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In this work, we study the collective behaviour of fish shoals in annular domains. Shoal mates
are modelled as self-propelled particles moving on a discrete lattice. Collective decision-
making is determined by information exchange among neighbours. Neighbourhoods are
specified using the perceptual limit and numerosity of fish. Fish self-propulsion and obedience
to group decisions are described through random variables. Spatio-temporal schooling
patterns are measured using coarse observables adapted from the literature on coupled
oscillator networks and features of the time-varying network describing the fish-to-fish infor-
mation exchange. Experiments on zebrafish schooling in an annular tank are used to validate
the model. Effects of group size and obedience parameter on coarse observables and network
features are explored to understand the implications of perceptual numerosity and spatial
density on fish schooling. The proposed model is also compared with a more traditional
metric model, in which the numerosity constraint is released and fish interactions depend
only on physical configurations. Comparison shows that the topological regime on which
the proposed model is constructed allows for interpreting characteristic behaviours observed
in the experimental study that are not captured by the metric model.
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1. INTRODUCTION

Fish schooling is an evolutionarily refined collective
behaviour that optimizes beneficial aspects of social
life, such as predator evasion and swimming efficiency
(e.g. Weihs 1973; Partridge 1982; Pitcher & Parrish
1993). Even the most primitive decisions of gregarious
fish, such as spawning and eating, are informed by the
climate within the school (Pitcher & Parrish 1993).
Schooling is characterized by alignment of bodies and
coordinated swimming velocity throughout the school
(Partridge 1982). In addition, this collective behaviour
is identified by characteristic spatio-temporal patterns
of the school, including relatively small distances
among adjacent individuals, hydrodynamically motiv-
ated staggering of leaders and followers, and sharp
delineation of the group as a whole in space (Weihs
1973; Partridge 1982).

The mechanics of schooling depends on the sensory
capabilities of each individual fish. Sensing, including
vision and chemical/flow sensing, determines schooling
behaviour (e.g. Partridge & Pitcher 1980). Fish schools
can be comprised of single or multiple species (Krause
et al. 1996, 2005), many or few fish (Partridge 1980),
experienced or novice foragers (Lachlan et al. 1998;
Reebs 2000, 2001), or shy or bold mates (Leblond &
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Reebs 2006). External stimuli generally affect schooling
tendency and can promote individual versus collective
behaviour. For example, schools can temporarily frag-
ment under perceived predation (Sumpter et al. 2008)
and can become more well defined under intense light
conditions or in the presence of leaders (Tegeder &
Krause 1995; Torisawa et al. 2007).

Mathematical models of collective behaviour fall into
two major categories, which consider the school as
either a continuum (e.g. Topaz et al. 2006), or as
a collection of individuals (e.g. Couzin et al. 2002;
D’Orsogna et al. 2006). Here, we take on an individ-
ual-based model as it lends itself to implementation in
our experimental study, where only relatively small
fish schools are considered.

Individual-based models have been extensively
studied in the literature (Aoki 1982; Niwa 1994;
Couzin et al. 2002; Erdmann et al. 2005). Group
mates are sometimes considered as self-propelled par-
ticles communicating through short- and long-distance
potentials (e.g. Niwa 1996; Olfati-Saber 2006; Chuang
et al. 2007; Li 2008). Alternatively, individuals’ inter-
actions can be described using behavioural rules that
simulate the complex decision-making in animal
groups (e.g. Parrish et al. 2002; Viscido et al. 2004;
Zheng et al. 2005). These models are capable of repro-
ducing different collective behaviours found in nature,
from swarming to highly polarized schooling, and
This journal is q 2010 The Royal Society
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allow for understanding important group reactions,
such as escaping from predation. Experimental vali-
dations of such models are presented in Aoki (1984)
and Viscido et al. (2007). Some models assume the
speed of individuals to be constant (e.g. Couzin et al.
2002; Kolpas et al. 2007, 2008), while a few others
describe the individual speed through a random vari-
able (Aoki 1982). A probabilistic speed can
approximate a more realistic condition of a wide range
of individual speeds. Important relationships between
experimental observations and modelling efforts are dis-
cussed in Sumpter (2006). While many of these models
examine realistic two- and three-dimensional environ-
ments, recently, one-dimensional problems have been
considered in the literature (Kolpas et al. 2007, 2008;
Yates et al. 2009). The reduction of the problem to
one dimension allows for highlighting specific features
of fish schooling, while limiting the computational
complexity to the core of the phenomenon.

