1 torsion angles are used forχ2 of Thr, Val and Ile). The H-bonding input information
of each tripeptide is limited to the HN/Hα/O backbone atoms of the center residue, the carbonyl
O atom of the first residue, and the HN atom of the last residue. The H-bond information of
each atom is denoted by three geometric parameters (Morozov et al. 2004), representing the
distance between the donor hydrogen and the acceptor atom (H…A, dHA), the cosine value of
the angle at the acceptor atom (B–A…H, Φ), and the angle at the donor hydrogen (A…H–D,
Ψ), plus one additional Boolean number [1 or 0] to indicate whether the atom is H-bonded. So,
four numbers [dHA,cos(Φ),cos(Ψ),1] are used for each of the potentially H-bonded backbone
atoms, and [0,0,0,0] represents the absence of a H-bond.

In the hidden layer of the network, where each node receives the weighted sum of the input
layer nodes as a signal, 30 such nodes (or hidden neurons) are used. The output of a hidden
layer node is obtained through a nodal transformation function (Fig. 1B).

For the purpose of predicting the NMR chemical shifts from protein structural parameters, the
secondary chemical shift ΔδX(X = 15N, 13C′, 13Cα, 13Cβ, 1Hα or 1HN) of the center residue of
each tri-peptide in the database is used as the target of the first level network, after subtracting
the contributions from ring-current effects (δXring) and electric fields effects (δXEF), i.e.,

(1)

where δXrc is the random coil chemical shift of nucleus X, δXEF is calculated for 1Hα

and 1HN nuclei only, using the Buckingham method (Buckingham 1960) and atom selection
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criteria analogous to those of the ShiftX program (Neal et al. 2003), δXring is calculated for all
six types nuclei using the Haigh-Mallion model (Haigh and Mallion 1979; Case 1995), in the
same way as used by the SPARTA program (Shen and Bax 2007). Note that chemical shift
corrections from the neighboring residues, as used by the TALOS, SPARTA, and TALOS+
methods, are not included here when calculating the secondary chemical shifts,ΔδX, because
the neural network optimally accounts for those effects after training of the network on the
database. Each output value has one node with a linear activation function (f2(x) = x; eq 2).
The empirical relationship between the NMR secondary chemical shift and the protein
structural and sequence data, received by the network (Fig. 1B), is given by

(2)

with f1(x) = (1−e−2x)/(1+e−2x), and f2(x) = x. X1×113 is the input data vector consisting of 113
elements; W(1) and b(1) are the weight matrix and bias, respectively, for the connection between
the nodes in the input and the hidden layer; W(2) and b(2) are the weight matrix and bias, for
the connection between the nodes in the hidden and output layer; Δδ1×1 is the training target
or the output vector.

Neural network training
The weight and bias terms were determined by training the artificial neural network on the
580-protein structural database with associated chemical shifts, described above. To prevent
over-training, a three-fold training and validation procedure was employed for the neural
network model by dividing the input-output training dataset into three separate subsets,
followed by separate training of the corresponding neural networks. For each of these three
network optimizations, one third of the database was excluded from the training but then used
to evaluate the training performance of the neural network on the other two input-output subsets
during the training. This subset, referred as the validation dataset, was not used to calculate the
weight changes in this network. Training of the network was terminated when the performance
of the network on the validation dataset, represented by the mean squared errors between the
predicted values and targets, began to degrade. This procedure was repeated three times, each
time with a different one third of the database proteins assigned to the validation set.

Neural network testing and validation
In addition to the above three-fold training and validation, a second validation procedure was
performed for a set of eleven additional proteins, with also nearly complete chemical shifts, a
good quality reference structure, and no homologous protein (≥30% sequence identity) in the
580-protein database. This set of eleven proteins was identified after the original 580-protein
database had been assembled and used for training of the ANN.

The final predicted NMR chemical shifts are obtained from:

(3)

where ΔδXpred is the ANN-predicted secondary chemical shift (Eq 2) using the weights and
biases obtained from the above training steps, after averaging over the outputs from the three
separately trained networks.

Shen and Bax Page 4

J Biomol NMR. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Estimated errors for the predicted NMR chemical shifts
The original SPARTA program estimates the chemical shift prediction errors on the basis of
an empirical correlation between this error and the spread in chemical shifts among the 20 best
matched tripeptides (Shen and Bax 2007). In the present study, an estimate for the chemical
shift prediction error, σ, can be obtained by using an empirical Δδ(φ,ψ) error surface (Spera
and Bax 1991), which is calculated by:

(4)

where the prediction errors between ANN-predicted δ(φk,ψk)pred and experimental δ(φk,
ψk)obs chemical shifts are convoluted with a Gaussian function and then summed over all
residues (k) of the validation subsets in the training database, followed by normalization.

