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Abstract: Mathematical modeling of cancer development is aimed at assessing the risk factors leading to cancer. Aging is a common 
risk factor for all adult cancers. The risk of getting cancer in aging is presented by a hazard function that can be estimated from the 
observed incidence rates collected in cancer registries. Recent analyses of the SEER database show that the cancer hazard function 
initially increases with the age, and then it turns over and falls at the end of the lifetime. Such behavior of the hazard function is poorly 
modeled by the exponential or compound exponential-linear functions mainly utilized for the modeling. In this work, for mathematical 
modeling of cancer hazards, we proposed to use the Weibull-like function, derived from the Armitage-Doll multistage concept of 
carcinogenesis and an assumption that number of clones at age t developed from mutated cells follows the Poisson distribution. This 
function is characterized by three parameters, two of which (r and λ) are the conventional parameters of the Weibull probability distribu-
tion function, and an additional parameter (C0) that adjusts the model to the observational data. Biological meanings of these parameters 
are: r—the number of stages in carcinogenesis, λ—an average number of clones developed from the mutated cells during the first year 
of carcinogenesis, and C0—a data adjustment parameter that characterizes a fraction of the age-specific population that will get this 
cancer in their lifetime. To test the validity of the proposed model, the nonlinear regression analysis was performed for the lung cancer 
(LC) data, collected in the SEER 9 database for white men and women during 1975–2004. Obtained results suggest that: (i) modeling 
can be improved by the use of another parameter A- the age at the beginning of carcinogenesis; and (ii) in white men and women, the 
processes of LC carcinogenesis vary by A and C0, while the corresponding values of r and λ are nearly the same. Overall, the proposed 
Weibull-like model provides an excellent fit of the estimates of the LC hazard function in aging. It is expected that the Weibull-like 
model can be applicable to fit estimates of hazard functions of other adult cancers as well.
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Introduction
Mathematical models can help researchers in elucidat-
ing the fundamental mechanisms of cancer develop-
ment and progression. Mathematical models enable a 
quantitative representation of transformations affect-
ing cell states and cell numbers. One area of cancer 
modeling is an assessment of risk factors leading to 
cancer. In adults, aging is a common risk factor asso-
ciated with cancer development.

The main aim of this work is mathematical model-
ing of cancer development in aging. Our modeling is 
based on the commonly accepted multi-stage concept 
of carcinogenesis and is expected to provide a better 
understanding of the biological processes underlying 
cancer development. We utilized observational data 
on cancer incidence rates collected in the Surveillance 
Epidemiology and End Results (SEER) database. 
These incidence rates were used to estimate a cancer 
hazard function by the log-linear age-period-cohort 
(LLAPC) model that accounts for age, time period 
and birth-cohort effects.1–4

Until recently, the exponential or compound expo-
nential-linear functions have been widely utilized for 
mathematical modeling of cancer development in 
aging.5–8 According to these mathematical functions, 
the cancer risk should monotonically increase with 
aging. However, recent analyses of data collected 
in the SEER database showed that,9 after an initial 
increase, the cancer hazard functions in aging have 
turnover and even fall at the end of the lifetime.10 To 
model such behavior of the cancer hazards, beta-like 
functions have been utilized.11–13 It was shown that the 
observational data can be well-fitted by these func-
tions. The use of beta-like functions, however, still 
lacks a sound biological background.

In the present work, we proposed to use Weibull-
like functions for modeling the cancer hazards in 
aging. This model is derived from the Armitage-Doll 
multi-stage concept of carcinogenesis and an assump-
tion that a number of clones at age t that developed 
from mutated cells follows the Poisson distribution. 
Besides two conventional parameters (r and λ) of 
the Weibull probability distribution function ( pdf  ), 
this model has an additional parameter, C0, for the 
observational data adjustment. The model provides 
meaningful biological interpretation of the model-
ing parameters: r—the number of stages in carcino-
genesis, λ—an average number of clones developed 

from the mutated cells during the first year of carcino
genesis, and C0—a data adjustment parameter that 
characterizes a fraction of the age-specific population 
that will get this cancer in their lifetime.

