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Notchl Is Required for Maintenance of the Reservoir of
Adult Hippocampal Stem Cells
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Notchl regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated
nestin-CreER "/R26R-YFP/Notch1'***1** [Notchlinducible knock-out (iKO)] mice to allow tamoxifen (TAM)-inducible elimination of
Notchl and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult
hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the
subgranular zone (SGZ) of wild-type (WT) mice (nestin-CreER "*/R26R-YFP/Notch1“/*) after tamoxifen (post-TAM), producing adult-
generated YFP+ dentate gyrus neurons. Compared with WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells
13 and 30 d post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 d post-TAM. Significantly fewer YFP+ Type-1 NSCs and
transiently amplifying progenitors (TAPs) resulted in generation of fewer YFP + granule neurons in Notch1 iKO mice. Strikingly, 30 d of
running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable
given the persistent deficits in the Type-1 NSCand TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir
of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch- and Type-1 NSC-
independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1

NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli.

Introduction

Neurogenesis occurs throughout adulthood in the subgranular
zone (SGZ) of the mammalian dentate gyrus (Lagace et al., 2007;
Imayoshi et al., 2008) and is linked with mood and hippocampal
function (Doetsch and Hen, 2005; Ming and Song, 2005). Adult
neurogenesis is dynamic and is thought to consist of a series of
stages: proliferation of nestin-expressing neural stem cells
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(NSCs) and transiently amplifying progenitor cells (TAPs), mat-
uration of doublecortin (DCX)-expressing neuroblasts, and sur-
vival of adult-born neurons that ultimately integrate into
hippocampal circuitry (Kempermann et al., 2004; Duan et al.,
2008). Each stage is discretely regulated by a variety of intrinsic
and extrinsic factors, and modulation of adult SGZ neurogenesis
by myriad stimuli (e.g., physical activity) is the focus of intense
research (Eisch et al., 2008; Zhao et al., 2008). However, more
information is needed about molecules that modulate the in
vivo interaction between NSC, TAPs, and the neurogenic mi-
croenvironment—or “neurogenic niche” (Basak and Taylor,
2009).

Notchl is a membrane-tethered transcription factor ideally
situated to integrate cues from the niche to regulate various stages
of neurogenesis (Artavanis-Tsakonas et al., 1999; Radtke et al.,
2005; Yoon and Gaiano, 2005; Androutsellis-Theotokis et al.,
2006; Johnson et al., 2009). In response to signals presented on
the surface of neighboring cells, Notch1 governs self-renewal and
fate in embryonic NSCs (Yoon and Gaiano, 2005; Corbin et al.,
2008). Notchl also promotes radial glia-like identity and nega-
tively regulates cell cycle exit and neuronal differentiation in
GFAP+ NSCs in the postnatal brain (Breunig et al., 2007; Favaro
et al., 2009). However, the long-term consequences of impaired
Notchl signaling in nestin+ Type-1 NSCs in the adult SGZ are
unknown. Consistent with the idea that Notch signaling can also
modulate neurogenesis in response to stimuli, recent studies sug-
gest that ischemia-induced changes in neurogenesis are depen-
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dent on Notchl (Carlén et al., 2009; Wang et al., 2009). A recent
study using a Hes5-GFP reporter found that Notch-responsive
stem cells respond differently to various stimuli (Lugert et al.,
2010). However, there is no direct research into the causative
links between Notch1, adult neurogenesis, and physical activity.

We hypothesized that Notchl signaling is critical for both
basal and exercise-induced SGZ neurogenesis. To address
this, we generated nestin-CreER "/R26R-YFP/Notch1 'oxP/1oxP
[Notchl inducible knock-out (iKO)] mice. Tamoxifen (TAM)-
induced recombination allowed us to ablate Notch1 from nestin-
expressing Type-1 NSCs and their progeny and to track the
recombined cells via yellow fluorescent protein (YFP). We as-
sessed YFP+ cell number, proliferation, differentiation, and cell
death in the SGZ of adult wild-type (WT) and Notch1 iKO mice
over 3 months under both basal and running conditions. We find
that Notchl1 is required for maintenance of adult hippocampal
stem and progenitor cells and for continuity of adult neurogen-
esis. We further show that physical activity normalizes deficits in
neurogenesis, despite persistent loss of NSCs.