The SPARTA+ chemical shift prediction, accomplished by the above described ANN
procedure, is carried out by a program largely written in C++, which is ten times faster than
the original SPARTA method. On a PC with a single 2.4 GHz CPU, the SPARTA+ chemical
shift prediction takes ca 2 seconds for a 100-residue protein, the majority of which is actually
attributed to loading of the error surfaces.

Results and discussion
Neural network chemical shift prediction

For each type of nucleus (15N, 13C′, 13Cα, 13Cβ, 1Hα and 1HN), three artificial neural networks
were trained separately to predict the chemical shift, using a three-fold training and validation
procedure. The trained weights and biases obtained for each network are then used to calculate
the chemical shifts for each of a protein’s backbone and 13Cβ atoms (except for the N- and C-
terminal residues), using Eqs 2 and 3. The low rms difference between the predicted and
observed NMR chemical shifts, evaluated over the validation datasets (Table 1), indicates that
the networks are well-trained.

To further inspect the chemical shift prediction performance of the trained neural networks,
eleven additional proteins were used which were not present in any of the training or validation
sets. The chemical shifts predicted for these eleven proteins were obtained by averaging the
outputs of the three separately trained neural networks, obtained from the above described
three-fold training procedure. The predicted chemical shifts show good agreement with the
experimental chemical shifts, with standard deviations of 2.45, 1.09, 0.94, 1.14, 0.25, and 0.49
ppm for δ15N, δ13C′, δ13Cα, δ13Cβ, δ1Hα and δ1HN, respectively, including outliers. The rmsd’s
for δ15N, δ13C′ andδ13Cα in this set of eleven proteins are slightly lower than those for the
validation datasets used during the network training (Table 1), most likely the result of the
three-fold averaging procedure used for this set, which is not applicable for the validation sets
(see below). The performance of alternate chemical shift prediction programs was also
evaluated on this set of eleven proteins, including SPARTA (Shen and Bax 2007) and
webserver versions of ShiftX (Neal et al. 2003), CamShift (Kohlhoff et al. 2009), and
PROSHIFT (Meiler 2003).

Comparison of the predicted with experimental chemical shifts (Fig. 2A; Table S1) indicates
that SPARTA+ slightly outperforms SPARTA, with rmsd values that are ca 10–15% lower for
δ13Cα, δ1HN and δ1Hα, 5% for δ15N and δ13C′, with the smallest improvement (2%) for
δ13Cβ. SPARTA+ outperforms the ShiftX and Camshift programs by slightly larger margins
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(ca 10–20%) for all six nuclei (Fig. 2A), and the alternate ANN-based PROSHIFT program
by somewhat larger margins (Table S1). Interestingly, the fractional improvement in chemical
shift prediction accuracy is largest for 13Cα, often used as the most significant indicator of
protein secondary structure.

Although with Pearson’s correlation coefficients in the 0.7–0.8 range the prediction errors of
SPARTA and SPARTA+ are correlated (data not shown), there clearly is considerable scatter.
Averaging the predictions made by the original SPARTA program with those of SPARTA+,
using weight factors of 0.3 and 0.7, respectively, yields a slight further improvement in
prediction accuracy for 15N, 13C′, and 13Cβ (Fig. 2A; Table S1).

Impact of structural parameters on prediction accuracy
The SPARTA program uses the φ/ψ/χ1 torsion angles and residue type information of a query
tripeptide to predict the chemical shifts for the atoms of its center residue, followed by applying
corrections for the ring-current shift and H-bonding (H-bond distance only). Compared with
SPARTA, the SPARTA+ procedure considers more H-bond geometric factors for the H-
bonded atoms, as well as additional side-chain χ2 torsion angle information, electric field
effects, and structure-based prediction of backbone flexibility (see Methods; Table 1).