To test the Weibull-like model of cancer develop-
ment in aging, we analyzed lung cancer (LC) data 
collected in the SEER 9 database during 1975–2004 
for white men and women. The estimated values of 
the LC hazard function in aging were obtained from 
the observed incidence rates. It was found that the 
quality of modeling has been improved by introduc-
ing another parameter, A- the age (in years) at which a 
process of carcinogenesis starts. Performed modeling 
suggests that the LC presentation in aging in white 
men and women are different mainly by the parame-
ters A and C0, while the parameters r and λ are nearly 
the same.

Overall, it was shown that the Weibull-like model 
of cancer presentation in aging provided an excellent 
fit of the estimates of the LC hazard function in aging. 
The proposed model explains the observed behavior 
of the hazard function in aging that initially increases 
with age, turns over and then falls at the end of the 
lifetime.

Definitions and Mathematical 
Statement of the Problem
Survival probability and cancer 
hazard function
The main concepts of survival analysis include sur-
vival probability and hazard function. According to 
the notation given in textbooks,14,15 a survival prob-
ability is defined as the probability, S(t), that at the 
time t, a person is alive (in mortality studies) or at the 
age t a person is free from a given disease (in disease 
incidence studies). A hazard function, h(t), measures 
the relative risk of death at the time t, or getting a 
given disease at a specific age t, compared to the sur-
vival probability at the same time/age:

	
h t

dS t
dt

S t
( )

( )

( )
= - � (1)

In survival modeling, time t is assumed to follow 
some statistical distribution with probability density 
function ( pdf ) - f(t).15 Let us assume also that -dS(t)/dt 
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can be presented in the form of C0   f (t) where C0 is a 
parameter. If f(t) and C0 are known, the following dif-
ferential equation can be written:

	
- =dS t

dt
C f t

( )
( )0

�
(2)

with the initial condition

	 S(0) = 1� (3)

This condition means that at time t = 0 the person is 
alive or is free from the disease.

By solving the differential equation (2) with the 
initial condition (3), one can obtain S(t) by the fol-
lowing formula:

	
S t C f z dz

t
( ) ( )= - ∫1 00

� (4)

From (2) and (4), it follows that the formula (1) for 
a hazard function can be presented as:

	

h t
C f t

C f z dz
t( )

( )

( )
=

- ∫
0

00
1

	 (5)

If assumption (2) is valid, then, depending on the 
epidemiological problem under consideration, values 
of C0 can vary between 0 and 1. In fact, when t → ∞, 
formula (4) gives:

	
S C f z dz C( ) ( )∞ = - = -

∞
∫1 100 0

	 (6)

In mortality studies, S(∞)  =  0, when t  →  ∞. 
From (6) it also follows that C0 = 1, and therefore the 
hazard function (5) can be written as:

	

h t
f t

f z dz
t( )

( )

( )
=

- ∫1
0

	 (7)

In the case of a rare disease, a person’s risk of get-
ting a given disease is very small, i.e. survival prob-
ability is close to 1:

	 S(t) ≅ 1,  0 # t , ∞	 (8)

From (8) and (4) it follows:

	 C0 ,, 1	 (9)

For a given age-specific population, parameter C0 
characterizes a fraction of this population that will be 
exposed to the disease during their lifetime.

From (4), (5) and (8) it follows that for a rare dis-
ease, its hazard function can be presented as:

	 h(t) ≅ C0   f (t)	 (10)

The aforementioned formulas (4), (5), (7) and (10) 
for survival probability and hazard function are based 
on assumption (2). Generally, the validity of this 
assumption can be tested by the methods of regres-
sion analysis using the formula (5), the right side of 
which presents a regression line with parameters to be 
determined. In (5), the time t can be considered as a 
predictor and h(t)—as a response variable that can be 
estimated from the observations. For a rare disease, 
according to (10), the regression line as a function 
of t can be approximated by C0   f (t). Therefore, in the 
regression analysis performed below we assume that:

	 h(t) = C0   f (t)	 (11)

To perform regression analysis, one needs to estimate 
the values of the response variable h(t). In the absence 
of time period and cohort effects, the hazard function 
h(t), can be interpreted as an instantaneous incidence 
rate.16 By definition, an incidence rate, I(t), is the num-
ber of new cases of cancer incidence over a period of 
time divided by the person-time at risk.14 Estimates of 
values of hazard function, h*(t), can be obtained from 
the observed incidence rates that have to be corrected 
for time period and cohort effects (see below).

