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Abstract

Twenty-two amino acid substitutions at seven conserved amino acid residues in the acetohydroxyacid synthase

(AHAS) gene have been identified to date that confer target-site resistance to AHAS-inhibiting herbicides in biotypes of

field-evolved resistant weed species. However, the effect of resistance mutations on AHAS functionality and plant

growth has been investigated for only a very few mutations. This research investigates the effect of various AHAS
resistance mutations in Lolium rigidum on AHAS functionality and plant growth. The enzyme kinetics of AHAS from five

purified L. rigidum populations, each homozygous for the resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln,

Pro-197-Ser or Trp-574-Leu, were characterized and the pleiotropic effect of three mutations on plant growth was

assessed via relative growth rate analysis. All these resistance mutations endowed a herbicide-resistant AHAS and

most resulted in higher extractable AHAS activity, with no-to-minor changes in AHAS kinetics. The Pro-197-Arg

mutation slightly (but significantly) increased the Km for pyruvate and remarkably increased sensitivity to feedback

inhibition by branched chain amino acids. Whereas the Pro-197-Ser and Trp-574-Leu mutations exhibited no significant

effects on plant growth, the Pro-197-Arg mutation resulted in lower growth rates. It is clear that, at least in L. rigidum,
these five AHAS resistance mutations have no major impact on AHAS functionality and hence probably no plant

resistance costs. These results, in part, explain why so many Pro-197 AHAS resistance mutations in AHAS have evolved

and why the Pro-197-Ser and the Trp-574-Leu AHAS resistance mutations are frequently found in many weed species.
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Introduction

Acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also re-

ferred to as acetolactate synthase (ALS), is the first enzyme

in the pathway for the biosynthesis of the branched chain

amino acids valine, leucine, and isoleucine (reviewed by

Duggleby and Pang, 2000). AHAS is the common target site

of five AHAS-inhibiting herbicide chemistries, namely sulfo-

nylurea (SU), imidazolinone (IMI), triazolopyrimidine,
pyrimidinyl-thiobenzoates, and sulphonyl-aminocarbonyl-

triazolinone (Saari et al., 1994, and references therein; Santel

et al., 1999). Various AHAS-inhibiting herbicides (also

referred to as AHAS herbicides) have been in widespread

commercial use in world agriculture for nearly three

decades. Global and persistent use of AHAS-inhibiting

herbicides has consequently resulted in the rapid evolution

of many AHAS herbicide-resistant weed populations.

Worldwide, there are biotypes of 108 weed species with

evolved AHAS herbicide resistance (Heap 2010, http://

www.weedscience.com). In many cases, evolved resistance

is target site-based, due to resistant plants having one or

more specific resistance-endowing single point mutations in
the target AHAS gene. A total of 22 resistance-endowing

gene mutations at seven conserved amino acid residues in

the AHAS gene have so far been identified in field-evolved

resistant weed biotypes (reviewed by Tranel and Wright,

2002; Powles and Yu, 2010; also see Tranel et al., 2010,

http://www.weedscience.org). To date, mutations at Pro-197
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(especially the Pro-197-Ser) are most commonly reported

and the Trp-574-Leu mutation is also frequently identified

(Powles and Yu, 2010; Tranel et al., 2010, http://

www.weedscience.org).

It is known that certain gene mutations endowing target

site-based herbicide resistance have adverse pleiotropic effects

on plant growth and fitness (reviewed in Vila-Aiub et al.,

2009). A significant contributor to resistance costs associated
with target site herbicide-resistance genes may arise if

a resistance mutation causes change in enzyme functionality

(e.g. impaired enzyme activity, reduced substrate affinity,

altered feedback inhibition) resulting in insufficient or

excessive product biosynthesis (Vila-Aiub et al., 2009). The

individual impact of the known 22 resistance-endowing

AHAS gene mutations on AHAS functionality and their

concomitant effect on plant fitness remains unknown and
needs empirical evaluation (Powles and Yu, 2010).

Resistance-conferring amino acid substitutions are structural

changes in AHAS that prevent or limit effective herbicide

binding (McCourt et al., 2006; Duggleby et al., 2008).

Therefore it is very likely that some resistance-conferring

mutations would impair AHAS functionality. Indeed, for

other herbicides, it is known that resistance mutations reduce

enzyme activity (e.g. Healy-Fried et al., 2007, for EPSPS
mutations; Yu et al., 2007b, for ACCase mutations), but the

situation is complex for AHAS. Depending on plant species

and the particular AHAS herbicide resistance-endowing

amino acid substitution, there are studies showing reduced

(Eberlein et al., 1997, 1999; Ashigh and Tardif, 2007),

increased (Boutsalis et al., 1999; Purrington and Bergelson,

1999; Yu et al., 2003; 2007a) or unchanged (Boutsalis et al.,

1999; Preston et al., 2006) AHAS activity. It is important to
note that, of the 22 known AHAS resistance-conferring

amino acid substitutions in field-evolved resistant weed

species, only a few have been evaluated for their impact on

both AHAS functionality and plant growth (Eberlein et al.,

1997, 1999; Alcocer-Ruthling et al., 1992).