We consider an individual-based model with both
deterministic and stochastic components. As in Aoki
(1982), we adopt a stochastic approach to describe
the fish self-propulsion. In addition, we partially
account for the complexity of fish decision-making
through a random variable that condenses the fish
will to follow the group motion, referred to as obedi-
ence. This is easily applicable to one-dimensional
models and a similar approach is proposed in Kolpas
et al. (2007). The parameter for the random variable
used to describe motion in the model is derived from
experimental observations. The effect of variations of
fish obedience on the collective behaviour of schools of
different sizes is also studied. Inspired by the transfor-
mative results in Ballerini et al. (2008) we use
topological distances to specify the information
exchange in the school. That is, we assume that each
fish interacts with a set of mates within its perception
range and that this set is selected using a random vari-
able. The cardinality of this set of neighbours is fixed
and depends on the fish species (Partridge 1981). We
implement our model in a one-dimensional environment
similar to Kolpas et al. (2007); however, we realize the
domain as a circle instead of the real line. Not only is
this a practical laboratory construction, the periodicity
inherent in the set-up inhibits individual isolation as the
group size increases and potentially enriches the collec-
tive dynamics of the group when compared with
infinitely extended domains. We introduce two coarse
observables to analyse fish schooling in the ring.
These observables are used to provide a first experimen-
tal validation of topologically identified interactions in
fish schools. In addition, we use tools from complex
systems and graph theory (e.g. Bollobas 1998; Gonzalez-
Miranda 2004; Wu 2007) to elucidate the role of each
fish in the school. By considering the network formed
by fish-to-fish interactions, we introduce significant
descriptors of fish schooling. We analyse degree centrality,
betweenness centrality and connectivity to provide useful
insight into the schooling phenomenon.

The paper is organized as follows. In §2, we describe
the mathematical model developed to study the school-
ing behaviour. In §3, we outline the experiment and
analyse results from live fish. In §4, we present a
J. R. Soc. Interface (2010)
parametric study of fish schooling. Discussion of the
results and conclusions are presented in §5. Appendix
A on graph theory results used in this paper appears
after the conclusions.
2. MODELLING

In agreement with traditional nomenclature, we define
a shoal to be a social aggregation of fish and a school
to be a group within the shoal that exhibits a collective
behaviour (e.g. Pitcher & Parrish 1993). The definition
of neighbours dictates the flow of information within
the group and is specific to the underlying modelling
framework. In metric models, information flow is exclu-
sively governed by the physical configuration of the
group (e.g. Aoki 1982; Couzin et al. 2002). In topologi-
cal models, animal perception is used to detach
information flow from geometrical constraints (Ballerini
et al. 2008).

A metric regime is often pursued in the modelling of
animal groups. This approach relies on the partition of
the animal perception region into physical zones within
which characteristic social behaviours are prescribed.
For example, the perception region of fish is generally
partitioned into the zones of repulsion, orientation
and attraction (Couzin et al. 2002). However, some rel-
evant observed features of schooling, such as
macroscopic variations of school physical dimension
and limits to physical perception, are better explained
by detaching information sharing from physical dis-
tances (Ballerini et al. 2008). Interactions among
topological rather than metric neighbours allow the
physical distance between neighbours to vary while
maintaining the flow of information among them.
This regime centres on the phenomenon of perceptual
numerosity that sets a critical limit of perceivable num-
bers and thus limits the degree of distribution of the
graph describing fish-to-fish interactions.

2.1. Shoal dynamics

We consider a shoal of N fish on a circular ring of radius
R centred at the origin O of a Cartesian coordinate
system Oxy. We assume that the time variable is dis-
crete and we use t [ Zþ to identify the generic time
instant. We also discretize the circular domain of the
position variable to CT cells, CT [ N. We assume
that there is no limit to the number of fish that can
reside in the same cell and we assume the fish to be
identical. At time t, the state of fish i in the shoal is
described by its position pi(t) and its heading hi(t).
The heading of fish i belongs to f21, þ1g, where þ1
denotes counterclockwise heading and 21 clockwise.
The cellular position along the ring belongs to f0, 1,
. . . , CT 2 1g. We denote the maximum possible cells
perceived by fish i in the direction of its heading as
the number of cells Cp. The region perceived by fish i
extends Cp cells from pi(t) in the direction of hi(t).

We employ a topological regime to define inter-
actions in the model. More specifically, we assume
that a fish interacts with at most n of its perceivable
shoal mates, where n is the numerosity constant. For
each time t, shoal mates of fish i are sought in its cell
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Figure 1. Schematic of a fish shoal on the discretized domain.
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pi(t). If fish i does not have at least n neighbours in its
cell, we extend our search in the direction of hi(t) by
adding cells until fish i has at least n potential neigh-
bours or until the perceptual limit of the fish is
reached. We choose at most n neighbours from this
set of perceived shoal mates by using a uniformly dis-
tributed random variable. At time t, we define the set
of topological neighbours of fish i as the indices of
these fish and denote this set as Ni(t). This selection
criterion causes interactions to be more probable
among fish that are physically proximal. Such fish
may visually occlude further shoal mates. Therefore,
neighbourhoods are affected by both the physical con-
figuration of the shoal mates and their perceptual
capability.