Estimation of values of cancer hazards 
from observations
To estimate the values of a cancer hazard function in 
aging, the recently proposed method can be utilized.4,10 
This method allows one to correct the observed age-
specific incidence rates I(t) for time period and cohort 
effects. These corrections can be done by the use of 
the LLAPC model that presents the expectation of the 
observed incidence rates as a product of the hazard 
function, hc(t), the time period effect coefficient, v, 
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and the birth cohort effect coefficient, u. In practice, 
the observed values of I(t) are presented as Ii, j,c (ti), 
where ti is a given age interval, j—a time period inter-
val of observation and c—indicates a given categori-
cal risk factor (for example, gender, race, etc.). The 
procedure allows one: (i) to separate the problem of 
estimating the time period and birth cohort coeffi-
cients from the problem of estimating the unknown 
hazard function; (ii) to resolve the identifiability 
problem by an assumption that neighboring cohorts 
almost equally influence the Ii, j,c(ti) and by anchoring 
the time period and birth cohort effects to the selected 
time period and cohort; and (iii) after obtaining the 
time period and birth cohort coefficients, to estimate 
values of the hazard function, hc

*(ti), and their standard 
errors, SEi, in each age interval, ti.

4,10 Here and below 
estimates of statistical parameters as well as hazard 
function values are designated by asterisk (*).

Mathematical statement  
of the modeling problem
The mathematical problem of modeling of cancer haz-
ard functions can be reduced to the problem of fitting 
of hc

*(ti) by the model curve hc(t). This implies choos-
ing an appropriate mathematical form of the curve, 
(t, C0   f (t)), which defines a model with the predictor t 
and the response variable C0   f (t). Thus, this problem is 
reduced to estimating unknown values of parameters 
in pdf, f (t), and an additional parameter, C0. These 
parameters can be estimated by a set of the observed 
values, hc

*(ti), and their standard errors, SEi, in each age 
interval, ti. Estimation of these parameters can be done 
using the least squares method to solve the following 
system of the conditional nonlinear equations:

	 h t C f t i nc i i
*( ) ( ) , ...,= =0 1 	 (12)

Since each hc
*(ti) has its own standard error, SEi, 

a system of conditional equations with weights:

	
w

SE

SE
i ni

i

= =
2

2 1, , ..., 	 (13)

has to be solved. In formula (13), SE is the standard 
error of the observation with the weight 1, calculated 
by formula:

	

SE

n SE
i
n

i

2

1 2

1

1 1
=

=Σ
	 (14)

In general case, the weighted system, (12)–(14), is 
solved by a method of least squares, utilizing an itera-
tive technique (see, for example, MATLAB’s Statisti-
cal Toolbox 7.3, Weighted Nonlinear Regression).17

Determination of Mathematical  
Form of Cancer Hazard in Aging
Weibull model of cancer development  
in aging
The mathematical model of cancer development is 
expected to be related to an appropriate biological 
concept of carcinogenesis. We used the Armitage-
Doll multi-stage concept of carcinogenesis and dem-
onstrated that this biological concept mathematically 
leads to the Weibull-like mathematical form of cancer 
hazard functions in aging.

According to the Armitage-Doll concept, a normal 
cell can be transformed into a cancer cell, after the r 
required mutations occurred within this cell. Below, 
we applied this concept using the notations and logic 
described in literature.18,19

Let us assume that the process of carcinogenesis 
begins at the age t = 0. Suppose that θj is the mutation 
rate at the j-th gene per year and the probability that 
a mutation at the j-th gene occurs in a cell prior to the 
age t is a small number and approximately equals to 
θj ⋅ t. Then, a product Πj

r
j

rt=( )⋅1θ  estimates the prob-
ability that in the given cell the required r mutations 
occurred prior to time t. The parameter r defines the 
number of stages in carcinogenesis. The average num-
ber of clones that were developed from the mutated 
cells up to the time t can be presented as:

	
µ θ λ( )t c t tn j

r
j

r r= ⋅( )⋅ = ⋅=Π 1 	 (15)

where cn is the number of cells at risk of mutation. In 
this formula, the parameter λ is the average number of 
clones developed from the mutated cells during one 
year (t = 1) after the beginning of carcinogenesis.