Materials and Methods

Notchl iKO mice. Mice were housed in an ALAAC-approved facility at
UT Southwestern on a 12-h light/dark cycle. All procedures and hus-
bandry were in accordance with the NIH Guide for the Care and Use of
Laboratory Animals. Nestin-CreER ™ and R26R-YFP mice (Lagace et al.,
2007) maintained on a C57BL/6] background were crossed with floxed
Notchl mice (Radtke et al., 1999), maintained on an ICR (CD1) back-
ground to generate viable and developmentally normal adult nestin-
CreER "?/R26R-YFP/Notch ™™ (WT) and nestin-CreER "*/R26R-YFP/
Notch1'*1o* (Notch iKO) littermates. Mice were genotyped as
previously described (Radtke et al., 1999; Lagace et al., 2007). WT and
Notch1 iKO mice (4—5 weeks old, male and female) received TAM daily
for 6 d (180 mg/kg i.p., 30 mg/ml in 10% EtOH/sunflower oil, Sigma-
Aldrich). Only F3 intercross offspring were examined to control for gene
dosage from the different backgrounds and to ensure that all littermates
were heterozygous for both cre and yfp and varied only for the floxed
Notchl allele (appropriate Mendelian ratios were observed). This was
important given that running activity and neurogenesis are both highly
strain dependent (Kempermann et al., 2006; Pietropaolo et al., 2008;
Bednarczyk et al., 2009), and to minimize Cre and/or YFP-mediated
toxicity (Imayoshi et al., 2006).

Voluntary physical activity. Mice were single-housed in modified cages
with a locked (unable to turn) or open running wheel (Coulbourn In-
struments). Revolutions were monitored, and activity was analyzed using
ClockLab (ActiMetrics software). There was no statistical difference be-
tween any measures from mice on a locked wheel (cage dimensions =
13 X 31.8 X 13.7 cm) and naive group-housed mice (12.7 X 28.3 X 17.5
cm), so data from these nonrunner groups were combined and com-
pared with the running group.

Tissue preparation and immunohistochemistry. Mice were killed and
perfused 13, 30, 60, or 90 d after the last TAM injection, and brain
sections were prepared as previously described (Donovan et al., 2006;
Lagace et al., 2007). Staining was performed slide-mounted (SM) or
free-floating (FF) (Lagace et al., 2007; Donovan et al., 2008) using the
following primary antibodies: rabbit polyclonal anti-GFP (1:3000 SM;
Invitrogen, catalog #A11122), chicken polyclonal anti-GFP (1:500 SM,
1:100,000 FF, Aves Labs, catalog #GFP-1020), rabbit monoclonal anti-
Ki67 (1:500 SM, Lab Vision/NeoMarkers, Thermo Fisher Scientific, cat-
alog #RM-9106-S), rabbit polyclonal anti-cleaved caspase-3 (AC3, 1:500
SM, Cell Signal, catalog #9661), goat polyclonal anti-DCX (1:100 SM,
1:5000 FF; Santa Cruz Biotechnology, catalog #sc-8066), rabbit anti-
S1008 (1:2000 FF, Swant, catalog #37-a), mouse anti-GFAP (1:2500 FF,
Millipore, catalog #MAB360), mouse anti-NeuN (1:1000 FF, Millipore,
catalog #MAB377).

For SM THC, sections were mounted on slides and incubated in 0.01 m
citric acid (pH 6.0, 100°C) for 15 min for antigen retrieval. For AC3
additional permeabilization in 0.1% trypsin in 0.1% CaCl, in 0.1 M Tris
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for 10 min was followed by 2N HClI in 1X TBS for 30 min. Slides were
incubated with blocking solution (3% normal donkey serum, 0.3% Tri-
ton X-100 in 1X TBS) for =20 min followed by primary antibodies in
carrier (3% normal donkey serum, 0.3% Tween 20 in 1 X TBS) overnight
at RT. Antibody staining for DCX, Ki67, AC3, and chicken anti-GFP was
revealed using species-specific fluorophore-conjugated secondary anti-
bodies (1:2001in 1 X TBS, Cy2, Cy3, and Cy5, Jackson ImmunoResearch).
For quantification and morphological assessment of YFP+ cells, slides
were stained with rabbit anti-GFP and detected with biotinylated sec-
ondary antibody (1:200 in 1X TBS, Jackson ImmunoResearch), ampli-
fied using ABC Elite kit (Vector Laboratories, catalog #PK-6100) and
revealed with TSA Renaissance fluorescent amplification kit (1:50,
PerkinElmer Life Sciences, catalog #NEL701). Endogenous peroxidase
activity was quenched in 0.3% H, O, for 30 min before ABC and TSA. All
sections were counterstained with DAPI (1:5000, Roche Applied Science,
catalog #236276) before they were dehydrated and coverslipped with
DPX (Sigma-Aldrich, catalog #44581). Omission of primary or second-
ary antibodies resulted in no staining and served as a negative control.