Figure 1 illustrates the neighbours’ selection algor-
ithm with two examples at a given time. Suppose
Cp ¼ 5 and n ¼ 3. Fish a in cell 0 has fish b, c and d
in cells 1 and 2 as topological neighbours, while it can
perceive fish b, c, d, e, f, g and h in the cell set f1, 2,
3, 4, 5g. Fish o in cell 13 has fish l, m and n in the
cell set f9, 10, 13g as topological neighbours, while
it can perceive fish i, j, k, l, m and n in the cell set
f8, 9, 10, 13g. Notice that fish l is a topological neigh-
bour of fish o while fish k is not, although they share
the same cell. According to our algorithm, we search
for fish o’s potential neighbours in cells 13, 12, 11 and
10 without finding at least three shoal mates. When
we examine cell 9, we have a total of four potential
neighbours from which to choose. The selection of
which three of these four shoal mates becomes a topolo-
gical neighbour is equally likely in our algorithm.

Interactions among shoal members at time t deter-
mine the desired heading for fish i in the ring. In
particular, the influence of interaction with neighbours
in Ni(t) is modelled through the ideal heading ĥi as

ĥiðt þ 1Þ ¼
hiðtÞ þ

P
j[N i

hjðtÞ
jhiðtÞ þ

P
j[N i

hjðtÞj
; ð2:1Þ

which reflects the propensity of a schooling fish to match
its heading to the headings of its neighbours. We note
that equation (2.1) is indeterminate when hi(t) ¼
2
P

j[Ni
hj(t). In this case, we let one’s own heading

dominate by setting ĥi(t þ 1) ¼ hi(t). Note that, if
n � N 2 1, topological neighbours coincide with
metric neighbours in an interaction region of Cp cells,
as further discussed in §5; and equation (2.1) reduces
to the alignment behaviour discussed for example in
Vicsek et al. (1995). Opinion dynamics problems are
often modelled using averaging rules similar to equation
(2.1) (Deffuant et al. 2001; Kozma & Barrat 2008). In
such problems, the set of neighbours is generally inde-
pendent of the individuals’ states. In contrast, the set
of neighbours depends on the individual heading and
position for the problem at hand. Analytical studies
on the convergence of opinion dynamics protocols can
be found for example in Bertekas & Tsitsiklis (1989),
Hatano & Mesbahi (2005), Porfiri & Stilwell (2007)
and Ren & Beard (2008).

To partially incorporate the complexity of live fish,
we introduce a parameter co [ [0,1] that dictates the
obedience of a fish to the heading model. The heading
J. R. Soc. Interface (2010)
hi(t þ 1) of fish i at time t þ 1 is a discrete random
variable which equals ĥ(t þ 1)i with probability co

and 2ĥ(t þ 1) i with probability 1 2 co. This approach
is also used in Kolpas et al. (2007).

Fish i’s discrete motion is modelled as an instan-
taneous jump of one cell length. We define a
parameter cv, such that 1 2 cv is the probability that,
at time t, fish i jumps a cell in the direction of its head-
ing. This parameter is set constant throughout the
shoal. For example, cv ¼ 0 indicates fish i jumps one
cell at every time step and cv ¼ 1 means that fish i
never moves out of its cell. This parameter can be
potentially identified through experiments on mean
fish speed.

The model for the cellular position of fish i on
the circle of radius R has the form of a differential
approximation, that is,

piðt þ 1Þ ¼ piðtÞ þ hiðt þ 1ÞV mod CTð Þ; ð2:2Þ

where V is the discrete random variable that equals 0
with probability cv and equals 1 with probability 1 2 cv.
It is necessary to take the position modulo CT to identify
cells across the x-axis depicted in figure 1. The governing
equations for our model are equations (2.1) and (2.2). In
a broad sense, the fish in the ring can be assimilated to
the colliding beads studied in Susca et al. (2007). In
this way, the decision-making process can be regarded
as the result of multiple collisions among the beads.

2.2. Coarse observables

In characterizing the consensus of the shoal on a
common heading, we use a discretized version of the
polarization adopted in Couzin et al. (2002)

PolðtÞ ¼ 1
N

XN
i¼1

hiðtÞ
�����

�����: ð2:3Þ

The tendency of a shoal to polarize corresponds to
the alignment of bodies exhibited by schooling fish.
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This quantity is in [0, 1], where Pol ¼ 1 means that
all shoal members have a common heading. For N
even, Pol¼ 0 means that N/2 fish have heading þ1
and N/2 fish have heading 21. For N odd, the smallest
attainable polarization value is Pol¼ 1/N, which occurs
when (N þ 1)/2 fish have heading +1 and (N 2 1)/2
fish have heading +1.

To examine the physical dispersion of the shoal at
time t, we recruit the order parameter used to describe
synchronization of phase oscillators in Kuramoto
(1984). We define the cohesion

CohðtÞ ¼ 1
N

XN
i¼1

e2ppiðtÞI=CT

�����
�����; ð2:4Þ

where I is the imaginary unit. The cohesion of a shoal
corresponds to the physical proximity of the fish. This
quantity is inherently normalized, that is, Coh is in
[0,1], where Coh ¼ 1 describes the coincidence of the
positions of all N fish and shoal members tend to be
equally spaced around the ring as Coh approaches 0.

