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Tumors contain variable numbers of lymphocytes, referred to as 
tumor infiltrating lymphocytes (TILs). In melanoma, the intensity of 
this lymphocytic infiltrate is believed to correlate with outcome, 
though there is some debate about the applicability of this finding for 
all melanomas. Much research has gone into classifying TILs with 
respect to antigen receptor structure and the antigen to which 
melanoma-specific T cells react. However, these studies for the most 
part did not immunophenotype TILs, and recent data has revealed 
that the composition of tumoral lymphocytes is not homogenous, but 
rather represents varying contributions from many lymphocytic 
subsets. Furthermore, the function of TILs is often compromised as a 
result of the accumulation of immunoregulatory cells and various 
tumor escape mechanisms. These recent insights stress the need to 
collect more data on the composition and function of TIL infiltrates 
before definitive conclusions about the prognostic significance of 
TILs can be drawn. Advances in immunology have also facilitated the 
development of immunotherapeutic strategies, examples of which 
will be discussed with a special emphasis on blocking antibodies 
against CTLA-4, which are prototypical immunotherapeutic agents. 
This flurry of novel "biological" therapies will undoubtedly 
complicate our already incomplete understanding of TIL 
immunobiology as each of these agents has the potential to uniquely 
distort the series of immunological events which normally occur in 
untreated melanoma. Therefore, considerable research is needed to 
better elucidate the function and prognostic significance of TILs in 
both untreated melanoma and tumors treated with "biological" 
therapy.
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Evolution of the TIL concept
More than 100 years ago, malignant tumors were first noted to 

contain variable numbers of lymphocytes (1), which have come 
to be known as tumor infiltrating lymphocytes (TILs). Initially, 
these TILs were thought to reflect the origin of cancer at sites of 
chronic inflammation (1), and later it was debated whether TILs 
provided a favorable environment for cancer growth or were 
evidence of the host's attempt to eliminate cancer (2). A 
relationship was first identified between the extent of immune 
cell infiltration and prognosis in 1949 in cases of breast cancer 

(3). In 1969, Clark et al. (4) first described the lymphocytic 
infiltration of primary cutaneous melanoma, a finding which 
Day et al. (5) and Tuthill et al. (6) later found to be of prognostic 
significance. Patients with a moderate-to-marked lymphocytic 
infiltrate within their primary melanoma had a significantly 
better prognosis and a 3-times higher 5-year survival rate than 
patients with a sparse or absent lymphocytic infiltrate (5). Elder 
et al. (7) differentiated the lymphocytic infiltrate into brisk, non-
brisk, or absent, according to its intensity, and demonstrated 
that TILs were of prognostic significance only in vertical growth 
phase (VGP) melanoma. In contrast, the extent of lymphocytic 
infiltration had no prognostic influence in radial growth phase 
(RGP) melanomas, regardless of whether the melanoma was in 
situ or invasive (7), findings which were verified by Clemente et 
al. (8). The 5- and 10-year survival rates were 77% and 55% in 
melanomas with brisk VGP infiltrates; 53% and 45% with non-
brisk VGP infiltrates; and 37% and 27% without VGP infiltrates 
(8). Also, the number of TILs in the primary tumor has been 
found to be inversely correlated with the probability for lymph 
node metastases (8). Patients with brisk TIL infiltrates in their 
primary tumors showed a 3.9% probability of a positive sentinel 
lymph node (SLN), compared to a 26.2% probability in patients 
with TILs absent from their primary melanoma (9). 
Furthermore, of those patients with regional lymph node 
metastases, patients with more marked lymphocytic responses 
in their metastatic melanoma showed a significantly higher 30-
month disease-free survival rate (81.3% for patients with a brisk 
TIL infiltrate; 46.8% for patients with a non-brisk infiltrate; and, 
29.3% for patients with TILs absent from their lymph node 
metastases) (5, 10). However, other studies could not 
convincingly demonstrate that brisk TIL infiltrates were 
associated with improved survival in melanoma patients (11-
13). These discrepant results may in part be explained by 
differences in patient populations investigated, with particular 
reference to the thickness of patients' melanomas (9). The study 
by Clemente et al. (8) found the impact of TILs most 
pronounced in patients with high-risk lesions, thicker than 
1.7 mm but less than 6 mm in Breslow depth (9). This suggested 
that the briskness of the TIL infiltrate was prognostic for T2-T4 
(TMN system) (14) primary cutaneous melanoma (PCM), 
though the prognostic significance of TILs was lost in very thick 
lesions (advanced T4). In contrast, Barnhill et al. (11) did not 
find any survival advantage to be associated with brisk TIL 
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infiltrates; however, patients with both RGP and VGP were 
included in this study (11), even though other studies did not 
demonstrate a prognostic significance of TILs in RGP PCM (7, 
8). Furthermore, only 25.6% of patients in Barnhill's study had 
lesions thicker than 1.7 mm (11) while 82% and 71% of patients 
had lesions thicker than 1.7 mm in the studies by Clemente (8) 
and Tuthill (6). Taylor et al. (9) did not find an impact of TILs on 
survival (44% of patients had lesions thicker than 2 mm); 
however, they did show that TILs are an independent predictor 
of SLN positivity, which by itself is the most important 
independent predictor of recurrence and survival in malignant 
melanoma patients (15). Nevertheless, due to technical 
limitations at the time, the vast majority of these studies did not 
immunophenotype TILs and, therefore, did not examine the 
difference in composition or function of tumoral lymphocytes.