Let N(t) be the cumulative number of mutated 
clones that occurred from age 0 to t and let one 
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follow to the homogeneous Poisson process (HPP).20 
In such a case, according to the definition of HPP, a 
probability P0 that the cumulative number of mutated 
clones is equal to a given number k could be obtained 
by the formula:

	
P N t k

t e

k

k t

0
0

0

{ ( ) }
( ( ))

!
,

( )

= =
-µ µ

	
(16)

where the expected number of mutated clones, µ0(t), 
is proportional to the first order of the age t. In HPP, 
a cumulative distribution function (cdf  ), F0(t), of the 
waiting time to the first occurrence of the mutated 
clone will be expressed by the formula:

	 F t e t
0 1 0( ) ( )= - -µ 	 (17)

In the Armitage-Doll model, however, occurrence 
of mutation can be considered as a non-homogenous 
Poisson process (NHPP). In this case, parameter µ(t) 
is given by formula (15), where λ and r are constants. 
It should be noted, that in contrast to HPP, in NHPP 
the expected number of mutated clones µ(t) is propor-
tional to the r-th order of the age t.

For the NHPP model, a probability P0 that the 
cumulative number of mutated clones equals to a 
given number k could be obtained by the formula 
analogous to (16), and cdf of the waiting time to the 
first occurrence of mutated clone can be calculated by 
formula analogous to (17), where µ0(t) is substituted 
by µ(t):

	 F(t) = 1 – e–µ(t)	 (18)

Then, using (15) and (18), the pdf of the waiting 
time t to the first occurrence of cancer of mutated 
clone, f t d dt F t( ) / ( ),=  can be presented as a Weibull 

distribution with the shape parameter r and the com-
bined scale-shape parameter λ:

	 f  (t) = λrtr–1 exp(–λtr)	 (19)

It should be mentioned, however, that in statistical 
literature, another form of the Weibull pdf is usually 
used.21,22 This form is:

	
f t

r

b

t

b

t

b

r r

( ) exp= 





-

















-1

	 (20)

where b is the scale parameter, which is related to the 
parameter λ in (15), by the formula:

	 b r=
-

λ
1

. 	 (21)

Weibull-like model of age-specific cancer 
presentation in population
It is known that for most of the cancers, only a tiny 
fraction, say C0, of a given age-specific population 
will (early or later) develop cancer, while the major-
ity of this population will not get this disease in a 
lifetime.23 In this case we can assume that a person’s 
overall risk of getting the cancer equals to C0, and 
the corresponding hazard function, h(t), can be pre-
sented by formula (11). As was shown previously, 
according to the Armitage-Doll concept, the pdf f(t) 
of cancer occurrence at age t, can be presented by 
the Weibull distribution in form (19). Therefore, 
according to (11) and (19), h(t) should have a form 
of Weibull-like function, which can be presented as a 
product of Weibull pdf and an additional adjustment 
parameter, C0:

	 h(t) = C0λrt r–1 exp(-λt r)	 (22)

The parameter r of this function indicates the 
number of stages in carcinogenesis, the parameter λ 
is an average number of clones developed from the 
mutated cells during the first year of carcinogenesis, 
and parameter C0 is an adjustment parameter.

Formula (22) states that when age t of cancer 
occurrence has the Weibull pdf (19), then the corre-
sponding hazard function is modeled by the Weibull-
like function (22). In contrast to the classical paper,5 
where the exponential function was used for model-
ing of the cancer hazard in aging, we propose here 
that the cancer hazard function has a Weibull-like 
form (22), which has a turnover and falls at old ages.

Validity of our assumption that the h(t) will have 
a form of Weibull-like function (22) can be tested by 
methods of regression analysis, considering the age t 
as a predictor and h(t)—as a response variable to be 
estimated from the observations.
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Since in statistical literature the Weibull pdf is 
usually presented by formula (20), the corresponding 
Weibull-like hazard function can be written as:

	
h t C

r

b

t

b

t

b

r r

( ) exp= 





-

















-

0

1

	 (23)

or

	
h t C

t

b

t

b

r r

( ) exp= 





-



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











-

1

1

	 (24)

where the parameter r defines the shape of h(t), the 
parameter b scales the distribution of t along the 
abscissa axis and the parameter C1 = C0 r/b scales 
the curve along the vertical axis.