The concept of average nearest neighbour is used in
Kolpas et al. (2007) to study collective behaviour
along a line. For the problem under investigation, this
quantity always approaches zero as the shoal’s size
increases owing to the finite number of cells on the
ring and is thus not considered in our study.
2.3. Network features

We complement the physical description of the fish
shoal in terms of the positions and headings of its
members by studying the properties of the network of
fish-to-fish interactions. We employ a graph theoretic
perspective to formalize a social description of the fish
shoal. A similar approach to building a graph based
on interactions is presented in Jensen (2008) to analyse
emerging network structures. We consider the fish indi-
ces V ¼ f1, . . . , Ng to be a set of vertices. At time t, we
define fish i interacting with fish j as fish i being a topo-
logical neighbour of fish j, that is i [ Nj(t). This
interaction is seen as information transferred from fish
i to fish j and is denoted as the directed edge (i, j) in
the edge set E. Thus, the shoal at time t can be
viewed as a directed unweighted graph G(t) ¼ (V, E(t))
that is constructed based on pi(t), hi(t) and the
random component in the formation of Ni(t). Notice
that the edge set E varies in time, thus yielding a
time-varying graph G. The network assembly allows
for the presence of bidirectional communication
between vertices. Such links can occur if fish occupy
the same cell or if they are in different cells while point-
ing towards each other. Further details on the
properties of graphs are presented in appendix A.
Here, we concisely introduce the main parameters
analysed for the graph representations of fish shoals.

We define a school to be a subgraph of G that has a
spanning tree, which corresponds to the physical
requirement of a path of information from an individual
fish to all other fish in the school. Consequently, a shoal
is the disjoint union of schools and the minimum
number of trees that span the graph is equal to the
number of schools in the shoal, denoted Ŝ . An
J. R. Soc. Interface (2010)
analogous measure of physical connectivity appears in
Kolpas et al. (2007), where group fragmentation based
on physical distance between shoal mates is defined.
Here, the minimum number of trees required to span
the network of interactions captures the connectedness
of interactions over the shoal. We normalize this
quantity in the range [0,1] by defining

S ¼ N �Ŝ
N � 1

: ð2:5Þ

Next, we place the individual fish in the context of
the shoal by using two different ideas of centrality of
a vertex in G, that is, degree centrality and betweenness
centrality. Degree centrality quantifies how connected a
given fish is to each other member of the shoal. The
complete graph maximizes degree centrality, with
each vertex having degree N 2 1. Thus, the degree
centrality of fish i is

dcðiÞ ¼ degoutðiÞ
N � 1

: ð2:6Þ

We notice that the degree centrality is scaled in [0, 1] and
that the out-degree of a vertex is used in accordance with
our definition of the graph Laplacian in appendix A.

The betweenness centrality of a fish quantifies its
importance in the overall information sharing of the
shoal. Measures of betweenness centrality are used to
study complex networks, such as social networks for
football tournaments (Bell et al. 1999), networks of con-
tacts for disease transmission (Girvan & Newman 2002;
Keeling & Eames 2005) and scale-free large technologi-
cal networks such as the Internet (Bollt & ben Avraham
2005). We define betweenness centrality for fish i as

bcðiÞ ¼ 1
ðN � 1ÞðN � 2Þ

X
a=b=i[V

sabðiÞ
sab

; ð2:7Þ

where sab is the number of shortest paths from vertex a
to vertex b and sab(i) is the number of shortest paths
from a to b which contain vertex i (e.g. Godsil &
Royle 2002). Betweenness centrality is also normalized
in [0, 1].
3. EXPERIMENT

As the experimental counterpart to the above illus-
trated modelling framework, in this section we study
the collective response of groups of gregarious fish
swimming in annular domains.

3.1. Experimental procedure

Experimental trials are conducted on members of a
shoal of zebrafish (Danio rerio) housed in a large
aquarium with dimensions 180 � 43 � 63 cm. The sub-
jects experience 10 h of light condition and 14 h of dark
condition daily and are fed twice daily. A sample of 15
fish from our shoal of 50 have mean body length of
2.2 cm from nose to peduncle, with standard deviation
(s.d.) of 0.18 cm. We define the average body length
(BL) as this mean value. The shoal is observed in an
annular opaque PVC tank (figure 2). The ring has a
mid-channel radius of R ¼ 14 cm, a semi-circular cross
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section of 5 cm radius and a wall thickness of 7 mm.
These dimensions are chosen corresponding to the aver-
age BL of the fish to encourage swimming along the
middle of the channel, while not discouraging reversal
of direction.

The ring tank is placed in a shallow observation
structure of dimensions 120 � 120 � 20 cm to account
for possible evacuation of the ring. Shoals of fish with
4–16 members are observed in the ring for 1 min inter-
vals and recorded using a Canon Vixia HG20 video
camera and ambient fluorescent lighting of the order
of 100 lux. For each shoal size, a representative 30 s
schooling event is selected. The events are analysed
using manual and automatic feature tracking in
PROANALYST, a motion analysis software (Xcitex Inc.
2006). Visual data largely require manual tracking
since the frame rate of the trials allows for a fish to com-
pletely reverse direction in one time step. During such
manoeuvres, large deformations in the fish body limit
the effectiveness of the automatic tracking feature of
PROANALYST. A single fish can be seen in figure 2,
with the widest part of its body tracked as it would
be by PROANALYST.