TIL targets and their mechanism of recognition
The antigens which T cells recognize are comprised of 

peptides and a population of polymorphic cell-surface proteins 
called major histocompatibility complex (MHC) Ags, which 
associate with peptides via their peptide binding groove (16). 
CD4 "helper" T cells (TH) recognize peptides of at least 13 amino 
acids in length presented by MHC class II (HLA DR, DP, DQ) 
Ag, whereas CD8 "cytotoxic" T lymphocytes (CTLs) recognize 
8-10 amino acid peptides presented by MHC class I (HLA A, B, 
C) Ags (16). MHC class I Ags are essentially expressed on all 
nucleated cells (16) and hence have a broad distribution, 
including tumor cells; however, as will be discussed later, these 
may be lost during tumor progression (17). In contrast, MHC 
class II Ag expression is normally limited to "professional" Ag-
presenting cells (APC); however, these Ags may be expressed 
aberrantly on tumor cells as a result of peritumoral 
inflammation (18) or as a direct result of neoplastic 
transformation (19). In fact, a significant percentage of 
melanomas express cell surface MHC class II molecules (20), 
and treatment with interferon-gamma (IFN-γ) can induce class 
II expression on the majority of melanomas (21). MHC Ag 
expression in malignant melanoma has also been shown to have 
prognostic relevance as both expression of HLA-DR in 
melanoma lesions and a decreased expression of HLA-A, -B, -C 
Ags in loco-regional metastases are associated with an 
unfavorable prognosis (19). Although all nucleated cells 
normally express MHC class I molecules and have the capability 
to upregulate MHC class II molecules in an inflammatory 
milieu, professional APCs (macrophages, dendritic cells and B 
cells) are best equipped for the priming of a T cell response given 
their constitutional expression of MHC II Ags and their ability 
to express numerous T cell co-stimulatory molecules (16). Thus 
numerous studies are targeting the function of professional 
APCs, particularly the dendritic cell (DC) subset of these cells, 
to bolster anti-tumor immunity.

The majority of melanoma peptide Ags have been identified 
by: screening cDNA expression libraries against melanoma-
reactive T cells (22); mass spectrometry following their elution 
from purified HLA molecules (23); or, prediction from the 
genomic sequence based upon the need for specific anchor 
residues (16) to fit into respective "pockets" of the HLA peptide 
binding groove (23). Recently, the study of tumor-specific T cells 
has been facilitated by the development of multimer technology, 
which allows one to track and enumerate Ag-specific T cells by 
flow cytometry (16, 24). Through the use of these techniques, 
various classes of tumor Ags have been observed in human 
melanoma, which include autologous tumor-specific (specific 

point mutations such as in the β-catenin gene), tissue-specific 
(e.g., MART-1/Melan-A from here on referred to as MART-1), 
and common cancer-specific (e.g., MAGE family) Ags (22). 
However, how the immune system differentially responds to 
these various Ag types has not yet been fully explored.

TILs derived from melanomas may lyse MHC-matched 
allogeneic tumors (25), suggesting that some tumor-associated 
Ags (TAAs) are commonly expressed by tumors from different 
patients (22). Given the high frequency of this phenomenon 
(22), it would be unusual for such cross-reactivity to involve 
sporadic mutations which result in novel peptide Ags 
(autologous tumor-specific Ags). In keeping with this 
hypothesis, many melanoma-specific Ags recognized to date 
have been non-mutated peptides derived from proteins involved 
in melanin synthesis (22, 26). These so-called melanosomal 
proteins or melanocytic differentiation proteins (tissue-specific 
tumor Ags) include MART-1, gp100, tyrosinase, TRP-1, and 
TRP-2 (22, 26). Peptides derived from these proteins have been 
recognized in the context of the HLA-A1, -A2, and -A3, HLA 
molecules that are expressed in 26%, 49%, and 25% of the 
Caucasian population respectively, with the HLA-A2-binding 
MART-1 peptides 27-35 and 26-35 being the most frequently 
detected peptide Ags recognized in melanoma patients (22). 
Melanosomal protein-derived peptide Ags have relatively low 
HLA binding affinities (26), due to the absence of optimal 
amino acid anchor residues, suggesting that they may be 
expressed at a low density on the melanocyte surface (22), 
although a subgroup of these Ags are strongly immunogenic as 
the therapeutic capacity of TILs often correlates with anti-gp100 
and anti-TRP-2 specificity when used in adoptive 
immunotherapy (27). Evidence that effective anti-melanoma 
immunity can be directed against these melanosomal Ags 
includes tumor regression in some melanoma patients 
immunized with MART-1, gp100, or tyrosinase peptides (28, 
29), as well as the different biological behavior of same-patient 
metastases correlating with the expression level of melanosomal 
Ags (22). Furthermore, a significant correlation has been 
observed between vitiligo development and tumor regression in 
patients receiving immunotherapy (22), suggesting that the T 
cells mediating melanoma regression also recognize Ags 
expressed by non-neoplastic melanocytes. Interestingly, large 
numbers of melanosomal-specific T cells are present not only in 
the blood of melanoma patients but also in healthy persons, with 
the frequency of MART-1/A2 tetramer positive cells being 
approximately 10-3 of the phenotypically naïve CD8+ T cells in 
the peripheral blood of healthy HLA-A2 positive donors (30). 
The high frequency of these cells is unusual and, to date, 
MART-1 is the only known tumor Ag for which Ag-specific T 
cells can be detected in the blood, without any prior in vitro
stimulation (30). Why these cells are maintained at such a high 
concentration remains enigmatic; however, it has been 
suggested that this high frequency may be explained by the 
phenomenon of epitope mimicry (31). Nevertheless, 
melanosomal-specific cells in healthy individuals exhibit a naïve 
immunophenotype (CD8+ CCR7+ perforin-) (32), perhaps 
reflecting a low affinity interaction with low-density 
melanosomal peptides on the cell surface. In the vast majority of 
melanoma patients, however, a detectable accumulation of 
MART-1-specific T cells, possessing an Ag-experienced 
memory/effector immunophenotype (CD8+ CCR7- perforin+) 
(32), occurs in metastatic tumors (30). The explanation of how 
the same Ag can have such differential effects is unclear, but may 
reflect more efficient Ag presentation by mature professional 
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APCs or the lowering of the T cell activation threshold by a rich 
cytokine milieu within the tumor environment.