For FFITHC to assess colocalization of YFP/S1003/GFAP or YFP/DCX/
NeuN, YFP was identified with chicken anti-GFP first, followed by stain-
ing for the other antigens. For staining of chicken anti-GFP followed by
goat anti-DCX, sections incubated in modified blocking solution (3%
normal donkey serum, 0.3% Triton X-100, 2% ABC Elite kit reagent A in
1X TBS) for =20 min, followed by primary antibodies in modified car-
rier (3% normal donkey serum, 0.3% Tween 20, 2% ABC Elite kit reagent
B in 1X TBS) overnight at RT. Sections were incubated in 1% H,O, for
30 min, washed 4 X 5 min in 1X TBS, then incubated with biotinylated
secondary antibody (1:200 in 1.5% normal donkey serum in 1 X TBS) for
4-6hat RT, washed, amplified for 1 h using ABC Elite kit, washed 4 X 10
min, and revealed for 12 min with TSA Renaissance fluorescent amplifi-
cation kit. Antibody staining for NeuN, GFAP, and S1003 was revealed
using species-specific fluorophore-conjugated secondary antibodies (1:
200 in 1.5% normal donkey serum in 1X TBS) for 4—6 h at RT. After all
staining was complete, sections were counterstained with DAPI for 20
min, washed, mounted onto uncharged slides and coverslipped with
DPX.

Analysis of immunoreactive cells. Quantification was performed with
an Olympus BX-51 microscope (400X) as previously described
(Mandyam et al., 2004; Donovan et al., 2006; Lagace et al., 2007, 2008,
2010). Briefly, an observer blind to experimental groups counted immu-
noreactive cells in the SGZ in every ninth coronal section throughout the
dentate gyrus (—0.82 mm to —4.24 mm from bregma) via the optical
fractionator method. Quantification of YFP+ SGZ cells and YFP+ SGZ
cells with Type-1 NSC or neuronal morphology was performed similarly
via the optical fractionator method by an observer blind to experimental
group. The proportion of YFP+ Type-1 NSC or YFP+ neurons was
determined by dividing the number of YFP+ cells with either morphol-
ogy by the total number of YFP+ cells (Donovan et al., 2008; Imayoshi et
al.,, 2008). For phenotypic and dendritic morphology analyses, colocal-
ization of signals was determined by scanning and optical sectioning in
the Z plane of triple-immunofluorescence labeled sections with a Zeiss
Axiovert 200/LSM510 confocal microscope (emission wavelengths 488,
543, and 633, 630X). For phenotyping, 100—-150 YFP+ cells per animal
(n = 3 per group) were analyzed and the total number of YFP+ cells
immunoreactive for Ki67 or DCX was calculated by multiplying total
YFP+ counts by the proportion that expressed the marker for each ani-
mal. For dendritic analysis, Z-stacks of DCX+YFP+ cells with a process
extending through the GCL were imported into Neurolucida (Version 8,
MicroBrightField) to obtain two-dimensional tracings of neurons (3-15
cells/animal, n = 3 per group), followed by Sholl analysis (Breunig et al.,
2007; Dahlhaus et al., 2008). Statistical significance was generally deter-
mined by one- or two-way ANOVA, followed by Bonferroni post hoc, and
detailed statistics are provided in Table 2 (see below) and supplemental
Table 1 (available at www.jneurosci.org as supplemental material).

Neurosphere isolation. Neurospheres were isolated from the subven-
tricular zone as previously described (Brewer and Torricelli, 2007) from
mice 40 d post-TAM. Briefly, dissections from two WT or Notch1 iKO
mice were pooled and dissociated enzymatically for 40 min at 37°C and
plated at equal density (10 cells/ul). Neurospheres were maintained in
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Figure1.  Notch1iK0 mice have fewer YFP+ cellsin the SGZ. a, Nestin-CreER ™ and R26R-YFP mice were crossed with floxed Notch1 mice to generate Notch1iKO mice. A large portion of the rat
nestin gene drives expression of a fusion protein of Cre recombinase and the modified estrogen receptor (CreER ™). Administration of tamoxifen (TAM) results in removal of the promoter and first
exon of notch1, and the “stop” signal of R26R-YFP. This leads to elimination of Notch1 and to expression of YFP in nestin-expressing cells and their progeny. b, PCR of neurospheres isolated 40d
post-TAM confirmed that the notch1 locus was recombined after TAM in Notch1iKO mice but not WT littermates. Primers (indicated by arrows in @) were designed against regions outside the floxed
portion of notch1. ¢, YFP+ SGZ cells in WT and Notch1iKO mice. d, YFP+ SGZ cell number. **p << 0.01, ***p << 0.001 vs WT, Bonferroni post hoc; n = 5-11/group. Scale bar: (c), 50 pem.

serum-free culture media supplemented with N2, B27, bFGF, EGF and
heparin and passaged when confluent (every 7-10 d) using trypsin-
EDTA. Secondary spheres were counted at confluence (7 d after plating)
using a 1 mm gridded dish. Genomic DNA was isolated from passage 4
neurospheres and PCR confirmed genomic recombination using the for-
ward primer 5'-ctg act tag tag ggg gaa aac and the reverse primer: 5'-tac
tce gac acc caa tac ct.