3.2. Parameter identification

Since zebrafish have acute vision, we estimate the per-
ceptual limit from the maximum angle that gives a
view unobstructed by the walls of the ring. The rays
in figure 2 display an estimate of this angle which we
approximate at 2p/3 rad. We take Cp ¼ bCT/3c,
where b†c denotes the floor function. In discretizing
the time variable, we take the characteristic time
between successive time steps Dt to be equal to the
acquisition period of the used video camera, that is,
33 ms. This corresponds to the time for a rapid heading
change of a typical shoal member and allows for accu-
rately discretizing in time the individual complex
motion. In discretizing the annular domain, we select
the cell size to be equal to 1 BL. As a consequence,
the ring is divided into CT ¼ 40 cells. The finite size
J. R. Soc. Interface (2010)
of cells in the ring practically accommodates for inter-
actions of individuals with other mates slightly behind
them (e.g. Aoki 1982). Such interactions are possible
owing to the experimental implementation of the one-
dimensional ring model with a finite cross-section
annulus.

Captured images are used to estimate the position
and velocity of the fish on the Cartesian plane with
origin at the centre of the ring. These quantities are
further manipulated to extract the reduced order
kinematics of the fish in the ring illustrated in §2.
We refer to the nomenclature in figure 2, in which
~ri ¼ ðxiðtÞ; yiðtÞÞ identifies the position of fish i and
~vi ¼ ðvxiðtÞ; vyiðtÞÞ is its velocity. The angular position
of fish i is ui(t) ¼ arctan(yi(t)/xi(t)) [ [0, 2p]. We dis-
cretize the position for fish i as pi(t) ¼ bCTui(t)/
(2p)c. We project the velocity onto the unit vector
~t i ¼ ðsin uiðtÞ;� cos uiðtÞÞ that is orthogonal to ~ri and
we take the sign of this projection as the heading hi(t).

We first analyse the motion of a single fish. We count
the number of time steps that a single fish remains in a
given cell as a fraction of total time steps analysed to
extract the velocity constant cv. Thus, 1 2 cv represents
the proportion of time steps when a fish jumps between
cells. From a sample of eight single fish, we find a mean
value of cv equal to 0.901 and standard deviation of
0.023, corresponding to a mean speed of 3 BL s21.
This implies that, for the selected space and time discre-
tization, remaining in the same cell is generally
preferred to jumping between cells.

The obedience constant co may be computed by
counting the number of turns made by a single fish as
a proportion of total time steps. However, isolating a
single fish in the ring may elicit an immobilizing fear
response, which means the heading remains constant.
This confounds the experimental estimation of co,
which is therefore taken as a varying parameter in our
study. We identify the number of topological neigh-
bours n by referring to the study of Tegeder & Krause
(1995) in which a stickleback is shown to perceive a
maximum of three to five shoal mates. We use the
limit of n ¼ 3 neighbours for the zebrafish, that are in
the same taxonomic infraclass as sticklebacks (Pitcher &
Parrish 1993). We note that the value of n is
indirectly correlated to the selected time step Dt since
the neighbour selection is a randomized process that
takes place at each discrete time instant. Decreasing
Dt would correspond to increasing the effective
numerosity of the fish, as each fish would practically
be able to process more information at each discrete
instant.
3.3. Data analysis

We present experimental results for shoals of 4, 8, 12
and 16 fish. Polarization data are reported in
figure 3a. A further insight into the polarization data
is possible by analysing the stacked normalized histo-
grams of shoal polarization in figure 3b. We compare
these data for four shoal sizes to the probability of
each polarization if every heading configuration was
equally likely. The probability distribution in this case
can be explicitly computed by a counting argument.
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Table 1. Experimental data in the form of mean +1 s.d.

N Pol Coh

4 0.405+0.384 0.790+ 0.237
8 0.567+0.292 0.749+ 0.209
12 0.371+0.249 0.754+ 0.242
16 0.280+0.228 0.916+ 0.071
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The condition of all headings being equally likely is
equivalent to the implementation of the model in §2
with full disobedience, that is, co ¼ 0.5. These terms
are used interchangeably. For every shoal size, the
stacked normalized histograms for the observed
polarizations consistently differ from the equally likely
case, by displaying preference of the live shoal for
high polarization states.

We quantitatively compare the stacked normalized
histograms for each value of N using an error measure
based on the vector one-norm (e.g. Horn & Johnson
1985); alternative measures of similarities between
probability distributions may also be adapted (e.g.
Banks et al. 2001). In particular, the error measure is
defined as g ¼ 1/2

P
i¼1
q jEi 2 Oij, where Ei is the

expected frequency of each polarization value in the
co ¼ 0.5 histogram, Oi is the observed frequency of
each polarization value for the experimental histogram
and q is the number of values Pol can achieve. In our
experiments, the number of shoal mates N is even and
therefore q ¼ N/2 þ 1. Since

P
i¼1
q Ei ¼ 1,

P
i¼1
q Oi ¼

1, Ei . 0 and Oi . 0 for all i, the error measure is
normalized in [0, 1]. By direct computation, we find
g ¼ 0.127 for N ¼ 4, g ¼ 0.465 for N ¼ 8, g ¼ 0.272
for N ¼ 12 and g ¼ 0.174 for N ¼ 16. The magnitude
of these errors suggests that the equally likely scenario
is not appropriate for describing experimental
observations.