While the melanocyte differentiation Ags are expressed 
constitutively by melanocytic cells, some melanoma tumor Ags 
are expressed as a result of malignant transformation (33), such 
as certain "common cancer-specific" Ags of which the MAGE 
family of genes is one of the best described (22). MAGE proteins 
are members of the cancer-testis (CT) family of TAAs, which 
also includes the BAGE, GAGE, and PRAME proteins (23). The 
biological function of these CT Ags is not yet known; however, 
these proteins are broadly expressed by tumors of diverse 
histologies (23) - for example, MAGE-6 is expressed in more 
than 70% of metastatic melanomas and more than 50% of 
carcinomas of the lung, esophagus, bladder, and head and neck 
(34). CT Ags are concentrated upon the X chromosome (though 
multiple non-X chromosome CT Ags have also been described) 
(35), and their expression appears to be related to 
hypomethylation (22). Some studies have shown that CT Ag 
expression is more frequently seen in more advanced 
melanomas (36, 37); nevertheless, preliminary studies have 
shown that immunization of melanoma patients with epitopes 
derived from MAGE proteins may result in significant tumor 
regression (38). Surprisingly, in these vaccinated patients with 
evidence of a therapeutic response, no sign of systemic 
immunization could be observed in the peripheral blood (38). 
This apparent discrepancy between the therapeutic effectiveness 
of MAGE-specific T cells and the ability to detect these cells in 
vivo may reflect a difference in the immune response to CT Ags 
relative to the melanocytic differentiation Ags. For example, 
some studies have shown that immunogenic peptides derived 
from MAGE proteins are presented by HLA class II molecules, 
such as the presentation of MAGE-6 peptides by HLA-DR4 
(expressed by 15-20% of the North American population) (39). 
These observations highlight how our knowledge of tumor-
specific lymphocytes is biased by early studies which focused on 
CD8+ cytotoxic T cells circulating in the peripheral blood or 
present within tumor. However, other lymphocyte subsets 
which may be equally important in the defense against 
melanoma, such as helper T (TH) cells, may follow alternate 
trafficking patterns and may be more represented in other 
compartments, such as the draining lymph nodes.

Another subset of "common cancer-specific" Ags is a newly 
described family of molecules called "stress ligands" (40). These 
proteins, which are best classified as "common-cancer Ags", 
include the non-classical MHC Ib molecules MICA/B that are 
expressed by a variety of cancer cell types (41). These proteins 
are different from the aforementioned MHC molecules in that 
they represent non-peptide presenting ligands, a subset of which 
are recognized by the NKG2D "stress ligand receptor", which is 
an activating/co-stimulating molecule on the surface of T cells 
and natural killer (NK) cells (41, 42). A subset of innate-like T 
cells (Vδ1 γδ T cells, see below), which are present in high 
numbers in various epithelial compartments (43) and which 
constitutively express NKG2D (44), possess a T cell receptor 
(TCR) that also directly recognizes MICA/B (45). These 
intraepithelial T cells, through the coordinate binding of the γδ
TCR and NKG2D to the same stress ligand, are capable of the 
immediate rejection of transformed cells and thus are believed 
to be prototypical sentinel lymphocytes (46).

Another potential target for immunotherapy, but for which the 
least amount of data is available, are mutated protein Ags 
(autologous tumor-specific Ags), some of which are associated 
with tumorigenesis (22). Mutated peptides appear to be potent 
rejection Ags in murine tumor models (22) and some data 

indicates that mutated peptide Ags (22), as well as T cells 
directed against such Ags (47), can be found in melanoma 
patients with a more favorable prognosis. One of the reasons for 
this potency is that such Ags are "non-self " and thus T cells with 
high affinities for such Ags, which are capable of generating a 
successful immune response, are not deleted in the thymus 
during normal T cell ontogeny, a process which helps to ensure 
self-tolerance (16). Targeting these mutated Ags with 
immunotherapy may be a strategic approach (48), given that the 
altered proteins may also confer a growth advantage to the 
tumor that precludes the development of Ag-loss variants (17, 
49) - though the loss of MHC molecules by melanoma cells may 
immunologically produce a functional loss of these Ags. 
Mutated proteins that have been isolated from human 
melanoma include ras, β-catenin, melanoma ubiquitous 
mutated 1 (MUM-1), and CDK4 (50) and, although these may 
serve as excellent targets for future immunotherapy, such an 
approach necessitates an extensive genomic understanding of 
each individual tumor since these Ags will not be shared 
between different HLA-matched melanoma patients.

TCR repertoire of melanoma TILs
Many studies have examined whether a restricted usage of 

TCR variable (V) genes is employed by T cells to recognize 
melanoma tumor Ags (25, 51); however, the results have been 
contradictory, perhaps reflecting the complexity of tumor 
immunity. In some early studies, limited TCR V gene segment 
usage by melanoma TILs was found (25). For example, in two 
representative studies, only 3 Vα gene families (Vα13, Vα15, 
and Vα16) were predominantly expressed by TILs from 24 
melanomas examined (51), whereas TILs of uveal melanoma 
demonstrated a preferential expression of Vα7 genes in 7 of 8 
melanoma samples (52). Using a polymerase chain reaction 
(PCR) approach, Strohal et al. (51) demonstrated that while 
lymphocytes from normal skin samples showed a heterogeneous 
expression of TCR Vα chains, the TILs present in or around the 
tumor had a restricted Vα chain repertoire, expressing only 
Vα13, Vα15 or Vα16. Further studies implicated a spatial 
organization of this TCR repertoire restriction (30, 53). For 
example, Clemente et al. (53) demonstrated that TILs in VGP 
melanoma and lymph node metastases of the same patients 
exhibited the same restricted repertoire of TCR Vβ chains, 
whereas lymphocytes present in extra-VGP areas showed no β
chain restrictions. Furthermore, it was shown that TCR 
repertoires in the peripheral blood of melanoma patients were 
not restricted (30), perhaps reflecting the ability of only high 
affinity clones to enter and expand within the tumor 
microenvironment. Interestingly, even within the same 
individual, different T cell clones can predominate at different 
sites of disease, perhaps reflecting diverging subclones of 
melanoma exhibiting unique patterns of Ag loss that stimulates 
unique infiltrates of melanoma-specific T cells (54). Despite 
these earlier studies, it is now widely accepted that the repertoire 
of T cells against certain melanoma Ags (MART-1 for example) 
is diverse and mostly non-overlapping among different 
individuals (25, 30). Tetramer-based studies have revealed a 
highly diversified repertoire utilizing most Vβ chain families 
(30), with only some clones showing partial conservation of 
TCR structure (25, 30). Therefore, understanding how different 
subsets of T cells contribute to an effective anti-tumor response 
and assaying the functional characteristics of these cells is 
beginning to overshadow the significance of TCR repertoire 
analysis of TILs.
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Immunophenotyping and subtyping TILs
An explosion of immunological data has resulted in a greater 