Results

Generation of Notch1 iKO mice

To target disruption of Notchl signaling to nestin-expressing
cells in the adult hippocampus, we generated Notch1 iKO mice.
TAM administration induced expression of YFP in WT and iKO
mice, as well as elimination of the promoter and first exon of
notchl from nestin-expressing progenitors in iKO mice (Fig.
la,b). YEP+ cells presented morphologies and phenotypes con-
sistent with the stages of SGZ neurogenesis. YFP+ astrocytes
(S100B+) and oligodendrocytes were extremely rare in the den-
tate gyrus, consistent with our previous finding that progeny of
nestin-expressing cells in the SGZ are primarily neurons (Lagace
et al., 2007).

Adult Notchl iKO mice have fewer SGZ YFP+ cells

To determine the effect of Notchl ablation from nestin-
expressing Type-1 NSCs and their progeny on adult SGZ neuro-
genesis, we assessed the number of YEP+ cells in WT and Notch1
iKO mice. Qualitatively, Notch1 iKO mice had fewer YEP+ cells
60 and 90 d post-TAM (Fig. 1¢). Quantitative assessment con-
firmed that the number of YFP+ cells increased over time in WT
mice, as previously shown (Lagace et al., 2007), but not in Notch1
iKO mice (Fig. 1d), suggesting that Notchl is necessary for con-
tinuous generation of adult SGZ cells.

YFP+ SGZ Type-1 NSCs and TAPs are reduced in Notch1

iKO mice

To assess which neurogenic stages were affected by elimination of
Notchl from nestin-expressing cells, YEP+ SGZ cells were as-
signed to categories based on expression of IHC markers (Fig. 2a,
Table 1) (Kempermann et al., 2004). YFP+ TAPs (Ki67+DCX-),
proliferating neuroblasts (Ki67+DCX+), and postmitotic im-
mature neurons (Ki67—DCX+) were evident in both WT and
iKO mice. YFP+ Type-1 NSCs (Fig. 2b) and mature neurons
(Fig. 2d) were identified based on their distinctive morphology as
previously reported (Lagace et al., 2007). Similar results were
obtained using morphological criteria or phenotypic markers
(supplemental Fig. 1a—f, available at www.jneurosci.org as sup-
plemental material). At early times post-TAM, there were no
differences between WT and iKO mice in the number of YEP+ cells
or their phenotypic distribution. While the number of YFP+ Type-1
NSCs remained constant in WT mice, the number of labeled NSCs
decreased significantly =60 d post-TAM in iKO littermates (Fig. 2e),
which was confirmed via quantification of YFP+GFAP+S1008—
NSCs (supplemental Fig. la—c, available at www.jneurosci.org as
supplemental material). Notch1 iKO mice had fewer TAPs than
WT mice (Fig. 2f), and =60 d post-TAM there were significantly
fewer YFP+ neuroblasts (Fig. 2¢), immature neurons (Fig. 2h),
and mature neurons (Fig. 2i) in iKO mice, the latter result con-
firmed via quantification of YFP +NeuN+ neurons (supplemen-
tal Fig. 1d—f, available at www.jneurosci.org as supplemental
material). Intriguingly, while we found a significant difference in
the number of YFP+ cells generated in Notch iKO mice com-
pared with their WT littermates (Table 2), we found no differ-
ences in the proportion of cell types generated (supplemental Fig.
1g—k, supplemental Table 1, available at www.jneurosci.org as
supplemental material), suggesting that fate of YFP+ cells is not
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Elimination of Notch1 from nestin-expressing cells decreases YFP+ SGZ NSC number and neurogenesis. a, YFP+ SGZ cells express markers across stages of neurogenesis. b,