In order to investigate the impact of the different structural factors on the prediction accuracy
of SPARTA+, multiple neural networks with different input of the protein structural/dynamic
parameters and output of the (secondary) chemical shifts are evaluated. The network trained
with the full set of the listed input parameters (see Methods) is named “Full” (Table 1). Five
additional testing networks are implemented too and referred to as “Test I” (lacking the electric
field effect contribution relative to “Full”), “Test II” (additionally lacking the predicted
backbone order parameter), “Test III” (additionally lacking H-bonding information), “Test
IV” (additionally lacking χ2 torsion angles), and finally “Test V” (additionally lacking χ1
torsion angles). All five testing networks have 30 and 1 neurons in their hidden and output
layers, respectively; the number of input neurons are 113, 110, 90, 81 and 72, respectively
(Table 1; see Methods for details on the number of neurons/nodes used for each individual
structural/dynamic parameter). All testing networks are trained in the same three-fold training
and validation procedure, and using the same training database, as used for the network “Full”.
The accuracy of the chemical shift predictions performed by the trained testing networks is
used to evaluate the importance of the various parameters for chemical shift prediction (Fig.
2B).

When only the residue type, backbone φ/ψ and side-chain χ1 torsion angles, and ring-current
effects are considered (network “Test IV”), the ANN remains capable of capturing the relation
between NMR chemical shifts and protein structure reasonably well for all six types of nuclei
(Table 1). Compared with the original SPARTA method, the overall prediction accuracy for
the validation datasets is 1–2% worse for 13C′ and 13Cα predictions, 5–7% worse
for 13Cβ, 1Hα and 1HN, and about 2% better for the 15N (Table 1). Considering that the H-bond
correction applied by SPARTA after its initial database search contributes a ca 5%
improvement to its chemical shift prediction performance for 1Hα and 1HN, the accuracy of
the chemical shifts predicted by the Test IV network actually is quite close to that of the
database search component of the original SPARTA method, with the exception of the ca 5%
lower prediction accuracy for 13Cβ. This result applies for both the validation datasets in the
training database and for the eleven test proteins which are absent in the training database
(Table 1). Moreover, the three-fold training and validation procedure results in three networks
that are trained separately with “half-independent” training datasets, making the contribution
to chemical shift prediction errors from imperfect training data somewhat uncorrelated. As a
result, averaging the chemical shifts predicted by the three separately trained networks then
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further improves the accuracy of the predicted chemical shifts by 2–4% (Table S2), making it
slightly better than that of the SPARTA predicted shifts (except for 1H predictions).

The effects of side-chain conformation on backbone chemical shifts have been well recognized
(Dedios et al. 1993; Wang and Jardetzky 2004; Villegas et al. 2007; London et al. 2008; Mulder
2009). As indicated by the results of the Test V network, which lacks χ1 torsion angle input
information relative to network Test IV, the accuracy of the predicted chemical shifts decreases
by 5% for 15N and by about 1–2% for the other nuclei. When additionally considering the
impact of the χ2 torsion angle by comparing the difference in prediction accuracy of networks
Test III and Test IV, a small improvement (~3%) of the δ13Cα prediction is observed (Fig. 2B;
Table 1), but with the other nuclei virtually unaffected. Further inspection indicates that the
observed improvement in δ13Cα prediction is almost entirely accounted for by the aromatic
amino acids (Phe, His, Tyr and Trp) and Met (Fig. S2).

When H-bonding parameters are additionally included as input parameters when training the
network (Test II), accuracy of the predicted chemical shifts further increases, both for the
validation datasets in the training database and the set of eleven test proteins (Fig 2B; Table
1). The improvement in prediction accuracy upon of inclusion of H-bond input parameters is
largest for proton chemical shifts (10–13%), but an improvement of 1–3% is also seen
for 13C′, 15N, and 13Cα. A small further improvement (2–3%) in chemical shift prediction
accuracy of the network is observed for 13Cα chemical shifts when the predicted backbone
flexibility, as represented by the structure-predicted S2 order parameter of Zhang and
Brüschweiler (2002), is included with the input parameters (network Test I). Finally, the
accuracy of the network-predicted 1Hα and 1HN chemical shifts is improved by several
percentage points, when the electric field contribution to the 1Hα and 1HN chemical shifts is
excluded prior to the network training and added back later to the predicted chemical shifts (as
present by the network Full).

Application of SPARTA+ to CS-Rosetta
Recently introduced procedures to generate protein structures using NMR chemical shifts as
the only experimental input data have been quite successful in generating good quality models
for small to medium-sized proteins (Cavalli et al. 2007; Shen et al. 2008; Wishart et al.
2008). Here, we evaluate the impact of improved chemical shift prediction on the effectiveness
of one such protocol, CS-Rosetta (Shen et al. 2008).

CS-Rosetta utilizes NMR chemical shifts at two distinct steps of its protocol: fragment
selection, and selection of its final models. The impact of improved chemical shift prediction
on these two stages will be discussed below.