characterization of T cell subsets, which has led to an effort to 
immunophenotype T cells within the tumor microenvironment 
(9, 10, 55-61). Studies on IL-2-cultured TILs demonstrated that 
the T cell composition within the tumor microenvironment 
varies in individual patients, ranging from an infiltrate with 90% 
CD4+ T cells to an infiltrate with 90% CD8+ T cells (59-61), 
with highly specific cytolytic activity and patient outcomes 
correlating with the presence of tumor-specific, CD8+ T cells (9, 
10, 55). Most research has focused on CD8+ cells, which are 
known to infiltrate tumors and, by virtue of their recognition of 
tumor-specific peptides presented by classical HLA class I 
molecules (16), are suspected to have a role in mediating the 
cytotoxic destruction of transformed cells (62, 63). However, 
recent studies that tested the function of CD8+ TILs, such as the 
ability of tetramer-positive cells to express IFN-γ after in vitro
stimulation (64), demonstrated that many melanomas are 
populated by inactivated/anergic cells (65, 66). This observation 
stresses the importance of some form of functional assessment 
to best prognosticate TIL significance. Furthermore, the 
significance of other immunocyte populations in melanoma is 
uncertain despite a heterogeneous mixture of inflammatory 
cells often present within the tumor microenvironment (47, 57, 
58, 67, 68). For example, although the role of CD4+ TILs in 
melanoma is not yet understood, several studies suggest that 
they may have an important role. For example, melanoma-
specific CD4+ TILs have been shown to possess the ability to 
directly lyse tumor cells (58, 69) and eliminate melanoma in 
animal models (56, 70). Moreover, work by Rosenberg's group 
has demonstrated that the co-transfer of CD4+ and CD8+ T 
cells is more beneficial than the transfer of CD8+ T cells alone 
(71), and a recent report has demonstrated that the adoptive 
transfer of in vitro expanded autologous CD4+ T cell clones with 
specificity for the melanoma-associated Ag NY-ESO-1 may 
induce durable responses in some patients with metastatic 
melanoma (72). Additional work has revealed that CD4+ TILs 
in thinner, regressing lesions secrete a pattern of cytokines 
typical of TH1 CD4+ cells (IFN-γ, lymphotoxin, IL-15, IL-2) 
whereas thicker, non-regressing lesions contain a greater 
number of TGF-β- and IL-10-liberating CD4+ cells (73-75), 
likely belonging to the TH2 or a regulatory T cell lineage. Given 
that TH1 cells promote strong cell-mediated immune responses 
while TH2 cells promote allergic responses and/or secrete 
immunosuppressive factors (16, 76), the proportions of these 
different cell subsets will likely influence the tumor 
microenvironment.

As alluded to above, another subset of CD4+ T cells variably 
present within the tumor environment (68, 77-80) are the CD4+ 
CD25+ regulatory T cells (Tregs). Tregs express a CD4+/
CD25+high/Foxp3+ immunophenotype and represent 5-10% of 
human CD4+ T cells (81). A deficiency of Tregs, either 
occurring naturally (82, 83) or induced experimentally (84, 85), 
is associated with massive T cell lymphoproliferation and multi-
organ autoimmunity (82-85), illustrating how a subset of these 
cells are important for mediating self-tolerance (natural Tregs) 
(86, 87). Another subset of Tregs appear to modulate the 
response of immunocytes to non-self Ags (induced Tregs) (86, 
87), thereby limiting the immune response to foreign Ags. 
Interestingly, Tregs are significantly increased in patients with 
epithelial malignancies (twice the number of Tregs relative to 
healthy volunteers) (88) and, in experimental models, depletion 
of Tregs evokes effective anti-tumor immunity (84, 85). Treg 
TILs have also been shown to be more represented in advanced 

human melanoma lesions, with more Treg TILs in metastatic 
lesions (68) and in deep VGP lesions relative to shallow VGP 
and RGP lesions (89). Thus the accumulation of these cells may 
be associated with disease progression (89, 90), a hypothesis 
which is supported by the finding that a higher percentage of 
Treg TILs is associated with a significantly higher risk of 
melanoma recurrence (91). It is also tempting to speculate that 
the increased frequency of Tregs in advanced malignant lesions 
(68, 78, 79) may, in part, explain the anergy of tumor-specific 
CD8+ T cells observed in such lesions (65, 66). Studies are on-
going to investigate whether a correlation exists between 
melanoma survival and the frequency of Treg TILs, similar to 
what has been described for ovarian cancer patients (92).

Melanoma-specific B cells have also been demonstrated in 
limited studies (58, 93), and high levels of B cell TILs have been 
correlated with a favorable prognosis in certain types of cancer 
(93, 94). Interestingly, immunization of mice with TRP-1 
protein resulted in the induction of auto-Abs and the protection 
against growth of TRP-1-expressing melanoma cells (95). 
Furthermore, human studies on the immune response to NY-
ESO-1-expressing melanomas have demonstrated that CD8+ T 
cell responses to this Ag do not occur in patients who do not 
develop NY-ESO-1-specific Abs and that the titer of NY-ESO-1-
specific Abs falls with the successful therapy of melanomas (96). 
These data suggest that melanoma-specific Abs may have a role 
in opsonizing tumor cells for phagocytosis and optimal Ag 
presentation, and that measuring a humoral immune response 
to vaccination can identify patients who will likely respond to 
therapy. However, the significance of humoral immunity in 
human melanoma has yet to be clarified since studies to date 
have shown that Ig deposits and B cells are only infrequently 
present within the tumor microenvironment (97).