Cohesion data are presented in figure 4. We note that
cohesion data appear smoother than polarization data
because, while they are both discrete, cohesion can
take on considerably more values in [0, 1] than polariz-
ation owing to the relatively large number of cells
against the binary value of heading. Experiments
show that fish in the shoal prefer states with high phys-
ical proximity. Statistical properties of the polarization
and cohesion computed over the 30 s time window are
given in table 1. We note that the mean value of the
polarization is not monotonically varying with respect
to the shoal size. In particular, it is maximized in the
case of the eight fish shoal. In contrast, the standard
deviation of the polarization seems to decrease as the
shoal size increases. Cohesion data are generally high
J. R. Soc. Interface (2010)
for every experiment and do not exhibit a well-defined
trend with respect to the shoal size.
4. PARAMETER STUDY

4.1. Simulation procedure

We investigate the role of two parameters of interest in
our model, shoal size N and obedience constant co.
Table 2 shows the parameter values used in the compu-
ter simulations that are consistent with those in §3. The
obedience parameter varies in a broad spectrum to span
the full range from deterministic to purely random
decision-making processes. Initial conditions for shoal
position and heading are randomly generated and a



Table 2. Parameter values used in the simulation study.

parameter abbreviation value

school size N 4–128
maximum time steps tf 25 000
total number of cells CT 40
perceivable cells Cp 13
topological neighbours n 3
velocity constant cv 0.901
obedience constant co 0.5–1

2 4 6 8 100
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0.3

0.4
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0.6

0.7

time (104 steps)

Figure 5. Cohesion for a 105 time step simulation with N ¼ 16
and co ¼ 0.95. Moving averages with 900 and 25 000 time-step
windows are shown. Light grey thin line, Coh; black line, 900
step moving average; dark grey line, 25 000 step moving
average.
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single simulation is run for tf [ Zþ time steps for each
pair of parameters. Owing to the random nature of the
neighbours’ selection and decision-making, the process
is ergodic for co , 1. Thus, equivalent quantitative
results can be gathered by running shorter replicate
simulations with random initial conditions. The mean
and standard deviation of the scalar-valued quantities
Coh, Pol and S are computed by averaging over the
entire simulation. The computation of the mean and
standard deviation of the degree and betweenness cen-
trality, referred to as bc and dc, requires a second
averaging over the shoal.

We select tf to guarantee that the statistics of the
simulation represent the stationary distribution of the
underlying ergodic process. In particular, we consider
a test simulation of 105 time steps and compute
moving averages of the mean and variance of Coh,
Pol, S, bc and dc by using different time windows
within the larger simulation, as shown in figure 5 for
cohesion. The quantity tf is chosen to obtain variations
of the moving average within 10 per cent of the mean
computed over 105 steps and is found to be 25 000. As
an illustration, figure 5 shows Coh with moving
averages of length 900 and 25 000 displayed at the
midpoint of each window. The stationarity of the
process is evidenced by the approximate constancy of
the 25 000 step moving average.
4.2. Coarse observables

Owing to the direct influence of the obedience par-
ameter on the heading dynamics, we find that the
mean polarization has a strong dependence on co. A
common heading is reached and maintained for all
shoal sizes when 1 2 co ¼ 0. As 1 2 co increases, the
mean polarization decreases with a rate dependent on
N, as illustrated in figure 6a. For a fixed co , 1, the
mean polarization exhibits a distinct non-monotonic
trend with increasing N. In addition, for a given shoal
size, standard deviation is minimized when the fish
are fully obedient (figure 6b).

The same trends are ascertained from figure 7, which
simultaneously shows normalized polarization histo-
grams for all shoals at three representative values of co.
For co ¼ 0.80 and co ¼ 0.99, the most probable values
of Pol are independent of the shoal size. In particular,
for co ¼ 0.80, all shoals favour low polarizations and for
co ¼ 0.99, all shoals favour high polarizations. In the
case co ¼ 0.90, the most likely polarization varies with
J. R. Soc. Interface (2010)
N and the histogram has a larger spread. The most
likely polarization is maximized for N ¼ 8 or N ¼ 16
and its maximum is Pol ¼ 0.75. In addition, the distri-
bution of polarization for smaller shoals has larger
spread by construction, since the number of possible
polarization values is proportional to N.