To conduct precise comparative studies on enzyme kinetics

and their effects on the growth of resistant versus susceptible

plants, it is necessary to have genetically well characterized
plants. Here Lolium rigidum populations were generated with

all plants individually homozygous for the resistance muta-

tions Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Ser

or Trp-574-Leu. The effect of these mutations on AHAS

functionality and on plant growth was examined by de-

termining AHAS kinetics and relative growth rate compared

with the wild-type enzyme- and herbicide-susceptible popula-

tions. This is the first systematic study assessing the effect of
various field-evolved AHAS resistance mutations on both

AHAS kinetic properties and plant growth.

Materials and methods

Plant material

Information on the eight Lolium rigidum populations used in the
AHAS kinetics study is provided in Table 1. Studies were
conducted with the known AHAS herbicide-resistant L. rigidum
populations WLR1 and RSG (Christopher et al., 1992; Yu et al.,

2008). From these two resistant populations, five sub-populations
were created that were each individually homozygous for the
resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-
197-Ser, and Trp-574-Leu (Table 1). This was achieved by
identifying (via sequencing and PCR-based marker analysis) at
least six plants homozygous for each of these mutations, growing
these homozygous plants to maturity, and allowing bulk-cross
pollinating (in pollen-proof cages) to produce seed. Homozygosity
of the progeny plants for the specific AHAS mutation in each
purified population and the absence of other AHAS mutations was
confirmed using PCR-based marker analysis (Yu et al., 2008). L.
rigidum populations known to be susceptible to AHAS herbicides
(VLR1) or possessing herbicide susceptible AHAS (WALR60,
WALR70), (hereafter referred to as S1, S2, S3 or collectively as S)
were used as wild type controls (Yu et al., 2009; Owen and Powles,
2010). For herbicide treatments and enzyme assays, seedlings of
each population were grown in plastic trays containing potting
mixture in a naturally illuminated and temperature controlled (25–
30/20–25 �C, day/night) greenhouse with regular watering and
fertilization. Two additional herbicide-susceptible L. rigidum
populations (H3/6, referred as S4, and H4/6 as S5) collected from
agricultural fields (Owen et al., 2007; M Owen and Q Yu,
unpublished results) were used for plant growth analysis (see
‘Plant Growth Assessment’ below).

Herbicide treatments

To confirm herbicide resistance and the cross-resistance pattern
for plants with each individual AHAS resistance mutation, seedlings
(90–100) of the eight populations used in this study were treated at
the 2–3 leaf stage with the sulfonylurea (SU) herbicide sulfometuron
(20 g ha�1) and the imidazolinone (IMI) herbicide imazapyr (200 g
ha�1), respectively, using a spray cabinet with a moving-boom
delivering 106 l ha�1 water at a pressure of 200 kPa through two
flat fan nozzles. These AHAS herbicide rates are lethal to the S
populations only.

AHAS in vitro assay

Earlier work reported much lower extractable AHAS activity in S
compared to resistant (R) L. rigidum populations (Yu et al., 2004).
Considerable optimization of the AHAS assay revealed that,

Table 1. Information on the Lolium rigidum populations used and

their growth response to the two AHAS inhibiting herbicides

sulfometuron and imazapyr

Seedlings (90–100 per treatment) were treated at the 2–3-leaf stage
and mortality was determined 21 d after treatment. R, resistant;
S, susceptible.

Population
name

AHAS
mutation

Original
populations

% Survival

Sulfometuron Imazapyr
(20 g ha�1) (200 g ha�1)

Control populations

S1 Wild type VLR1 0 0

S2 Wild type WALR60 0 0

S3 Wild type WALR70 0 0

Purified resistant populations

R-197-Ala Pro-197-Ala WLR1 100 0

R-197-Arg Pro-197-Arg WLR1 100 0

R-197-Gln Pro-197-Gln WLR1 100 0

R-197-Ser Pro-197-Ser WLR1 100 0

R-574-Leu Trp-574-Leu RSG 100 100
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specifically for the S populations, reducing the extraction time
achieves higher AHAS activity and, especially, that the Sephadex
G25 column desalting step could be eliminated without effects on
AHAS activity (also see Singh et al., 1988, for the effect of
ammonium sulphate concentration on AHAS activity), Km, and the
sensitivity to herbicide and branched chain amino acid inhibition.
This modified protocol improved extractable AHAS activity and
reproducibility, especially for the susceptible L. rigidum plants.
At the 2–3 leaf stage, the above-ground leaf material (about 4 g)