NK cells are another lymphocyte population whose role in the 
melanoma immune response has not yet been closely examined. 
NK cells use an assortment of germline-encoded receptors, 
including inhibitory receptors for MHC molecules (16), that 
enable them to recognize cells that have aberrantly upregulated 
or downregulated cell surface markers as a result of cellular 
transformation (16, 98). Cells which have lost expression of self-
MHCs are essentially marked for NK cell-mediated destruction 
(missing-self model) (98, 99). Similarly, activating receptors 
expressed by NK cells, such as NKG2D, recognize 
transformation-associated stress ligands, which function as 
another trigger for the NK cell-mediated destruction of tumor 
cells (98, 100). The linkage of NK receptor signaling to the 
release of cytotoxic granules is the basis for the 
immunosurveillance function of these cells (98). Although NK 
cells are either absent or present only infrequently within the 
melanoma microenvironment (97), one study demonstrated 
that the presence of NK TILs was seen only in responding 
melanoma patients but not in those with progressive disease 
(101).

Yet another subset of melanoma TILs which has not received 
much recent attention in the literature is the γδ family of T cells. 
While most melanoma TILs express the αβ heterodimeric TCR 
(102), a subset of TILs express a γδ TCR (67). γδ TCRs are 
assembled in a similar fashion as αβ TCRs (16); however, the γδ
receptor complex is characterized by different Ag recognition 
properties (46). MICA/B-specific Vδ1 γδ T cells have been 
demonstrated within the melanoma microenvironment (67) 
and several studies have demonstrated a relationship between 
the stage of melanocytic lesions and the frequency of these cells 
(54, 103-106). For example, a greater number of Vδ1 γδ T cells 
were found to be present in dysplastic melanocytic nevi relative 
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Figure 1 

Stylized outline of major lymphocyte subsets.

to invasive and metastatic melanoma (106). This observation 
supports an important immunosurveillance function of these 
cells in early lesions (46), which is in keeping with the 
upregulated expression of cellular stress ligands during the 
transformation of dysplastic nevi to invasive melanoma (107). 
The lesser role of γδ TILs in more advanced melanocytic disease 
likely reflects the tendency of invasive melanomas to 
downregulate the surface expression of these stress ligands 
(108), and it is tempting to speculate that enhancing stress 
ligand expression by dysplastic melanocytes or melanoma cells 
may prove to be an effective treatment strategy in future clinical 
trials.

Clearly a number of different lymphocyte subsets contribute to 
the immunological response to melanoma. A greater 
understanding of the Ag specificity and immunobiology of the 
different lymphocyte subsets is clearly needed to better predict 
the prognostic significance of TILs and to more effectively 
modulate their immunosurveillance of melanoma. A basic 
subdivision of lymphoid cells is illustrated in Figure 1, and a list 
of markers for comprehensive TIL immunophenotyping is 
proposed in Table 1. Given this greater capability to 
immunophenotype TILs, future studies may show that the 
composition is as important as the "briskness" of the 
lymphocytic infiltrate.

Immunomodulating strategies to augment anti-
melanoma immunity

Recently, certain forms of immunotherapy have been shown to 
be of potential therapeutic use in some patients with metastatic 
melanoma (109, 110). Unfortunately, with the implementation 
of such therapies, it is likely that our limited understanding of 
the prognostic significance of TILs will be further disadvantaged 
by therapy-specific immune distortions that change the usual 
pattern of TIL composition and infiltration. For this reason, it 
will be critical for those who interpret histopathological material 
to gain an understanding of the underlying immunobiology of 
such therapies.

Attempts to augment melanoma-specific immunity have 
involved various techniques. Vaccination of patients with 
melanoma Ags, or augmentation of natural Ag presentation in 
vivo through the use of various adjuvants to expand tumor-
specific lymphocytes (22, 50, 111), has been a major focus in 
melanoma research. Steps taken to enhance natural Ag 
presentation have included the administration of a number of 
cytokines. IL-2, perhaps the most important of lymphocyte 
growth factors (16), has been investigated for more than 20 years 
in the therapy of melanoma (59, 109, 112), and likely works by 
either promoting the expansion of Ag-specific T cells or by 
enhancing their cytotoxicity (113, 114). Initial studies of IL-2 
therapy for melanoma demonstrated that the administration of 
this agent resulted in substantial increases in tumoral 
lymphocytes (115). Subsequent prospective clinical trials 
demonstrated some utility of IL-2 therapy for malignant 
www.cancerimmunity.org 5 of 20
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Table 1 
Proposed markers for immunophenotyping TILs.

melanoma, with a 16.3% response rate, including a 6% complete 
response rate, observed in one trial (109). In this study, median 
duration of response was 6.5 months, with 60% of complete 
responders remaining progression-free at 5 years (109). Of 24 
patients who experienced a complete regression in this trial, 
only five have experienced a recurrence and 19 remain in 
clinical remission for 46 to 137 months or more (109). These 
numbers, albeit small, are the first evidence for potential cure in 
metastatic melanoma and have led to the U.S. Food and Drug 
Administration’s approval of IL-2 therapy in such patients 
(109). IL-15, a cytokine whose receptor consists of IL-2's β and γ
chain (CD122 and CD132, respectively) as well as the 
specificity-determining IL-15α chain, is also considered a 
promising agent in immunotherapy (116) as it possesses a 
similar effect on T cell proliferation without IL-2's effect on 
inducing T cell apoptosis (117). Immunotherapy with 
interferon-alpha (IFN-α) has also shown reproducible activity 
in metastatic melanoma, with 15% to 20% response rates 
reported in some series (118), and with clinical responders 
having significantly denser TIL infiltrates (119). The 