YFP+GFAP+51008— Type-1NSC (arrow). ¢, YFP+Ki67 +DCX— (arrow) and YFP +Ki67 —DCX + (arrowhead) cells. d, YFP+NeuN+ neurons (YFP+NeuN— cell, arrow). e, Notch1iKO mice
have significantly fewer Type-1 NSCs at extended times post-TAM. f, There are fewer TAPs (YFP+Ki67 +DCX— cells) in Notch1iKO mice regardless of time post-TAM. g, Notch1iKO mice have
significantly fewer neuroblasts (YFP +Ki67 +DCX + cells) at 60 d post-TAM. h, Notch1iKO mice have significantly fewerimmature neurons (YFP +Ki67 — DCX+ cells) at extended times post-TAM.
i, Notch1iKO mice have significantly fewer YFP+ neurons at extended times post-TAM. j, Notch1iKO mice have significantly fewer proliferating (Ki67 +) YFP + cells at extended times post-TAM.
k, The number of YFP + cells that are becoming neurons (DCX+) is significantly decreased in Notch1iKO mice at extended times post-TAM. ], Apoptosis is not increased in the SGZ of Notch 1iKO mice
compared with WT littermates. *p << 0.05, **p << 0.01, ***p << 0.001 vs WT, Bonferroni post hoc; n = 3—7/group. Scale bars: (b-d, I), 20 um.

Table 1. Classification criteria for SGZ cells in stages of neurogenesis

Cell type Morphology Ki67 immunoreactivity DCX immunoreactivity
NSC Triangular soma, single projection through GCL, tuft of very fine processes Rarely positive Negative
terminating in inner molecular layer
TAP Irregular soma, no process Positive Negative
Neuroblast Irregular soma, no/small process Positive Positive
Immature neuron Round soma, process extends through GCL Negative Positive
Neuron Round soma, projections through GCL, full dendritic tree extending Negative Negative

through entire molecular layer

affected in Notch1 iKO mice. However, we did find that the pro-
portion of proliferating cells was decreased in Notch1 iKO mice
(supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material). Consistent with decreased proliferation, we
found fewer cells in the cell cycle in Notchl iKO mice (Fig. 2).
Further, there was no expansion of Ki67+ cells in iKO mice,
resulting in an earlier peak and decreased neurogenesis in Notch1
iKO mice (Fig. 2k). We determined that these differences in cell
number were not due to increased apoptosis (Fig. 2I). Previous
reports suggest that Notchl also modulates dendritic morphol-
ogy of adult-generated neurons (Breunig et al., 2007). While we
saw no difference in the number of branches between genotypes
(Fig. 3a), Sholl analysis revealed a smaller dendritic tree in

YFP+Ki67—DCX+ immature neurons in Notchl iKO mice
(Fig. 3b,c). Together, these data show that elimination of Notch1
from nestin-expressing cells and their progeny decreased the
number of YFP+ cells at all stages of neurogenesis without affect-
ing cell fate, decreased the proportion of TAPs without changing
cell death, and decreased the size of the dendritic tree of imma-
ture neurons in vivo.

In agreement with the decline in Type-1 NSCs and progeni-
tors after eliminating Notch1 in vivo (Fig. 2), NSCs isolated from
adult Notch1 iKO mice generated 70% fewer secondary neuro-
spheres in vitro compared with WT littermates (Fig. 4a). While
neurospheres from WT mice could be continuously passaged,
neurospheres from Notch1 iKO mice could not be continuously
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Table 2. Statistical results and numerical analysis
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Number of Figure Interaction ANOVA statistics pvalue
Total YFP+ cells 1c Genotype X time Fi 52 = 9.55 p < 0.0001
YFP-+ Type-1NSCs 2e Genotype X time Fi3.47) = 3.08 p=0.04
YFP+Ki67 +DCX— cells 2f Genotype X time Fi26 = 174 p=ns
Genotype Fa,26 = 7.92 p =0.009
YFP-+Ki67+DCX + cells 29 Genotype X time Fi328 = 479 p =10.008
YFP+Ki67 —DCX+ cells 2h Genotype X time Fi3.26) = 6.29 p =0.002
YFP+ neurons 2i Genotype X time Fa 35 = 3.06 p=10.04
YFP+Ki67 + cells 2 Genotype X time Fi3,19) = 8.66 p = 0.0008
YFP+DCX+ cells 2k Genotype X time Fi3.19) = 10.62 p = 0.0003
Total AG+ cells 2 Genotype X time Fg.31) = 1.07 p=ns
YFP+GFAP+ cells S-la N/A, Student’s ¢ test — p=10.05
YFP+ Type-1NSCs S-la N/A, Student's ¢ test — p=10.01
YFP+NeuN+ cells S-1d N/A, Student’s t test — p=10.04
YFP+ neurons S-1d N/A, Student’s ¢ test — p=10.02
YFP+DCX + dendrites per YFP+DCX+ soma 3a N/A, Student's ¢ test — p=ns
Intersections 3b Genotype X radius Fuz 763 = 3.07 p < 0.0001
Secondary neurospheres 4a N/A, Student’s ¢ test — p = 0.0009
Wheel revolutions 5a Genotype X day Fia0,200 = 1.13 p=ns
Total YFP+ cells — WT S-5a Housing condition Foi3 = 414 p=10.04
Total YFP+ cells — iKO S-5b Housing condition Fiq = 11.52 p=0.02
Total YFP+ cells 5¢ Genotype X running Faay = 441 p = 0.045
YFP+ Type-1NSCs 6a Genotype X running Fr,26 = 0.34 p=ns
YFP+Ki67+DCX— cells 6b Genotype X running Fi19) = 0.04 p=ns
YFP+Ki67 +DCX+ cells 6¢ Genotype X running Fi20 =590 p=0.02
YFP+Ki67 —DCX+ cells 6d Genotype X running Fa,19) = 0.60 p=ns
Running Fia19 = 23.87 p <0.0001
YFP+Ki67 + cells 6e Genotype X running Faay =159 p=10.012
YFP+DCX+ cells of Genotype X running Faon =173 p=ns
Running Faony=2115 p = 0.0002
N/A, Not applicable; S-, supplemental figures (available at www.jneurosci.org as supplemental material).
a b c a
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Figure3. Dendriticmorphologyis decreased in Notch1iKO mice. @, The number of dendrites 0 X p 6
per cell body in YFP+DCX+ cells in the SGZ did not differ between the two genotypes at 90 d WT Noteh1 KO assage
post-TAM. b, Sholl analysis of YFP+DCX + cells revealed significantly fewer dendritic intersec- Figure4.  Elimination of Notch1 from nestin-expressing Type-1 NSCs i vivo decreases neu-