was harvested at soil level from each population (at least
20 seedlings per harvest), snap-frozen in liquid nitrogen and stored
at –80 �C. The AHAS in vitro assay was conducted according to
the method of Yu et al. (2004) with modifications. The frozen
material was ground to a fine powder with a mortar and pestle in
liquid nitrogen and homogenized in 3 vols of cold grinding buffer
containing 0.1 M K2HPO4 (pH 7.5), 0.5 mM MgCl2, 0.5 mM
thiamine pyrophosphate (TPP), 10 lM flavin adenine dinucleotide
(FAD), 10 mM sodium pyruvate, 10% v/v glycerol, 1 mM dithio-
threitol (DTT), 1 mM phenylmethylsulphonyl fluoride (PMSF)
and 0.5% soluble PVP. The homogenate was filtered through two
layers of Miracloth and centrifuged at 27 000 g for 15 min. About
6–7 ml supernatant was brought to 50% saturation with
(NH4)2SO4 by drop-wise addition of an equal volume of 100%
(NH4)2SO4, and the solution was allowed to stand on ice for 10
min with low-speed stirring. The protein was then precipitated at
27 000 g for 20 min. The pellet was redissolved in 4.5 ml reaction
buffer containing 50 mM HEPES [N-(2-hydroxyethyl) piperazine-
N#-(2-ethanesulphonic acid)], pH 7.5, 200 mM sodium pyruvate,
20 mM MgCl2, 2 mM TPP, and 20 lM FAD and was immediately
used in the assay. The reaction mixture contained 100 ll enzyme
extract and 100 ll of AHAS inhibitor solution (herbicide or amino
acid prepared in water) and was incubated at 37 �C for 60 min.
The reaction was stopped with 40 ll of 6 N H2SO4 and incubated
at 60 �C for 15 min to convert acetolactate to acetoin. Then, 190 ll
of creatine solution (0.55%) and 190 ll of a-naphthol solution
(5.5% in 5 N NaOH) were added and the mixture incubated at 60
�C for 15 min. Enzyme activity was determined colorimetrically
(530 nm) by measuring the amount of acetoin formed using
commercial acetoin as a standard. The protein concentration of
the crude extract was measured by the Bradford method. Reaction
mixtures that were acidified (40 ll of 6 N H2SO4) prior to the
addition of enzyme were used as standard background controls for
non-enzymatic formation of acetoine.
As pyruvate decarboxylase (PDC) (Muhitch, 1988) and other

multiple acetoin-forming enzymes (Forlani et al., 1999) in plant
tissues may interfere with the assay, the contribution of the direct
formation of acetoin (not via acidic conversion) by non-AHAS
enzyme activities was determined using NaOH (40 ll 4 N NaOH) to
terminate the reaction instead of 6 N H2SO4 (Tanaka, 2003;
Pornprom et al., 2005; DL Shaner, personal communication). Pilot
studies showed that other acetoin-forming, non-AHAS activity in
shoot tissue of L. rigidum plants accounts for 15–30% of the total
apparent AHAS activity measured using the standard acid control.
Furthermore, non-AHAS activity (PDC) has been shown to
contribute to reduced AHAS sensitivity to herbicide or branched
chain amino acid feedback inhibition in maize kernels (Muhitch,
1988; DL Shaner personal communication). Therefore, it is suggested
that background control for non-AHAS activities in the in vitro
AHAS assay is necessary, at least for L. rigidum. In addition, as
preliminary experiments demonstrated that AHAS activity in stem
tissue is 2–3-fold higher than in the leaf blade, 3-week-old seedlings
were always used and all above-ground material was pooled.
For the AHAS herbicide sensitivity test, the technical grade SU

herbicide sulfometuron (dissolved in 20% acetone) was used at
final concentrations of 0, 0.001, 0.01, 0.1, 1.0, 10, 100, and 500
lM. For Km (pyruvate) determination, pyruvate was omitted from
the extraction and reaction buffers, and final concentrations of
0.39–100 mM were used in the reaction mixtures. Both the H2SO4

and NaOH controls were used for each pyruvate concentration.

Plant growth assessment

Populations used for growth analysis included three herbicide-
sensitive populations, S1 (VLR1), S4 (H3/6), and S5 (H4/6), and
resistant populations homozygous for Pro-197-Ser, Pro-197-Arg,
or Trp-574-Leu AHAS-resistance mutations. Seeds of these
populations were germinated on 0.6% agar (w/v) solidified water
for 5 d at alternating 25/15 �C cycle with a 12 h photoperiod.
Seventy-five uniform seedlings from each population were trans-
planted to single plastic pots containing potting soil (50%
peatmoss and 50% river sand) and grown in a greenhouse at day/
night temperatures of 20/15 �C with natural sunlight. Pots were
watered and rearranged regularly to randomize environmental
differences in the greenhouse. Above-ground biomass from about
25 individual plants of each population were harvested 14, 28, and
42 d after transplanting, oven-dried at 70 �C for 3 d and then
weighed for dry biomass estimation.

Statistics

In vitro herbicide dose response and enzyme kinetics analysis: The
I50 value (herbicide concentration causing 50% inhibition of the
enzyme activity) was estimated using non-linear regression analysis
(Yu et al., 2007b). Km values were calculated using non-linear
regression analysis by fitting the data to the Michaelis–Menten
equation m¼VS/(Km+S), where S is the concentration of the
substrate pyruvate, m is the reaction velocity at any pyruvate
concentration, and V is the maximal reaction velocity. Each assay
contained two technical replicates and at least two to three
independent enzyme extracts were used for each assay set. Data
were subjected to analysis of variance using SAS Software
(OnlineDoc� 9.1.3., Cary, NC., SAS Institute Inc. 2004). Means
were separated using Fisher’s protected least significant difference
(LSD) test at the 5% level of probability.