mechanism of IFN-α immunotherapy is not fully understood; 
however, it is proposed to work by both augmenting the 
immune response and by exerting a direct effect on melanoma 
cells, which may involve activation of STAT proteins (120). 
IL-12 has also been used as an enhancer of the immune 
response (121-123). IL-12 acts by inducing TH1 differentiation 
and, by inducing cytokine secretion, promotes the proliferation 
and the cytolytic activity of NK and T cells (16, 122). IL-12 has 
also been shown to reverse Ag-specific T cell anergy (124) and 
can boost the frequency of circulating tumor-specific 
lymphocytes (123). In trials using IL-12, these aforementioned 
effects were associated with brisk melanoma TIL infiltrates and 
encouraging treatment effects (121-123). Another cytokine 
found to be a useful adjuvant to tumor vaccination is 
granulocyte macrophage-colony stimulating factor (GM-CSF) 
(16). GM-CSF treatment in melanoma results in the 
accumulation of large numbers of professional APCs (125), an 
observation leading to the integration of GM-CSF in a 
vaccination protocol which employs irradiated autologous 
tumor cells that have been genetically engineered to produce 
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large amounts of this factor (125-128). In a phase I clinical trial 
employing this approach, 10 out of 16 patients with stage IV 
melanoma developed dense lymphocytic infiltrates with 
extensive necrosis of metastatic lesions with one complete 
response, one partial response, and one mixed response (128).

Various other immunomodulating strategies have been 
attempted for the treatment of melanoma, including vaccination 
with tumor cells, tumor lysate or tumor-specific peptides, 
especially those derived from melanosomal Ags, with or without 
DCs (50, 111, 129-134). Tumor regression and tumoral 
lymphocytic infiltration has been observed in some melanoma 
patients immunized with melanosomal peptide Ags (22, 132, 
135, 136) and, although some of the results have shown promise 
in the treatment of melanoma (50, 132, 135, 136), the great 
variability in the protocols used in these studies has led to a 
perplexing collection of data (131-138). This variability, in part, 
reflects different maturation states of DCs used in 
immunotherapy trials (133), since immature DCs are weak 
immunogens and can be tolerogenic, even resulting in the 
induction of Ag-specific Tregs (133). The collection and in vitro
expansion of TILs followed by their adoptive transfer has also 
been used to augment anti-melanoma immunity (139, 140). 
This strategy is especially suitable for immunocompromised 
patients who may not optimally respond to a tumor vaccination 
approach. The administration of radio-labeled, melanoma-
specific lymphocytes (as assessed with MART-1 tetramers), 
followed by imaging studies with a gamma camera, confirmed 
that transferred cells indeed localize to sites of metastatic tumor 
(141), which is consistent with the brisk TIL infiltrates following 
adoptive transfer of in vitro expanded, TAA-specific T cells (71, 
142). While successful tumor eradication in murine models has 
been achieved by TIL transfer (143), the translation of this 
technique into clinical practice has been cumbersome, though it 
is considered by many to be the most promising 
immunotherapeutical strategy to date (144-146). In addition to 
these aforementioned approaches, novel strategies for the 
treatment of melanoma are being developed at a rapid rate and 
include immunization with recombinant viruses or plasmids 
encoding tumoral Ags (22) and the administration of a host of 
monoclonal Abs (mAbs) targeting critical regulators of immune 
function, such as a triggering mAb against 4-1BB (CD137) (147) 
and a blocking mAb against the cytotoxic T cell lymphocyte 
Ag-4 (CTLA-4, CD152) (111). Anti-CTLA-4 mAbs are a 
prototypical example of how our growing understanding of 
immunobiology is being translated into potentially useful 
immune modulating agents and thus these and related therapies 
will be discussed in detail.

Examples of novel biological agents in 
melanoma immunotherapy with a focus on 
CTLA-4 blockade

CTLA-4 is critically important for the contraction of immune 
responses (148), which is necessary to ensure that other T cell 
clones are not dangerously diluted by unopposed clonal 
expansions (148). CTLA-4 is not expressed on Ag-naïve T cells, 
but is upregulated upon the surface of T lymphocytes 
approximately 3 days following Ag-specific T cell activation 
(149, 150). CTLA-4 is a high affinity receptor for the B7.1 and 
B7.2 ligands (151) that are expressed on mature APCs during an 
immune response (16, 152) and which are critical for delivering 
the classically-described "co-stimulatory" signal or "signal 2" to a 
naïve T cell (16). This co-stimulation is necessary for the 
optimal activation and proliferation of responding Ag-specific T 

cells (16, 148), and is transduced through CD28 (16) and related 
cell surface molecules upon initial Ag encounter (148). CTLA-4 
is believed to antagonize T cell activation/expansion by at least 
two possible mechanisms, the first of which involves CTLA-4's 
100-to-2000-fold greater affinity for B7.1/B7.2 relative to that of 
CD28 (148, 151), which effectively eliminates co-stimulatory 
signaling by the sequestration of B7.1/B7.2 away from CD28 
(151, 153). The second possible mechanism involves the 
recruitment of an inhibitory phosphatase (SHP-2) to the 
immunological synapse by the SH2-binding domain of CTLA-4 
(151), leading to dephosphorylation of critical tyrosine residues 
and the subsequent extinguishment of downstream TCR 
signaling pathways (154, 155). The synergistic effect of these two 
processes is to halt further expansion of Ag-specific T cells and 
enhance the attrition of the expanded clonal population, 
probably by depriving T cells of survival signals which are 
obtained through low-level TCR signaling (156). Thus the 
blockade of CTLA-4 function with a mAb was proposed for use 
as an adjuvant to increase the frequency of tumor-reactive T 
cells by prolonging the clonal expansion phase following tumor 
vaccination or during natural tumor Ag presentation (157). 
Various animal models have validated the effectiveness of 
CTLA-4 blockade at increasing the clone size of Ag-specific T 
cells when used in association with tumor vaccination (158-
160). Effective CTLA-4 blockade was also found to be associated 
with better tumor control and prolonged survival in these model 
systems (158, 161-163). Based on these experimental findings, 
two human anti-CTLA-4 IgG1 mAbs have been developed 
(Ipilimumab® and Ticilimumab®) that are in advanced clinical 
trials for the treatment of a variety of malignancies (164-169). 
Preliminary data from these early trials of anti-CTLA-4 mAbs 
alone or in association with tumor vaccination have been 
encouraging (164-170), resulting in better tumor control in 
some recipients even within immunologically privileged sites 
such as the brain (Figure 2) (170), which is somewhat surprising 
given the role of the blood-brain barrier in preventing the influx 
of therapeutic mAbs into the brain parenchyma (171). One 
study of melanoma patients treated with anti-CTLA-4 mAb 
therapy alone showed an overall response rate of 21%, with two 
complete and one partial remission in 14 treated patients (165), 
while another study of melanoma and ovarian cancer patients 
demonstrated extensive tumor necrosis in 5 out of 9 patients 
following CTLA-4 blockade (164).