CS-Rosetta relies on the existence of a large database of protein structures from which
fragments are selected to function as building blocks for the query protein. Similarity between
the experimental chemical shifts of short segments in the query protein and chemical shifts of
fragments in the protein database is used to guide the selection of the most suitable fragments.
As the procedure requires a large database of high quality structures with known chemical
shifts, and the database of experimentally determined NMR structures remains relatively small,
CS-Rosetta utilizes a much larger database of X-ray structures, to which chemical shift values
are added by prediction methods. A considerable improvement was found when the program
SPARTA was used for adding chemical shifts to the protein database compared to predictions
obtained using a less advanced program, known as DC, even though the accuracy of chemical
shift predictions by SPARTA is only 10–20% better than those obtained by DC (Shen et al.
2008).
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Considering that SPARTA+ offers a similar level of improvement over SPARTA, a
comparable improvement in fragment quality might be expected when using the database with
more accurately predicted chemical shifts, where fragment quality is measured by the backbone
coordinate rms difference between the query segment and selected database fragments that
most closely match the experimental secondary chemical shifts. However, on average, we find
no improvement in fragment quality when using the protein structural database to which
chemical shifts have been added by SPARTA+ over the database where these chemical shifts
were added by SPARTA (data not shown). A likely reason for the lack of improvement is that
the Rosetta structure generation procedure only utilizes the backbone torsion angles (φ/ψ/ω)
from the selected fragments, whereas the improved chemical shift prediction above was shown
to be dominated by sidechain and hydrogen bonding contributions (Fig. 2B; Table 1).

The second stage where accuracy of the chemical shift prediction plays a role during the CS-
Rosetta protocol is during selection of the final models, from the very large ensemble of
structures generated by its Monte Carlo procedure. Model selection is based on a combination
of lowest empirical energy, as scored by the classic Rosetta program (Rohl et al. 2004),
combined with a weighted chemical shift error score,χ2, that accounts for the agreement
between experimental chemical shifts and values predicted for each model. These latter models
are full atom structures, including sidechains, H-bonds, etc, and improved ability to predict the
chemical shifts for such structures is therefore expected to somewhat increase the ability to
distinguish between accurate and less accurate models. We evaluate the impact of SPARTA+
on model selection for two proteins, DinI and Vc0424, neither of which is included in the
SPARTA+ training database. For both proteins, a standard CS-Rosetta procedure (Shen et al.
2008) is performed, using a SPARTA+ assigned protein structural database. For each protein,
the 10,000 structures generated by CS-Rosetta are then evaluated by calculating the total χ2

score between the experimental chemical shifts and values predicted either by SPARTA+ or
by SPARTA. For both proteins, models with the lowest total chemical shift χ2 value are closer
to the experimental reference structure (Fig. 3A,B,E,F) when using SPARTA+ chemical shifts.
This small advantage remains when combining the χ2 value with the Rosetta empirical energy
function in the standard manner (Shen et al. 2008), again yielding slightly lower backbone rms
differences between the models with the lowest total score and the corresponding reference
structures (Fig. 3C,D,G,H; Table S2).

Concluding Remarks
By using the artificial neural network approach, including a more complete consideration of
various structural/dynamic parameters in proteins, SPARTA+ is able to predict chemical shifts
for backbone and 13Cβ atoms with modestly improved accuracy, compared with other similar
chemical shift prediction approaches. The improvement of the accuracy in the SPARTA+
predicted chemical shifts is mostly credited to the additional structural/dynamic factors, i.e.,
χ2 torsion angle, H-bonding and electric fields, as well as an averaging procedure over the
outputs from three separated neural networks. Of all predicted chemical shifts, δ13Cα appears
to benefit most from incorporation of the structure-predicted effect of backbone dynamics,
used as an input parameter by SPARTA+. Conceivably, further improvements in this regard
could be obtained by recording very extended (~1 μs) molecular dynamics trajectories, and
averaging predicted chemical shifts over such a trajectory (Li and Brüschweiler 2010).
However, from a practical perspective, such a computationally demanding approach is not yet
practical.