The dependence of mean cohesion on co shows two
distinct trends (figure 8a). For large values of 12co,
the mean cohesion increases as N decreases. For
decreasing values of 12co, the mean cohesion increases
with N, with a peak at approximately 12co¼0.05.
The standard deviation in figure 8b shows a similar
trend.
4.3. Network features

Network features are presented in figures 9–11. We find
that the network features are approximately indepen-
dent of the obedience constant co. Standard
deviations approach zero as the shoal size increases
and are thus not individually reported as contour
plots for brevity. The average values over the studied
obedience range of degree centrality, betweenness cen-
trality and number of schools varying as functions of
N are presented in figure 12 for comparison. Note that
the quantities in figure 12 have no physical meaning
outside of the interval [0, 1].

The mean value of S is maximized when N is
approximately equal to eight (figures 9 and 12). This
may be attributed to the interplay between the increas-
ing density of fish in the ring and the constrained
numerosity. For small shoals, increasing group size
favours the formation of paths between physically far
fish. As the shoal size is further increased, the cells in
the ring become densely populated and each fish is
only able to establish with shoal mates in its own cell.
This in turn results in the formation of multiple schools
of limited physical extension. As expected, the between-
ness centrality shows a similar trend. Indeed, for
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small shoals, each fish is important in the overall
information-sharing process. As disconnected
components arise in the shoal owing to its increasing
size, the information flow is inhibited and, therefore,
the relevance of a single fish decreases.

Owing to the fixed numerosity in the model, as the
shoal size increases, the average degree centrality
approaches zero. In particular, every fish is connected
to n neighbours as the shoal size increases. Thus, the
mean degree centrality scales as n/N and the standard
deviation goes to zero. Further properties of the under-
lying network can be gathered by looking at the
in-degree distribution. The mean value of the in-degree
equals the mean of the out-degree, while the standard
deviations are different. Figure 13 shows the histogram
of the in-degree distribution for a shoal of 128 members.
The histogram shows that the in-degree distribution is
well approximated by a Poisson distribution. Therefore,
the directed network can be considered as a random
out-regular network (Jaworski & Smit 1987), that is,
an Erdös–Rényi directed graph with a constant
out-degree over all vertices.
J. R. Soc. Interface (2010)
5. DISCUSSION

The non-monotonic behaviour of the polarization as a
function of the shoal size is observed in both the exper-
imental and numerical study (table 1 and figure 6).
Numerical results show that, for 1 2 co in the range
[0.1, 0.2], the polarization is maximized in the vicinity
of N ¼ 8 and its maximum is in the range [0.35, 0.55].
In addition, as N is varied from 8, the polarization is
reduced to values as small as 0.3. The standard devi-
ation shows a rather monotonic decrease from
approximately 0.35 to 0.2 as N varies from 4 to 16.
These values are in good agreement with the
experimental results.

A further assessment of the model predictive capa-
bilities can be garnered by comparing the entire
histograms of polarization from experimental data and
numerical results. In figure 14a, we plot the error
measure g used in §3.3 as a function of 1 2 co. The
error between experiments and simulations has a clear
minimum for all shoals larger than four and it is mini-
mized by co ¼ 0.89 for N ¼ 8, co ¼ 0.82 for N ¼ 12
and co ¼ 0.77 for N ¼ 16. Quantitative comparison
between experiments and predictions for N ¼ 4 is lim-
ited by the small numbers of admissible polarization
states. Consistent with the discussion above on
the mean and standard deviations of the polarization,
the minimizing values of 1 2 co are approximately
in the range [0.1, 0.2]. As a demonstration, the stacked
normalized polarization histograms for experiments
and representative values of co are presented in
figure 14b. Visual inspection confirms a correlation
between the histograms with minimized error measure
and experimental data. The minimized error is
smaller than the error obtained by comparing exper-
imental data to the equally probable scenario
discussed in §3.3, which supports the predictive
potential of the proposed model upon proper selection
of its parameters.

However, definitive statements about the predictive
capacity of the model cannot be drawn at this point
owing to the short duration of the experiments when
compared with the long time horizon used in the simu-
lation to guarantee the process ergodicity and the lack
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of data for large shoal sizes. In practice, longer exper-
iments are difficult to conduct owing to the fish active
learning of the environment. In addition, considering
large shoal sizes without modifying the ring dimensions
would violate the modelling assumption of unlimited
cell occupancy.
J. R. Soc. Interface (2010)
As a validation of the topological regime, in
figure 15, we report polarization data computed by dis-
carding numerosity, that is, by setting n ¼ N 2 1. In
this case, each fish interacts with every shoal mate in
its region of perception, and the model can be assimi-
lated to a traditional metric model (Vicsek et al.
1995). Within this framework, polarization increases
monotonically as a function of the shoal size irrespective
of the value of co, hinting that numerosity is an impor-
tant mechanism for describing schooling of gregarious
fish. In contrast with the topological model (figure 9),
the mean value of the normalized number of schools
reported in figure 16 monotonically increases with N
and rapidly reaches one. Therefore, allowing each fish
to potentially interact with every mate in its physical
proximity favours the information exchange in the
group when compared with the topological model in
which fragmentation arises owing to numerosity. The
emergence of highly connected networks is also visible
from the degree centrality. As N increases, the average
degree centrality rapidly approaches a non-zero limit
value, which is related to the fish perceptual limit. In
addition, the in- and out-degree distributions share
the same Poisson distribution, indicating that the
network is well described by a random directed graph.
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Despite the good agreement between modelling
predictions and experimental results on polarization,
experimental data on cohesion are considerably
larger than numerical results. This can be directly
attributed to the limited time duration of the
selected events that may drastically bias the compu-
tation of the statistical moments. For example,
figure 5 shows the cohesion data that would be
gathered by averaging the computer results with
time windows comparable with those used in the
experiments. In other words, the highly cohesive
events observed in the experiments may correspond
to well-localized travelling schools in the shoal as illus-
trated in figure 17. Such cohesive configurations are
also found in two- and three-dimensional metric
models in Chate et al. (2008) in the form of bands
and sheets, respectively. These metric models share
the lack of an explicit rule of attraction with the
proposed one.
J. R. Soc. Interface (2010)
Future works include incorporating shoal
responses to stimuli such as ambient light conditions
and flow disturbances as well as further exploring
the mathematical features of the proposed model,
including its transient behaviour. The tools devel-
oped in this study are currently being used to
quantitatively ascertain the potential leadership role
of biomimetic robotic vehicles in fish shoals (Aureli
et al. in press).
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APPENDIX A. GRAPH THEORY