tions in Notch1 iKO mice, specifically at a radius range of 960—-1060 m. ¢, Representative
YFP+DCX+ neuron tracings. *p << 0.05 vs WT, Bonferroni post hoc; n = 3—4/group.

propagated (Fig. 4b). Therefore Notchl is necessary for the ex-
pansion and self-renewal of nestin-expressing cells in the adult
SGZ in vivo and in vitro.

Running rescues YFP+ neurogenesis but not Type-1 NSCs or
TAPs in Notch1 iKO mice

Given that physical activity potently stimulates hippocampal
neurogenesis (van Praag et al., 1999b; Naylor et al., 2008) and
specifically increases proliferation of TAPs and neuroblasts
(Fabel and Kempermann, 2008), we explored whether physical
activity could rescue the deficits in YFP+ cell number in Notch1
iKO mice. Thirty days post-TAM, WT and Notchl iKO litter-
mates were given access to a running wheel for 30 d (Fig. 5a). WT
and Notch1 iKO mice ran similar distances and had similar run-
ning patterns (Fig. 5a). There were no statistical differences

rosphere formation in vitro. a, Number of secondary spheres formed from cells isolated 40 d
post-TAM from the subventricular zone of WT and Notch1iKO mice. b, Representative photomi-
crographs of passage 6 neurospheres from WT and NotchiKO mice. Scale bars, 100 pm. *p <
0.05, t test; n = 3—4replicates per group.

found between mice single-housed with a locked running wheel
and naive, group-housed mice, so data from these nonrunner
groups were combined and compared with the running group.
For example, total YFP+ cells in naive WT mice were not signif-
icantly different from WT mice single-housed with a locked
wheel (supplemental Fig. 2a,b, available at www.jneurosci.org as
supplemental material). While physical activity increased total
YFP+ cell number (Fig. 5b,¢), it failed to rescue either Type-1
NSCs or TAPs in Notch1 iKO mice (Fig. 6a,b). However, physical
activity restored proliferation (Fig. 6e) and neurogenesis (Fig.
6f), and specifically rescued YFP+ neuroblast and immature
neuron cell numbers (Fig. 6¢,d; supplemental Fig. 2, available at
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Figure 5.  Physical activity rescues total YFP+ cell number in Notch1 iKO runner mice. a,
Beginning 30 d post-TAM, animals were given free access to a running wheel for 30 d. WT and
Notch1iKO mice did not differ in the amount they ran in any given day. b, YFP+ SGZ cellsin WT
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www.jneurosci.org as supplemental material). These data show
that unlike neuroblasts, Type-1 NSCs and TAPs uniquely require
Notchl1 to regulate their number in the adult SGZ.