Studies of CTLA-4 blockade have also yielded information on 
how different TIL subsets interact within the tumor 
environment. For example, while marked TIL infiltrates were 
observed in many anti-CTLA-4 mAb studies (164, 172), in one 
study of advanced melanoma patients where TILs were more 
comprehensively immunophenotyped, the data suggested that 
Tregs limit the cytotoxic response to melanoma TAAs (172). In 
this study (172), an inverse relationship existed between the 
frequency of Treg TILs in metastatic melanoma and both the 
extent of necrosis and the frequency of cytotoxic T cells in such 
lesions (Figure 3). The reduction of Treg TILs noted in some of 
the patients in this study may have been attributable to a mAb-
mediated depletion, given the constitutive expression of 
CTLA-4 by Tregs (173). Such Treg depletion may account for 
the autoimmune-like adverse effects that occur in many patients 
treated with CTLA-4 blockade (165, 166, 174), which are 
strikingly similar to the phenotypic changes in FoxP3-mutated 
Scurfy mice that are naturally-deficient of Tregs (175-177). 
Interestingly, other tumor vaccination strategies have been 
shown to be inexplicably accompanied by increases in Treg 
TILs, which may have adversely affected the clinical response in 
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Figure 2 

CTLA-4 blockade results in significant tumor regression in some patients.
MRI images of the cervicothoracic spine from a patient with metastatic malignant 
melanoma which reveal enhancing intraspinal metastases with extensive cord 
edema prior to treatment with CTLA-4 blockade. Post-therapy images demon-
strate complete resolution of the metastases and the accompanying edema. 
[Adapted from Hodi et al. (170)]

these studies (178). Based upon these observations, it has been 
proposed that melanoma patients may benefit from Treg 
depletion, either as monotherapy or in association with tumor 
vaccination and, therefore, a variety of strategies are being 
investigated for this purpose.

Treg-depleting strategies currently being tested include agents 
which bind to the interleukin-2 (IL-2) receptor alpha chain 
(IL-2Rα, CD25) which, similar to CTLA-4, is not found on Ag-
naïve T cells (16) but is expressed constitutively by Tregs (16, 
179). These CD25-targeted therapies include anti-CD25 mAbs 
(180) and recombinant cytotoxic proteins composed of portions 
of bacterial toxins conjugated to either human IL-2 (181-183) or 
an antibody against CD25 (184, 185), that after internalization 
by CD25-expressing cells leads to cell death (181-183). 
Although CD25-directed therapies have shown some success in 
the depletion of Treg TILs (184), scant data exist on how these 
therapies immunomodulate other TIL subsets. Furthermore, 
these strategies to abrogate Treg function have generated mixed 
results in clinical trials (181-185), and it is unclear why these 

therapies have been less efficacious than anticipated. One 
possible explanation may be the unwanted depletion of tumor-
specific T cells, since upregulation of CD25 is one of the earliest 
events in T cell activation (16, 186), and therefore, the tumor-
specific population of cells one hopes to expand may in fact be 
depleted by CD25-directed agents.

An alternative strategy to abrogate the function of Tregs in vivo
involves interrupting the migration of these regulatory cells into 
the tumor microenvironment by utilizing mAbs directed against 
chemokines and their receptors. The majority of Tregs express 
high levels of chemokine receptors CCR4 (receptor for CCL22) 
(187, 188) and CCR6 (receptor for CCL20) (189). Antagonizing 
these chemotactic networks with mAbs against chemokines or 
their receptors has proven to be effective in experimental 
models; for example, a mAb against CCL22 reduced Treg 
migration to ovarian tumors (190). Accordingly, it is anticipated 
that an on-going clinical trial using a mAb against CCR4 for the 
treatment of hematological malignancies (191, 192) will be 
expanded to include patients with various other malignancies, 
including malignant melanoma.

The effect of melanoma immunotherapy on 
TILs

The frequent failure of melanoma immunity is highlighted by 
data from both human (193) and murine (194) tumor models 
which show that TILs are sometimes composed of quiescent 
and/or functionally anergic effector/memory T cells (58). For 
example, some TIL cell lines do not lyse but rather release GM-
CSF in response to autologous tumor (195), and while normal 
donor lymphocytes were able to secrete IFN-γ in response to 
MAGE-6-derived peptides, cells from melanoma patients were 
unresponsive to this stimulation (39). Therefore merely 
demonstrating the presence of TILs may not be an entirely 
accurate method of predicting patient outcomes. Myriad tumor 
escape mechanisms, described in detail elsewhere (17) and 
briefly summarized in Table 2, likely work together to affect this 
immune compromise. Mechanisms particularly important to 
recognize include: loss of tumor Ags, which occurs in 5-20% of 
patients with metastatic melanoma in the form of selective loss 
of tumor Ags or the concordant loss of multiple melanosomal 
proteins (196); altered expression of classical and non-classical 
MHC molecules (17); and, the ability of tumors to liberate 
chemotactic factors for Tregs (197).