Plant growth assessment: The inclusion of various plant harvests
enabled the estimation of plant relative growth rates (RGR) for the
AHAS susceptible (S1, S4, and S5) and resistant (Pro-197-Ser,
Pro-197-Arg, and Trp-574-Leu) populations. The inclusion of
three susceptible populations for RGR estimation and comparison
was planned to minimize the effect of genetic background differ-
ences between AHAS-susceptible and -resistant populations (Cou-
sens et al., 1997; Vila-Aiub et al., 2009).
The unbiased formula proposed by Hoffmann and Poorter

(2002) was used to determine RGR. The variance (V) of RGR was
estimated according to Causton and Venus (1981):

VðRGRÞ ¼
V
�
lnW2Þ þ V

�
lnW 1Þ

ðt2 � t1Þ2

where lnW2 is the mean of the ln-transformed plant weights at
harvest time 2; lnW1 is the mean of the ln-transformed plant
weights at harvest time 1. The degree of freedom associated with
RGR is n–2, where n is the total number of plants in two harvest
intervals. One-way analysis of variance (ANOVA) with Dunnett’s
post-test was performed to compare RGR estimates between
AHAS S and R populations (GraphPad Prism 5.0, San Diego,
California, USA).

Results

Herbicide treatment confirmed AHAS herbicide
resistance of each purified L. rigidum population

Seedlings (90–100) of S and each purified R population

were treated with the SU herbicide sulfometuron and with

the IMI herbicide imazapyr. As expected, all S plants were
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killed (Table 1). All R plants with the various Pro-197

resistance mutations survived the SU herbicide sulfome-

turon but were killed by the IMI herbicide imazapyr,

whereas the R plants with the Trp-574-Leu mutation

survived both SU and IMI herbicides (Table 1). This

confirms several studies which demonstrate that Pro-197

mutations confer resistance only to SU herbicides whereas

the Trp-574-Leu confers resistance to both SU and IMI
herbicides (Tranel et al., 2010, http://www.weedscience.org).

In vitro AHAS assays confirmed an herbicide-resistant
AHAS enzyme

Herbicide sensitivity of the AHAS isolated from R and S

plants was determined using the SU herbicide sulfometuron.

As shown in Table 2 and Fig. 1, wild-type AHAS isolated

from each of three S populations was, as expected, strongly
inhibited by sulfometuron, with I50 values ranging from

0.005 lM to 0.09 lM (averaged 0.0075 lM). However,

AHAS isolated from purified R populations homozygous

for the various resistance mutations was clearly resistant,

with I50 values 95 to >1333-fold greater than S populations.

Thus, as expected, mutations at Pro-197 or Trp-574-Leu

mutation confer high level resistance to sulfometuron.

Resistance mutations result in higher extractable AHAS
activity

The total protein concentration in the reaction mixture was

normalized to 340 lg for all samples, as this protein level

catalyses a linear rate of acetoin formation within 60 min
incubation at 37 �C, under the current experimental

conditions. When AHAS activity was measured on an equal

protein basis, AHAS extracted from the R populations

(except for the R-197-Ser population) was found to display

significantly higher AHAS activity than S populations

(Fig. 2). For example, the R-197-Arg and R-574-Leu

populations displayed, respectively, 40% and 55% higher

AHAS activity than the S. These measurements were made
with 3-week-old seedlings (Fig. 2) and 42-d-old plants (data

not shown) and the R populations always displayed higher

AHAS activity than the S control. By comparing AHAS

activity of the five resistant populations with that of three S

populations, it is clear that a significantly higher extractable

AHAS activity is associated with most of these resistance

mutations in these L. rigidum populations.

Resistance mutations differ in their effects on AHAS
Km (pyruvate)

The Km (pyruvate) values for the three S controls were very

similar, ranging from 6.65 mM to 7.9 mM, in agreement

with Km values reported for AHAS extracted from other

plant species (Tanaka, 2003; Preston et al., 2006; also see
the list by Duggleby and Pang, 2000). None of the five

resistance mutations had a major impact on AHAS Km but

each had different effects. The Pro-197-Ser and Trp-574-

Leu did not change Km, the Pro-197-Ala and Pro-197-Gln

populations significantly reduced (about 41%) Km values,

wherease the Pro-197-Arg population significantly increased

(by 31%) the Km value (Table 3), as compared to S

populations. In addition, the AHAS Vmax values for

R populations were generally higher than for the S

populations and, especially the R-197-Arg, R-197-Gln, and

R-197-Leu had significantly higher Vmax values (Table 3),

confirming the results of higher AHAS specific activity for

various resistance mutations, relative to the wild-type AHAS
(Fig. 2).