Discussion

We provide several lines of evidence that Notchl signaling in
nestin-expressing cells maintains the size of the undifferentiated
pool of stem and progenitor cells in the adult SGZ under basal
conditions. We find fewer YFP+ SGZ cell numbers in our induc-
ible transgenic mice in which Notchl was eliminated from
nestin-expressing cells. Although the number of cells at all stages
of neurogenesis is reduced in iKO mice, the undifferentiated
Type-1 NSC and TAP populations seem particularly vulnerable
to ablation of Notchl1 signaling. There is a dramatic loss of YFP-
labeled Type-1 NSCs over time, paralleling a simultaneous signif-
icant loss of TAPs. It is unlikely that decreases in cell number are
the result of cell death, as we found no evidence of increased
apoptosis. Instead, we interpret the decrease in NSCs and TAPs in
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Figure6. Physicalactivity rescues YFP+ neurogenesis but not YEP + Type-1NSCs or TAPsin

Notch1iKO mice. a, Thirty days of running did not affect the number of YFP+ Type-1 NSCs. b,
Thirty days of running did not affect the number of TAPs (YFP +Ki67 +DCX — cells). ¢, Running
rescued the number of neuroblasts (YFP+Ki67 +DCX + cells) in Notch1iKO mice. d, Running
rescued the number ofimmature neurons (YFP+Ki67 — DCX+- cells) iniKO mice. e, Thirty days
of running was sufficient to normalize the number of proliferating (Ki67+) YFP+ cells in
Notch1iKO mice to WT levels. f, The number of DCX+ YFP + cells was increased in both WT and
iKO mice after running. *p << 0.1, *p << 0.05, **p << 0.01 vs WT, Bonferroni post hoc; n =
3-8/group.

Notch1 iKO mice as a failure to self-renew and expand the YFP+
population. Ultimately, precocious cell cycle exit of NSCs and
TAPs leads to fewer neuroblasts and immature neurons, culmi-
nating in 50% fewer YFP+ neurons without Notch1. In addition
to these robust in vivo findings, progenitor cells from adult
Notchl iKO mice are impaired in their ability to self-renew and
proliferate in the neurosphere assay in vitro, further emphasizing
the importance of Notch1 in regulating and maintaining the res-
ervoir of stem-like cells in the adult.

Our time course studies notably extend data from previous
reports that suggest Notch1 regulates cell cycle entry and exit of
neural stem and progenitor cells (Guentchev and McKay, 2006;
Breunig et al., 2007; Guo et al., 2009; Wang et al., 2009). Based on
these studies and the anti-differentiation nature of Notch signal-
ing (Yoon and Gaiano, 2005), we hypothesized that eliminating
Notchl from nestin-expressing cells would result in proportion-
ally more YFP+ neurons at the cost of stem and progenitor cells.
Surprisingly, WT and Notch1 iKO mice are indistinguishable at
early times post-TAM (=30 d), and it is not until later times (=60
d) that we find significantly fewer Type-1 NSCs and TAPs and
fewer YFP+ cells in the cell cycle (Ki67+) in Notch1 iKO mice.
We interpret these findings as decreased stem cell renewal and
increased cell cycle exit, respectively, although shorter and longer
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Proposed model of Notch1 in regulating adult neurogenesis under basal conditions and after physical activity. Without Notch1, self-renewal and expansion of nestin-expressing cells

is disrupted and the net number of adult-generated dentate gyrus neurons is decreased. Physical activity increases adult-generated neurons in WT and Notch1 iKO mice by increasing neuroblast
proliferation. However, physical activity does not rescue Type-1 NSCor TAP number in Notch1iKO mice.

time points might reveal whether the absence of Notch1 signaling
forces Type-1 NSCs to enter the cell cycle and become TAPs
(Imayoshi et al., 2010). However, in contrast to Bruenig and col-
leagues and our own hypothesis, we never observe an increased
proportion of YFP+ cells that were DCX+ in Notch1 iKO mice.
Further, we did not observe an increase in neurons at the expense
of NSCs; instead, the total number of YFP+ neurons generated in
Notch1 iKO mice was reduced but proportional to YFP+ neu-
rons in WT mice. Together, these data suggest that following
inducible removal of Notchl from nestin-expressing cells,
Type-1 NSCs and TAPs exit the cell cycle, thereby precluding
progenitor cell expansion and decreasing the number of YFP+
progenitors available to mature into new neurons. Importantly,
our data do not demonstrate a role for Notch1 in regulating the
fate of the progeny of nestin-expressing cells.