The frequency of these tumor escape tactics appears to 
increase in metastatic melanoma when compared to primary 
melanoma (180, 198), perhaps reflecting clonal evolution of the 
tumor and the selection of multiple escape mechanisms. 
However, while T cell incompetence is likely attributable to 
many of the processes listed in Table 2, it may also reflect 
problems invoked by current immunotherapy protocols. 
Although most melanoma patients treated with TIL adoptive 
transfer show a brisk T cell rich infiltrate (71, 142), the 
frequency of TAA-specific TILs does not necessarily correlate 
with a strong in vivo anti-tumor response (140). Similarly, 
vaccination protocols utilizing melanoma TAAs are frequently 
associated with unsatisfactory clinical responses (133). In 
experimental studies, one finding that correlated very strongly 
with positive therapeutic responses was the in vivo persistence of 
tumor-specific T cells (71, 139). This persistence has been 
defined in cell transfer techniques as the ability of at least one 
clonotype to remain in the peripheral blood one month after 
transfer at 5% or greater of the total CD8+ T cell population 
(199). While persistent and non-persistent TILs shared a 
8 of 20 www.cancerimmunity.org



Oble et al.
Figure 3 

The ratio of tumor infiltrating CD8+ T cells to Foxp3+ Treg TILs following anti-CTLA-4 treatment is tightly correlated with the extent of tumor necrosis. (A) Rep-
resentative photomicrographs demonstrating CD8+ and Foxp3+ Treg TILs in melanoma metastasis exhibiting minimal (top) and extensive (bottom) necrosis. 
(B) Graphical demonstration of the relationship between FoxP3+ Treg TILs, CD8+ TILs, and tumor necrosis. [Adapted from Hodi et al. (172)]

remarkable degree of similarity in the expression of activation 
markers (CD69, CD25, and CD40L) and homing molecules 
(CCR7, CXCR4), it was shown that a greater number of CD27-
expressing TILs is associated with greater persistence and better 
outcomes (200, 201). CD27 is stably downregulated in late 
effector stage T cells (200), which are terminally differentiated 
and have significantly shorter telomeres and extremely poor 
telomerase activity attributable to defective Akt 
phosphorylation (202). Telomere shortening has been shown to 
be induced by prolonged in vitro culture, which is consistent 
with the finding that human T cells become senescent after 20 
to 30 population doublings in vitro (199). Therefore, cells 
cultured from a small number of harvested TILs may be 
functionally compromised and unable to persist or perform 
their immunosurveillance function after adoptive transfer 
(203). Immunophenotyping TILs with the panel of markers 

listed in Table 1 can help to estimate the frequency of senescent 
T cells, especially if fresh material for flow cytometry is 
available where multiple markers can be evaluated 
simultaneously on each cell (16).

Another aspect of earlier clinical trials which may have 
adversely affected TIL function was the selection of Ags used for 
in vivo or in vitro expansion of tumor-specific T cells. Although 
a peptide may have anchor residues necessary to bind to a 
particular MHC molecule (16), such a peptide may not result in 
the generation of useful tumor-specific T cells. For example, 
among a panel of 10 different MART-1 peptides containing the 
HLA-A2 binding motif, only one was able to induce CTL lines 
with specific recognition of melanoma cells (204). This inability 
of certain peptides to induce functional tumor-specific T cells 
may reflect: a low affinity of interaction between relevant T cell 
receptors and the Ag, which at physiological levels of Ag 
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Table 2 
Selected tumor escape mechanisms that mitigate the anti-tumor immune response.

expression will fail to result in the recognition and/or efficient 
lysis of tumor cells; or, a failure to generate such peptides in vivo
by the cellular machinery responsible for generating peptides 
for Ag presentation (proteasome) (16, 205), thereby rendering 
tumor cells invisible to a population of highly efficient cytotoxic 
cells (205, 206). With respect to this latter explanation, a similar 
"invisibility" may occur when Ag-specific T cells are generated 
from stimulation with altered peptide ligands, such as the 
modified high-affinity HLA-A2 binding gp100 peptide 
(gp100209-2M). This peptide was generated from the 
substitution of a threonine residue with a methionine at the 
anchor residue P2, which results in a 10-fold higher HLA-A2 
binding affinity that more efficiently produces high frequencies 
of tetramer-binding CD8+ cells compared to the native epitope 
(207). In one study where altered peptide ligands produced Ag-
specific T cells with a spectrum of functional avidities, the cells 
were incapable of lysing HLA-A2-expressing melanoma cells, 
even at 100:1 effector-to-target-cell ratios, illustrating this 
potential pitfall (208). The failure to generate CTLs with some 
natural high-affinity peptides, such as to some MART-1 
peptides (204), may also be explained by the induction of T cell 
tolerance toward these high-affinity self-peptides, reflecting the 
normal immunobiology of T cell Ag recognition (16). The 
finding that only studies showing T cell responsiveness to 
physiological levels of Ag demonstrated any clinical response 
(64, 209, 210) exemplifies these aforementioned complications 
of immunotherapy. One promising avenue of research, which 
aims to circumvent such problems invoked by normal T cell 

immunobiology, involves genetically-engineered T cells that 
express high affinity TCR for naturally-processed peptide Ags 
expressed at physiological concentrations (211); nevertheless, 
this approach may be associated with considerable autoimmune 
adverse effects.

These findings emphasize the potential necessity of moving 
beyond enumerating TILs with routine hematoxylin and eosin 
(H&E) staining and simple immunohistochemistry panels, 
towards the use of advanced immunophenotyping and possibly 
functional assessments of TILs. An emphasis on cellular 
senescence and reactivity towards physiological levels of cognate 
Ags may help to best prognosticate their significance.

Concluding remarks
Since the prognostic significance of TILs was proposed, much 

has been learned about the immunobiology of lymphocytes and 
the small molecules that govern the behavior of these cells. The 
sometimes contradictory results of earlier studies likely reflect 
the great immunophenotypic and functional heterogeneity of 
melanoma TILs. By applying today's greater immunobiological 
insight to the re-evaluation of previous data and the design of 
future studies, the significance of TILs in melanoma will surely 
be elucidated allowing for definitive recommendations for the 
routine management of melanoma to be developed.
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