Resistance mutations vary in their effects on feedback
inhibition by branched chain amino acids

Several studies have established that AHAS from resistant

plants show less feedback inhibition by branched chain
amino acids (Eberlein et al., 1997, 1999; Preston et al., 2006;

Ashigh and Tardif, 2007; Ashigh et al., 2009). In general, in

the L. rigidum populations studied here, the single branched

chain amino acids valine, leucine or isoleucine inhibited

activity of both wild type and resistant AHAS at concen-

trations higher than 0.05 mM (Figs 3, 4), with leucine being

the most effective inhibitor. AHAS activity of all three S

populations was feedback inhibited to a similar extent by

Table 2. AHAS I50 values of the resistant and susceptible L.

rigidum populations for the SU herbicide sulfometuron

I50 values from the three S populations were averaged. Means (n¼2
or 3) with different letters are significantly different, P¼0.05)

Population I50 (mM) R/S (I50) ratio

S (average) 0.0075 d

R-197-Ala 0.71 c 95

R-197-Arg 1.81 a 241

R-197-Gln 1.48 b 197

R-197-Ser 1.57 b 209

R-574-Leu >10 >1333
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Fig. 1. In vitro inhibition of AHAS activity of the susceptible

(average of the three S populations, closed symbols, dotted line)

and purified resistant Lolium rigidum populations (open symbols,

solid lines) by sulfometuron. Data are means 6standard error (n¼2

or 3).
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each of the three amino acids. However, sensitivity of

resistant AHAS to amino acid inhibition was differentially

modified by the specific resistance mutations, and accord-

ingly, the resistance mutations can be divided into three

groups (Table 4). The first group contains the Pro-197-Gln

mutation with unchanged AHAS sensitivity to amino acid

inhibition (data not shown). The second group contains the

Pro-197-Ala, Pro-197-Ser, and Trp-574-Leu mutations,
these mutations caused no-to-slight increase (5–10%) in

AHAS sensitivity to amino acid inhibition (Fig. 3), depend-

ing on the specific amino acids. The third group contains

the Pro-197-Arg mutation, which significantly increased (by

up to 25%) AHAS sensitivity to amino acid inhibition

(Fig. 4). This was also confirmed in another purified

L. rigidum population (WALR50) homozygous for the same

Pro-197-Arg mutation (data not shown).

Effects of AHAS resistance mutations on plant growth

Regardless of the population, plants showed RGR estimates

that were significantly higher (P <0.0001) in the first

growing period (1st–2nd harvest) than in the second

growing period (2nd–3rd harvest) (Table 5). Comparisons

of RGR estimates between S and R populations were then

conducted within each growing period. In the first growing

period, the three S populations showed a very similar RGR

(averaged as 0.18960.0023). Equally, resistant plants pos-

sessing the Pro-197-Arg, Pro-197-Ser, or Trp-574-Leu resis-

tance mutation showed similar growth rates to individuals

of the S populations during the first growing period

Table 3. AHAS Km (pyruvate) and Vmax values of the resistant and

susceptible L. rigidum populations

Data from the three S populations were averaged. Means (n¼2 or 3)
with different letters are significantly different, (P¼0.05).

Population Km (mM) Vmax (mmol mg�1

protein h�1)

S (average) 7.13 b 1.11 c

R-197-Ala 4.19 c 1.86 bc

R-197-Arg 10.36 a 2.67 ab

R-197-Gln 4.92 c 2.87 ab

R-197-Ser 7.14 b 1.51 c

R-574-Leu 6.46 b 3.19 a
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Fig. 2. Extractable AHAS activity measured from partially purified

enzyme extracts of the susceptible (average of the three S

populations, black bar) and resistant (R) Lolium rigidum popula-

tions (grey bars) when plants were 18-d-old. Means (n¼2 or 3)

with different letters are significantly different (P¼0.05).

Table 4. Summary of sensitivity to feedback inhibition by

branched chain amino acids of AHAS of purified resistant

populations, relative to that of the S populations (refer to Figs 3–4)

Population Valine Leucine Isoleucine

Group I

R-197-Gln No change No change No change

Group II

R-197-Ala Slightly decreased No change Slightly decreased

R-197-Ser Slightly decreased No change Slightly decreased

R-574-Leu Slightly decreased No change No change

Group III

R-197-Arg Increased Increased Increased

Amino acid (mM)
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Fig. 3. Slightly decreased AHAS sensitivity to valine or isoleucine

feedback inhibition for the resistant R-197-Ala, R-197-Ser, and R-

574-Leu (open symbols, solid lines), as compared to that of the

averaged S Lolium rigidum populations (closed symbols, dotted

line). Data are means 6standard error (n¼2 or 3).
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(Table 5). During the second growth period (2nd–3rd

harvest), there was some variability in RGR between the
three S populations, with a mean RGR of 0.13760.0044. As

for the first growing period, the resistant plants with the

Pro-197-Ser or Trp-574-Leu mutation had the same RGR as

the S populations (Table 5). However, resistant plants with

the Pro-197-Arg mutation exhibited a lower RGR (Table 5).