The disparities between Breunig and colleagues and our own
observations likely reflect differences in the stem cell population
that was recombined (GFAP vs nestin), especially given the
context-dependent nature of Notch signaling (Poellinger and
Lendahl, 2008; Cau and Blader, 2009). Perhaps in GFAP-
expressing neural stem cells Notch1 regulates both proliferation
and neuronal fate, while in nestin-expressing stem cells—where
neuronal fate may already be determined (Lagace et al., 2007;
Steiner et al., 2008)—Notchl may regulate only proliferation.
Ultimately, both our data and the data from Breunig and col-
leagues support that Notchl is required for the maintenance of a
pool of proliferating undifferentiated cells in the adult SGZ.
These results underscore the power of the inducible transgenic
approach to dissect the role of a multipurpose protein, like
Notchl, in its contribution to a dynamic, complex, and context-
dependent physiological process like neurogenesis.

Based on the observation that proliferation was decreased in
Notch1 iKO mice, we hypothesized that the deficits in progenitor
cells might be rescued by exercise, which is among the most po-
tent inducers of neurogenesis in the adult SGZ (van Praag et al.,
1999a; van Praag, 2008). Running increases the proliferative ac-
tivity and number of TAPs and neuroblasts, with either modest or
no detectable changes in the proliferative activity or number of
Type-1 NSCs (Kronenberg et al., 2003; Suh et al., 2007; Lugert et
al., 2010). Surprisingly, we find that running increases neuroblast
proliferation and rescues neurogenesis in Notch1 iKO mice, de-

spite persistent deficits in both the Type-1 NSC and TAP pools.
Therefore, it seems that while Notch1 is critical for maintenance
of undifferentiated progenitor cells, Notch1 deficits alone cannot
inhibit physical activity-dependent neurogenesis (Fig. 7). One
interpretation is that Type-1 NSCs are not necessary for running-
induced proliferation, consistent with the above-mentioned re-
ports that NSCs proliferate modestly, if at all, in response to
running. However, nestin+ TAPs, which ordinarily respond to
running, may require Notch1 signaling to remain in the cell cycle,
in contrast to recent findings (Lugert et al., 2010). Alternatively,
the remaining YFP+ neuroblasts lacking Notch1l may be hyper-
responsive to running and proliferate more to overcome deficits
in progenitor cells. Perhaps neurotrophic factors and compo-
nents of the neurogenic niche that are necessary for exercise-
induced neurogenesis, such as BDNF, VEGF, B-endorphin
and/or endocannabinoids, are sufficient to increase neuroblast
proliferation in the absence of Notchl signaling (Fabel et al.,
2003; Kitamura et al., 2003; Bjornebekk et al., 2005; Koehl et al.,
2008; Hill et al., 2010; Lafenétre et al., 2010). It is also possible that
alternate pathways (e.g., mediated by GSK3, Shh, Wnt, or Sox2)
can compensate for the lack of Notchl in DCX+ differentiating
cells but not in undifferentiated Type-1 NSCs or TAPs (Hurlbut
etal., 2007; Annenkov, 2009; Favaro et al., 2009; D. Chichung Lie,
personal communication). Regardless, the observed normaliza-
tion of neuroblast proliferation and number of YFP+ neurons
highlights the complex interplay between stem and progenitor
cells, the neurogenic niche, and environmental stimuli, and en-
courages mechanistic studies into how Notchl regulates adult
neurogenesis in general and Type-1 NSCs in particular.

The data presented here have several implications. Particu-
larly intriguing is our observation that running can bypass a ge-
netic lesion with key cellular consequences (gradual depletion of
neural progenitors) and still normalize adult neurogenesis. These
data highlight the possibility of physical activity-based therapy in
neurogenesis-related memory and mood disorders, and encour-
age analysis of synaptic plasticity and behavior in our mutants.
Further, our demonstration of a critical role for intact Notchl
signaling in NSC maintenance urges caution in the clinical use of
gamma-secretase inhibitors (GSI) for the treatment of Alzhei-
mer’s and other diseases. Activation of Notchl requires gamma-
secretase cleavage, therefore GSI also inhibit Notchl activity
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(Gelingetal., 2002) and SGZ progenitor proliferation (Breunig et
al.,, 2007). Our data suggest that the resulting inhibition of
Notchl activity could result in decreased hippocampal neuro-
genesis and eventual depletion of hippocampal NSCs. Given that
Alzheimer’s disease models show decreased hippocampal neuro-
genesis (Donovan et al., 2006; Zhao et al., 2008; Lazarov and
Marr, 2010), our results suggest long-term treatment with broad-
spectrum GSI might exacerbate Alzheimer’s disease progression.
While more work is needed to evaluate the long-term effects of
GSIs on NSC maintenance, the inducible model presented here
will be useful in elucidating the underlying mechanisms of Notch
signaling in the adult SGZ and in exploring how therapeutic tar-
geting may offset the decrease in neurogenesis relevant to mem-
ory, mood disorders, and neurodegenerative diseases.
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