Fitting Weibull-like model  
by methods of regression analysis
We have shown that cancer hazard functions in aging 
in a population can be described by the Weibull-like 
function, presented by the formula (24). The param-
eters C1, b and r can be assessed from bivariate data 
(ti, hc

*(ti)) by the aforementioned least squares method 
assuming that in this specific case, hc

*(ti) can be pre-
sented in the following form:

	
h t C

t

b

t

b
i nc i

i
r

i
r

*( ) exp , ...,= 





- 

















=
-

1

1

1 	 (25)

Goodness of fitting of the regression line to the 
observed data can be quantified by the weighted sum-
of-squares (SS) of the residuals ri of the system of the 
corresponding weighted conditional equations:

	
SS ri

n
i= =Σ 1
2 	 (26)

or by the coefficient of determination:

	

R
SS

w h t
n

w h ti
n

i c i i
n

i c i

2

1 1

21
1

= -
-



= =Σ Σ* *( ) ( )

� (27)

The curve fitting is getting better as R2 approaches 
values close to 1.25

To compare the quality of fitting of the same 
dataset by different regression lines, the Akaike’s 
Information Criterion (AIC) can be used.25 Assuming 
that the scatter of points around the regression line 
follows a Gaussian distribution, the AIC is defined by 
the following equation:

	
AIC n

SS

n
K= 





+ln 2 	 (28)

where K = p + 1 and p is the number of parameters 
used for curve fitting. When the number of data points 
n are at least two times greater than the number of the 
assessing parameters, p, a second-order (corrected, c) 
criterion is used:

	
AIC AIC

K K

n Kc = + +
- -

2 1

1

( ) 	 (29)

when the qualities of fitting of the same dataset by dif-
ferent regression lines are compared, the curve fitting 
is better for the line with the smallest AICc.

25

Weibull-like Model of the Lung  
Cancer Presentation in Aging
Data preparation and processing
The lung cancer (LC) incidence data, collected in the 
SEER 9 database during 1975–2004 for white men 
and women, were used to estimate values of the age-
specific hazard function in five year age intervals 
ti. Data preparation and filtration were performed 
by the previously described protocol.4 LC incidence 
rates, expressed per 100,000 person per year, were 
age-adjusted by the direct method to the 2000 United 
States standard population.26 Estimates of the age-
specific hazard functions hc

*(ti) and their standard 
errors SEi, anchored to the 2000–2004 time period 
and to the 1925–1929 birth cohort, were obtained 
using our recently proposed approach.4,10

To perform the curve fitting of bivariate data 
(ti, hc

*(ti)), we modified the aforementioned procedure. 
In the modified procedure, instead of age t, the period 
of “effective exposure”, t - A, (where A is the age at 
the beginning of cancer) was utilized. The use of the 
“effective exposure” period was proposed in literature 
to improve the quality of curve fitting.5 In this case, 
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the system of the weighted conditional equations can 
be defined as:

h t C
t A

b

t A

b
i nc i

i
r

i
r

* ( ) exp , ..., .=
-

-
-

=





















-

1

1

1 	 (30)

It should be noted that adding a new “shift” 
parameter (A) to the three parameters that have been 
estimated by regression analysis makes this analysis 
computationally unstable. Our numerical experiments 
have shown that by introducing an additional param-
eter, one has dealt with a typical “ill-posed problem”, 
in which small errors in observed data-cause big errors 
in estimated values. An analogous problem arises in 
the beta-like modeling of cancer in aging.27 To avoid 
such computational instability, we used a method of 
regularization of solution.28 For this purpose, by fix-
ing different values of a possible “effective exposure” 
period (A), we regularized the process of our regres-
sion analysis and found the best solution for the other 
three parameters.

The parameters C1, b and r can be assessed from 
bivariate data (ti, hc

*(ti)) using the the aforementioned 
least squares method Specifically, to estimate these 
parameters we utilized the “nlinfit” function from the 
MATLAB’s Statistical Toolbox 7.3. This function 
allows one to determine the estimates of weighted 
parameters and perform curve fitting.24 In the process 
of the parameter estimation, “nlinfit” utilizes an itera-
tive technique that requires one to provide appropri-
ate starting values of parameters to be estimated. Our 
computational experiments showed that the values 5, 
60 and 0.01 can be used as appropriate starting val-
ues for the estimates of the parameters, r*, b*, and C*

1, 
correspondingly.