Similarly, when observed over the whole plant growing

period (28 d from 1st to 3rd harvest), the resistant plants

with the Pro-197-Ser or Trp-574-Leu mutation had the

same RGR as the S populations (Table 5). However, the

resistant plants with the Pro-197-Arg mutation displayed

a lower RGR than that of the S populations (Table 5).

Thus, overall, these results indicate that, whereas the Pro-

197-Ser or Trp-574-Leu mutation has no measureable effect
on plant growth, the Pro-197-Arg may be associated with

a subtle negative effect. Further detailed work, under

competition, is required to confirm this observation.

Discussion

Resistance mutations and extractable AHAS activity

Several reports show that herbicide resistance-endowing

AHAS gene mutations that limit effective herbicide binding

to AHAS result in decreased AHAS activity (Eberlein et al.,

1997, 1999; Ashigh and Tardif, 2007). However, in this L.
rigidum study, conducted with plants homozygous for each

of five resistance-endowing AHAS gene mutations, signifi-

cantly higher extractable AHAS activity and Vmax for most

R populations were consistently observed (Fig. 2; Table 3).

This confirms previous observations with AHAS extracted

from R versus S populations of Raphanus raphanistrum (Yu

et al., 2003) and Hordeum leporinum (Yu et al., 2007a, b).

Increased AHAS activity has been documented for various
Pro-197 mutations or the Trp-574-Leu mutation in resistant

weed biotypes, mutant cell lines, transgenic plants, and

yeast (Chang and Duggleby, 1998; Boutsalis et al., 1999;

Purrington and Bergelson, 1999; Duggleby et al., 2003).

It is not evident how some AHAS resistance mutations

cause higher extractable AHAS activity. The higher activity

observed for the resistance mutations is unlikely due to

AHAS gene over-expression (Yu et al., 2003). There is no
clear pattern to correlate the higher AHAS activity with the

changes in enzyme kinetic properties (Tables 3, 4; Figs 3, 4).

One of the possible explanations is that increased extract-

able AHAS activity is due to increased AHAS stability

conferred by the specific resistance mutations. It is well
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Fig. 4. Increased AHAS sensitivity to amino acid feedback

inhibition for the R-197-Arg population (open symbols, solid line),

as compared to that of the averaged S Lolium rigidum populations

(closed symbols, dotted line). Data are means 6standard error

(n¼2 or 3).

Table 5. Mean estimates of relative growth rates (RGR) associ-

ated with Lolium rigidum populations homozygous for different

AHAS resistance alleles (R-197 and R-574).

RGR estimates for three herbicide susceptible populations (S1, S4,
and S5) were averaged. Three plant harvests were performed 14, 28,
and 42 d after transplanting. Data are mean RGR (n¼25–30) with
standard error (in parenthesis) estimated for the first (1st–2nd
harvest), second (2nd–3rd harvest), and whole (1st–3rd harvest) plant
growing time intervals. Means with different letters indicate significant
differences within each harvest period according to Dunnett’s test
(a¼0.05).

Population RGR (d�1)

1st–2nd harvest 2nd–3rd harvest 1st–3rd harvests

S (average) 0.189 (0.0023) a 0.137 (0.0024) a 0.163 (0.0011) a

R-197-Arg 0.190 (0.0029) a 0.120 (0.00304) b 0.154 (0.0016) b

R-197-Ser 0.189 (0.0046) a 0.130 (0.00295) a 0.160 (0.0021) a

R-574-Leu 0.195 (0.0029) a 0.135 (0.00307) a 0.165 (0.0016) a
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known that plant AHAS is extremely labile and low in

abundance, and therefore purification and characterization

from plant tissues is difficult due to rapid loss of activity

and sensitivity to amino acid feedback inhibition (Muhitch,

1988; Duggleby and Pang, 2000). It has been consistently

observed in this and other studies (Yu et al., 2003, 2007a, b)

that it is much easier to isolate AHAS from R plants with

reproducible and higher activity levels, compared to AHAS
isolated from S plants.

Plant AHAS, like most AHAS enzymes characterized to

date, has a catalytic subunit and a regulatory subunit. The

catalytic subunit, containing the cofactor thiamine diphos-

phate (ThDP; also referred as TPP) and the herbicide

binding sites, is usually active alone. The regulatory subunit

has no AHAS activity but can greatly stimulate the activity

of the catalytic subunit and confers sensitivity to feedback
inhibition by branched chain amino acids (Lee and

Duggleby, 2001, 2002; reviewed by Duggleby et al., 2008).

The increased extractable AHAS activity observed in R

populations with AHAS resistance mutations may be due to

improved cofactor binding/stability in the catalytic subunit,

or increased stability of the regulatory subunit. Research by

Kim et al. (2004) indicated that the existence of two

disordered regions (i.e. a ‘mobile loop’ and a ‘C-terminal
arm’) in the 3D crystal structure of the yeast AHAS

catalytic subunit-herbicide complex is responsible for the

binding/stabilization of the active dimer and of TPP. With

resistant mutant A. thaliana AHAS expressed in E. coli, it

was found that different resistance mutations do affect the

binding of TPP and FAD (Chang and Duggleby, 1998).