We construct a simple directed graph G(t) ¼ (V, E(t))
with vertex set V ¼ f1, . . . , Ng and directed edge set
E¼ f(i, j): 9 an edge from i to jg. We say that the
edge (i, j) originates at vertex i and terminates at
vertex j. These edges can be condensed in the adjacency
matrix A whose ij-th entry is equal to 1 if (i, j) [ E and
equal to 0 if (i, j) � E. Since G has no self-loops, that is,
edges that originate and terminate at the same vertex,
the diagonal of the adjacency matrix A has all zero
entries. For i [ V, we define the out-degree degout(i) as
the number of edges originating at i and the in-degree
degin(i) as the number of edges terminating at i. At
time t, the degree matrix of G is the diagonal matrix
(D)ii ¼ degout(i). The graph Laplacian is defined as L ¼
D 2 A, and similarly to D and A, varies with time. By
construction, L has zero row sum, and consequently has
zero as an eigenvalue (see Fiedler 1973). Also, all the
eigenvalues of L lie in the closed right half-plane (see
Ren & Beard 2005). In addition, a tree is a weakly con-
nected acyclic graph with a root and a spanning tree of
G is a tree with vertex set equal to V and edge set E 0#E.

A path of length k from vertex a to vertex b is a
sequence of k þ 1 distinct vertices starting with a and
J. R. Soc. Interface (2010)
ending with b, such that consecutive vertices are adja-
cent with respect to the edges of the graph. A shortest
path from a to b minimizes k. A common definition of
betweenness centrality of vertex i is bbc(i) ¼

P
a=b=i[V

sab(i)/sab, which sums the fraction of shortest paths
between vertices on which vertex i lies. For all directed
graphs on N vertices, the vertex with maximum between-
ness centrality is the centre of a star graph that is defined
as N 2 1 vertices with edges to and from a centre
vertex. The betweenness centrality of the centre is
(N 2 1)(N 2 2) (e.g. White & Borgatti 1994).

We use L̃ to denote the Laplacian of the reversal of
G, that is defined as G̃ ¼ (V, Ẽ) where Ẽ ¼ f(i,j):( j,i) [
Eg. From corollaries 2.24 and 2.25 in Wu (2007), we
know that the zero eigenvalue of L̃ has algebraic mul-
tiplicity equal to one if and only if G has a spanning
tree, which occurs if and only if L̃ is irreducible. In
addition, from theorem 2.23 of Wu (2007) we know
that if L̃ is reducible, the algebraic multiplicity of its
zero eigenvalue is equal to the minimum number of
trees that together span G. Therefore, in general, the
algebraic multiplicity of the zero eigenvalue of L̃
equals the minimum number of trees whose union
span G. Alternative identification procedures for trees
can also be adopted (e.g. Wu 2007).

For example, the graph in figure 18a is spanned by
a single tree, while the graph in figure 18b is spanned
by a minimum of two trees. This result is equivalently
evidenced by the Laplacian of the reversal of the
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graph in figure 18a

~L ¼

2 �1 0 0 0 �1 0
�1 2 0 �1 0 0 0
0 �1 2 0 �1 0 0
0 �1 0 2 �1 0 0
0 0 0 �1 2 0 �1
�1 �1 0 0 0 2 0
0 �1 0 0 �1 0 2

2
666666664

3
777777775
; ðA 1Þ

which has a zero eigenvalue with multiplicity one. Simi-
larly, it can be shown that the Laplacian of the reversal
of the graph in figure 18b,

~L ¼

2 �1 0 �1 0 0 0
�1 2 �1 0 0 0 0
�1 0 2 �1 0 0 0
�1 �1 0 2 0 0 0
0 0 0 0 2 �1 �1
0 0 0 0 �1 2 �1
0 0 0 0 �1 �1 2

2
666666664

3
777777775
; ðA 2Þ

has a zero eigenvalue with multiplicity two.
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