The output data of the “nlinfit” was used as input 
for two other MATLAB functions, “nlpredci” and 
“nlparci”. The function “nlpredci” returns as output: 
(i) the error estimates on predictions, ypred; and (ii) 
the half-widths of the 95% prediction intervals for 
future observations, delta (note, 2 × delta predicts 
the observations with the weights of w = 1, or the 
observations with the variance, SE2). For C*

1, r
* and 

b*, the function “nlparci” returns as output the esti-
mates of their errors. To estimate covariance between 
parameters, the Matlab function “nlinfit” provides 
the covariate matrix, Sigmaw. This matrix was 

used as input for the Matlab function “nlparci” to 
obtain 95% confidence intervals (CIs) for parameter 
estimates.

To evaluate the quality of fitting of the same data-
set by different regression lines, we used the Akaike’s 
Information Criterion (AIC) as described previously.

Results and Discussion
The obtained values of the age-specific LC hazard 
functions and their standard errors for the age groups 
for which these estimates are statistically distinguish-
able from zero are presented in Table 1.

Using bivariate data, (ti - A, hc
*(ti)), we performed 

curve fitting for several possible “effective exposure” 
periods. For this purpose, A values were varied from 
0 to 30 years with five-year steps. Our calculations 
showed that for white men the best fitting is achieved 
when A = 20; while for white women it is best when 
A = 15. Table 2 presents the best fitted values of the 
parameters, C*

1, r
* and b*. In addition to the C*

1, r
* and 

b*, the estimates of the parameters, λ* and C*
0, are also 

given in Table 2. These estimates were calculated by 
the following formulas:

	
λ*

*

*

= 





1

b

r

	 (31)

	
C C

b

r
0
*

*

*
= 1

* 	 (32)

Table 1. Estimates of the age-specific LC hazard func-
tions, h*(ti), and their standard errors, SE [h*(ti)], for white 
men and women.

Age ti 
(years)

White men White women
h*(ti) SE [h*(ti)] h*(ti) SE [h*(ti)]

37.5 1.06 0.04 1.56 0.07
42.5 2.85 0.07 3.78 0.11
47.5 6.95 0.12 8.36 0.18
52.5 13.97 0.19 14.13 0.24
57.5 24.44 0.27 22.09 0.31
62.5 38.38 0.38 29.90 0.37
67.5 53.09 0.48 37.77 0.42
72.5 63.37 0.57 42.26 0.45
77.5 67.09 0.65 41.40 0.47
82.5 57.94 0.77 33.29 0.52
87.5 37.92 0.72 17.20 0.38

Note: In this table h*(ti) and SE [h*(ti)] are presented per 100,000 person-
years.
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The corresponding 95% CI(λ*) and 95% CI(C*
0) 

were calculated by means of CIs of parameters C*
1, r

* 
and b* and formulas (31) and (32).

It should be noted that the CIs of the estimates C*
1, 

r* and b* could be underestimated, because hc
*(ti) are 

not directly observed, but are estimated by observed 
incidence rates. In practice, when response variable 
is indirectly observed, to assess CIs of parameters of 
regression, a bootstrap method can be used. Our com-
putational experiments showed, however, that the CIs 
for parameters of the nonlinear regression, obtained 
by the use of the bootstrap method, were insignifi-
cantly different from those obtained by the approach 
proposed in this paper.

Figure  1 presents the Weibull-like curve that is 
fitted to the LC observational data for white men, 
assuming that the effective exposure period starts at 
the age A = 20. Figure 2 shows an analogous curve 
fitted to the LC observational data for white women 
with A = 15. These figures demonstrate that the LC 
observational data are well-fitted by the Weibull-like 
functions.

In addition, to verify the goodness of curve fitting, 
we constructed probability plots for weighted residu-
als, as described in the statistical textbook.29 The 
obtained normal probability plots did not show any 
significant trends that can be considered as an addi-
tional evidence of goodness of fitting.

Based on these fitting data, we hypothesized that the 
LC carcinogenesis starts earlier in women than in men.