In contrast to the results showing that AHAS herbicide-

resistant L. rigidum can have significantly increased AHAS
activity (Fig. 2), reduced or unchanged AHAS activity has

been observed for a number of resistance mutations in some

dicot weed species (Eberlein et al., 1997, 1999; Boutsalis

et al., 1999; Preston et al., 2006; Ashigh and Tardif, 2007).

Taken together, it follows that the difference in AHAS

activity observed in R versus S biotypes is therefore likely to

be related to specific resistance mutations in different plant

species, frequency of resistance alleles in the resistant
population, and the genetic background of the R and S

populations under comparison. In the current study the

effect of genetic background was largely eliminated by

purifying different mutations from within one R population

and by using three S populations as controls.

Resistance mutations and AHAS affinity for
pyruvate (Km)

In this study, it was observed that specific resistance

mutations had different (unchanged, reduced or increased)

effects on the AHAS Km (Table 3). Unchanged Km values

have been previously observed for a number of AHAS
resistance mutations in some plant species (Mourad et al.,

1995; Chang and Duggleby, 1998; Eberlein, et al., 1999;

Boutsalis et al., 1999; Preston et al., 2006), and slightly

increased or reduced Km have also been observed in other

cases (Chang and Duggleby, 1998; Preston et al., 2006). The

crystal structure of plant AHAS in complex with AHAS-

inhibiting herbicides revealed that herbicides do not bind at

the active site, but bind within the substrate-access channel,

thereby blocking substrate access to the active site

(McCourt et al., 2006). This confirms that SU and IMI

herbicides are non- or un-competitive inhibitors of AHAS,

and explains (i) why these resistance mutations do not

drastically change the pyruvate binding, and (ii) how there
can be so many different herbicide-resistance mutations in

AHAS without a major adverse impact on substrate binding

and thus functionality. The current results showing no

major changes in Km by various AHAS resistance muta-

tions (Table 3) are in line with the AHAS crystal structure

analysis. However, the slightly increased Km for the Pro-

197-Arg mutation (Table 3) may have a subtle negative

effect on plant growth under stress conditions.

Resistance mutations and AHAS sensitivity to feedback
inhibition by branched chain amino acids

Unlike most bacterial and fungal AHAS that is sensitive
only to valine, a characteristic of plant AHAS is sensitivity

to each of the three branched chain amino acids (Miflin and

Cave, 1972; Rathinasabapathi and King, 1991; Southan and

Copeland, 1996; Eberlein et al., 1997, 1999; Preston et al.,

2006; reviewed by Duggleby et al., 2008). There have been

only limited studies conducted with known AHAS muta-

tions on AHAS sensitivity to branched chain amino acid

feedback inhibition. Reduced sensitivity has been demon-
strated for the Pro-197-His, Pro-197-Thr and a few other

resistance mutations in weed species (Eberlein et al., 1997,

1999; Preston et al., 2006; Ashigh and Tardif, 2007; Ashigh

et al., 2009). Unchanged sensitivity has been reported for

the Pro-197-Ser and Trp-574-Leu mutation in Arabidopsis

thaliana mutant lines (Mourad et al., 1995), and in trans-

genic tobacco (Hattori et al., 1995). The current study has

revealed that the effect of resistance mutations on AHAS
sensitivity to amino acid feedback inhibition is related

to both the specific mutation and amino acid (Figs 3, 4;

Table 4). Interestingly, it was found that the Pro-197-Arg

mutation significantly increased AHAS sensitivity to amino

acid inhibition (Fig. 4). It is known that the AHAS

sensitivity to branched chain amino acid inhibition is

conferred by the regulatory subunits (Lee and Duggleby,

2001; reviewed by Duggley et al., 2008). However, the
pathway is complex for the transmission of inhibitory

signals within the regulatory subunits and across to the

catalytic subunits (Lee and Duggleby, 2002). Further de-

termination of the 3-D structure of the plant AHAS

regulatory subunits, and catalytic plus regulatory subunits,

could greatly assist in understanding the cross-talk between

the subunits, and, consequently, how herbicide resistance

mutations in the catalytic subunit affect the enzyme activity
and its sensitivity to feedback inhibition.

The consequence of altered AHAS sensitivity to branched

chain amino acid feedback inhibition is perhaps a change in

amino acid pool concentrations. However, since the change

of sensitivity is only evident at the higher amino acid
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concentrations (>0.05 mM), the physiological relevance of

this impact in plants is not clear (reviewed by Tranel and

Wright, 2002). Subtle changes observed for the Pro-197-Arg

mutation (increased Km and sensitivity to amino acid

feedback inhibition) indicate that this mutation has the

potential to express a resistance cost (see below) (Vila-Aiub

et al., 2009).