Two interesting questions remain: Have we reached the limit of how well empirical methods
can predict chemical shifts from known structure, and what is the reason for such a limit?
Indeed the finding that only small increments in prediction accuracy are obtained when
including additional input parameters suggests that we are asymptotically approaching the limit
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at which empirical approaches can predict chemical shifts. One may wonder whether the
accuracy of the coordinates plays a role in prediction accuracy, for example. For the program
ShiftX, a correlation between the accuracy of the prediction and the quality of the structure
was reported (Neal et al. 2003). However, the SPARTA+ database uses far more stringent
criteria for its database, including a crystallographic resolution threshold of 2.4 Å. Comparing
the prediction accuracy for the 10 highest resolution structures (all ≤1Å) with those of the
lowest resolution structures (all at ~2.4 Å) also shows a modest improvement for the higher
resolution structure, although the effect is much smaller than found for ShiftX (Table S4).
When evaluating proteins of even lower crystallographic resolution, the SPARTA+ accuracy
further deteriorates (Table S4). However, with structures solved at a crystallographic resolution
of 1Å representing the most favorable case, and prediction errors remaining rather large, further
progress by using a better reference database will not substantially improve results any further.

At a crystallographic resolution of 1Å, atom positions are defined very well, and errors in
backbone torsion angles are small compared to the gradient of the chemical shift surface with
respect to these angles. However, two important sources of potential error remain. First, many
sidechains are highly disordered in solution as judged, for example, by NMR relaxation
measurements (Palmer 1997; Kay 1998; Yang et al. 1998; Lee and Wand 2001), an effect not
easily accounted for by an empirical approach such as SPARTA+. Second, ab initio
calculations indicate chemical shifts to be extremely sensitive to relatively small deviations
from ideal geometry and small steric clashes. Even at the highest level of resolution, the atomic
coordinate precision is usually insufficient to accurately account for such distortions (Karplus
1996), and empirical characterization by an approach such as SPARTA+ appears beyond reach.
Even if we were to add corrections for specific geometry distortions to the SPARTA+ values,
predicted by density functional theory (DFT) computations, this would not be of immediate
practical use, as the precise magnitude of a local geometric distortion almost invariably remains
subject to high experimental uncertainty.

Although the improvement of the chemical shifts prediction performance is modest, chemical
shift prediction by SPARTA+, using Eq 2 with its trained weights and biases, is more than an
order of magnitude faster than SPARTA. Moreover, the neural network equation (Eq 2) used
by SPARTA+ is differentiable with respect to the torsion angles, making it potentially possible
to be used (on the fly) by the protein structure calculation and refinement procedures in
combination with other, standard input restraints, in a manner similar to that proposed for
CamShift (Kohlhoff et al. 2009).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Illustration of a protein tripeptide chain together with factors that impact the backbone
NMR chemical shifts, considered by the SPARTA+ program. Factors used for prediction of
the chemical shifts of the center residue 15N, 13C′, 13Cα, 13Cβ, 1Hα and 1HN (shaded in grey)
include the backbone φ/ψ and side-chain χ1/χ2 torsion angles (colored orange), hydrogen
bonding (red), electric fields (green), and ring-current effects (aqua), as well as backbone
flexibility (blue). (B) Flow chart of the artificial neural network used in this work to study the
relation between the protein structural and dynamic parameters (input layer) and NMR
chemical shift (output layer).
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Figure 2.
Chemical shift prediction performance of various methods, evaluated over a set of eleven
proteins not included in the neural network training database. The prediction performance
(vertical axis) for the 15N, 13C′, 13Cα, 13Cβ, 1Hα and 1HN chemical shifts is represented by the
rms difference between the experimental and the predicted chemical shifts. Colors of the bars
indicate the program used for predicting the chemical shifts, as marked in the panel. The orange
bar corresponds to the weighted average (70%/30%) of the SPARTA+ and SPARTA predicted
chemical shifts. (B) Impact of various structural and dynamic input parameters on SPARTA+
chemical shift predictions. Dark blue columns correspond to using the full set of SPARTA+
input parameters; the adjacent 5 bars correspond to input parameters defined in Table 1. The
most right hand bar in each set corresponds to the original SPARTA prediction method.
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Figure 3.
CS-Rosetta model selection using either SPARTA+ or SPARTA chemical shift predictions.
For proteins DinI (A-D; PDB entry 1GHH (Ramirez et al. 2000)) and VC0424 (E-H; PDB
entry 1NXI (Ramelot et al. 2003)), 10,000 structures each were generated by a standard CS-
Rosetta protocol, using a protein structural database with chemical shifts added by SPARTA
+. For each CS-Rosetta model, the totalχ2 error function between the experimental chemical
shifts and values predicted by SPARTA+ (A,E) or SPARTA (B,F) are plotted against the Cα

coordinate rmsd relative to the experimental PDB structure. The re-scored Rosetta energy,
calculated by adding the scaled SPARTA+ (C,G) or SPARTA (D,H) chemical shift χ2 score
to the raw Rosetta energy, is also plotted and used to select the final models (Table S3).
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