In white men and women, the corresponding esti-
mated values of the parameter r* are very similar 

and close to 5. Analogously, the estimated values of 
the parameter λ that defines the average number of 
clones, developed from the mutated cells during the 
first year since the beginning of carcinogenesis, are 
also similar for both genders. This suggests that in 
both genders the processes of carcinogenesis in aging 
are different mainly due to the starting age of carcino-
genesis and the fraction of the population exposed to 
the LC. The starting age of carcinogenesis in white 
men is about 20 years old and the parameter char-
acterizing the fraction of the age-specific population 
exposed to the LC is about 197 per 10,000. For white 
women, the starting age of carcinogenesis is about 15 
years old and the parameter characterizing the frac-
tion of the age-specific population exposed to the 
LC is about 132 per 10,000.

Table 2. Estimates of model parameters and characteristics 
of the goodness of the curve fitting.

Parameters and 
characteristics

White men White women
A = 20 A = 15

b* (95% CI) 58.33  
(58.08; 58.60)

60.56  
(59.94; 61.19)

r * (95% CI) 5.30  
(5.25; 5.34)

5.26  
(5.09; 5.42)

λ* × 1010 (95% CI) 4.40  
(5.73; 3.38)

4.27  
(1.9; 11.0)

C*
1 × 105 (95% CI) 179  

(177; 181)
114  
(110; 119)

C*
0 × 104 (95% CI) 197  

(191; 203)
132  
(118; 146)

R2 0.998 0.935
AICC -289.12 -256.39
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Figure 1. The Weibull-like curve fitted to the estimates (data) of the age-
specific LC hazard function for white men. The estimates of the LC haz-
ards are anchored to the 2000–2004 time period and to the 1925–1929 
birth cohort.
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Figure 2. The Weibull-like curve fitted to the estimates (data) of the age-
specific LC hazard function for white women. The estimates of the LC 
hazards are anchored to the 2000–2004 time period and to the 1925–
1929 birth cohort.
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Conclusion
In this paper, we modeled cancer hazards in aging by 
the Weibull-like function: h(t)  =  C0λrtr-1 exp(-λtr). 
This form of hazard function was derived from the 
Armitage-Doll multistage concept of carcinogenesis 
and an assumption that the number of clones developed 
from the mutated cells follows the Poisson distribution. 
The proposed modeling function is characterized by 
three parameters: r and λ are the conventional param-
eters of the Weibull probability distribution function, 
and the additional parameter, C0, adjusts the model 
to the observational data. These parameters have the 
following biological meanings: r is the number of 
stages of carcinogenesis; λ is the average number of 
clones developed from the mutated cells during the 
first year since the beginning of carcinogenesis; and C0 
is the data adjustment parameter characterizing a frac-
tion of the age-specific population that will develop 
the considered type of cancer in their lifetime.

Validity of the Weibull-like model for cancer devel-
opment in aging was tested by the methods of non-
linear regression analysis using the lung cancer data, 
collected in the SEER 9 database during 1975–2004 
for white men and women. The performed analysis 
showed that the use of the period of “effective expo-
sure”, t - A, improved the quality of the modeling. 
For white men the best quality was obtained when 
A = 20, while for white women the best quality was 
when A = 15. The number of stages of carcinogenesis 
in white men and women was shown to be similar 
and close to five, and the average number of clones 
developed from the mutated cells during the first year 
since the beginning of carcinogenesis are also similar. 
The obtained results suggest that in white men and 
women, the processes of carcinogenesis are different 
mainly by the starting ages of carcinogenesis and the 
data adjustment parameters characterizing the cor-
responding fractions of the age-specific population 
exposed to the LC.

Overall, we can conclude that the used incidence 
rate data is consistent with a Weibull model of car-
cinogenesis that is adjusted for the age of initial can-
cer exposure. Specifically, the Weibull-like model 
was shown to fit very well the estimates of the LC 
cancer hazards in aging that initially increase with 
the age, turn over and then fall at the end of the life-
time. It is expected that the Weibull-like model can be 
applicable to other adult cancers as well.

In conclusion, in our work we have studied only 
age-related correlative factors. These factors should 
not be directly equated with causation of cancer devel-
opment. To elucidate causative factors, comprehen-
sive biological models should be further developed.
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