Pleiotropic effects of AHAS resistance mutations on
plant growth

Target site herbicide resistance mutations can cause bio-

chemical and physiological alterations that compromise
plant survival and reproduction (i.e. resistance cost)

(reviewed in Vila-Aiub et al., 2009). The basis for this

assumption is that structural enzymatic changes caused by

herbicide resistance mutations may result in either subtle or

drastic modifications of substrate and/or inhibitor binding

leading to insufficient (impaired) activity, imbalance (feed-

back inhibition) or excess (higher activity) of enzyme end-

product biosynthesis. Some of the kinetics changes in
herbicide target enzymes may involve additional energy

costs with a negative effect on plant growth (Purrington and

Bergelson, 1999). In order to understand the biochemical

basis of resistance costs associated with various target site

AHAS herbicide resistance mutations, the effect of the Pro-

197-Ser, Pro-197-Arg or Trp-574-Leu mutation on L. rigidum

RGR was evaluated. RGR is a useful eco-physiological para-

meter to denote the expression of herbicide resistance costs as
variations in RGR are often positively correlated with varia-

tions in plant competitive and establishment ability (Grime

and Hunt, 1975; Vila-Aiub et al., 2005).

It has been argued that increased AHAS activity may be

associated with a herbicide resistance cost due to higher

carbon investments and/or toxic effects of excessive amino

acids synthesis (Vila-Aiub et al., 2009). The growth analysis

has revealed that the higher extractable AHAS activity
caused by the Pro-197-Ser and Trp-574-Leu mutations has

no adverse effect on L. rigidum vegetative growth (Table 5).

This finding contradicts the significant resistance cost

associated with higher AHAS activity derived from the

Pro-197-Ser mutation in laboratory-generated Arabidopsis

thaliana transgenic lines (Purrington and Bergelson, 1999).

In relation to the Trp-574-Leu AHAS resistance mutation,

a strong pleiotropic effect on plant growth has been
associated with this mutation in field-evolved resistant

Amaranthus powellii populations (Tardif et al., 2006);

however, the effect of the Trp-574-Leu mutation on AHAS

enzyme functionality has not been reported and remains to

be elucidated in this species. It is evident from the current

results that higher extractable AHAS activity associated

with the Pro-197-Ser and Trp-574-Leu mutations during

early vegetative growth in L. rigidum does not necessarily
involve any significant metabolic drain or toxicity with

apparent adverse effects on growth. Alternatively, the

higher measurable in vitro AHAS activity in the resistant

mutants may not correlate with higher in vivo AHAS

activity but may be associated with increased enzyme

stability with negligible effects on plant growth. It remains

to be established whether higher in vitro AHAS activity (or

stability) originated from specific AHAS resistance muta-

tions in L. rigidum show an associated resistance cost at

different plant developmental stages such as reproduction

and seed germination.

An interesting outcome of the growth analysis was that

plants possessing the Pro-197-Arg resistance mutation
showed lower RGR when compared to herbicide susceptible

individuals during the slower plant growing period

(Table 5). Of the AHAS resistance mutations evaluated in

this study, the Pro-197-Arg mutation is the only one leading

to increased AHAS activity (Fig. 3), Km value (Table 3),

and sensitivity to valine, leucine, and isoleucine feedback

inhibition (Fig. 4). The combination of a higher Km and

increased feedback sensitivity may cause temporal impaired
synthesis of branched chain amino acids during active plant

growth periods, thus contributing to the observed subtle

plant growth reduction. Further experiments are required to

determine the biological significance of this finding on

overall plant fitness.

In summary, AHAS herbicide-resistant L. rigidum pop-

ulations, each individually homozygous for the Pro-197-Ala,

Pro-197-Arg, Pro-197-Gln, Pro-197-Ser or Trp-574-Leu
resistance mutation, were generated. The effect of these

mutations on AHAS functionality and on plant growth was

investigated by determining AHAS kinetics and by assessing

plant relative growth rates at the vegetative stage, compared

with the wild-type enzyme and various herbicide-susceptible

populations. Each of these resistance mutations endowed

AHAS resistant to the sulfonylurea herbicide sulfometuron

(up to >1000-fold), but with some effects on AHAS kinetics.
Nearly all the resistance mutations resulted in higher extract-

able AHAS activity (both specific activity and Vmax), and

whilst most of them caused no-to-minor changes in AHAS

kinetics, the Pro-197-Arg mutation slightly (but significantly)

increased the Km for pyruvate and markedly increased

sensitivity to feedback inhibition by branched chain amino

acids. Compared with the other resistance mutations exam-

ined, the Pro-197-Ser and Trp-574-Leu mutations displayed
the least affected enzyme kinetics. Correspondingly, the Pro-

197-Ser and Trp-574-Leu mutations did not show an adverse

impact on plant productivity, while the Pro-197-Arg muta-

tion showed a transient negative effect on plant growth. The

undisturbed AHAS kinetics and unaffected vegetative growth

for the Pro-197-Ser and Trp-574-Leu mutations help explain,

in part, why these two resistance mutations often evolve in

field populations of many weed species under AHAS
herbicide selection.
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