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Abstract

To date, genome-wide association studies have focused almost exclusively on populations of European ancestry. These
studies continue with the advent of next-generation sequencing, designed to systematically catalog and test low-frequency
variation for a role in disease. A complementary approach would be to focus further efforts on cohorts of multiple
ethnicities. This leverages the idea that population genetic drift may have elevated some variants to higher allele frequency
in different populations, boosting statistical power to detect an association. Based on empirical allele frequency
distributions from eleven populations represented in HapMap Phase 3 and the 1000 Genomes Project, we simulate a range
of genetic models to quantify the power of association studies in multiple ethnicities relative to studies that exclusively
focus on samples of European ancestry. In each of these simulations, a first phase of GWAS in exclusively European samples
is followed by a second GWAS phase in any of the other populations (including a multiethnic design). We find that nontrivial
power gains can be achieved by conducting future whole-genome studies in worldwide populations, where, in particular,
African populations contribute the largest relative power gains for low-frequency alleles (,5%) of moderate effect that
suffer from low power in samples of European descent. Our results emphasize the importance of broadening genetic
studies to worldwide populations to ensure efficient discovery of genetic loci contributing to phenotypic trait variability,
especially for those traits for which large numbers of samples of European ancestry have already been collected and tested.
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Introduction

Over the past four years, genome-wide association studies

(GWAS) have started to reveal the genetic underpinnings of

complex traits and common diseases, yet only a modest fraction of

the heritability can be attributed to the collection of associated

variants discovered to date [1]. Even though impressive sample

sizes have been assembled through collaborative efforts, the

statistical power to discover susceptibility loci is limited by a

number of factors [2].

One limitation of the first wave of GWAS is the almost exclusive

interrogation of common variation with limited coverage of alleles

in the lower end of the frequency spectrum. Many low-frequency

alleles have not been ascertained, and even for those that were

catalogued in the dbSNP database, SNPs on the genome-wide

microarrays tag low-frequency variants only poorly through

pairwise linkage disequilibrium [3]. The second limitation is that

most GWAS to date have primarily studied samples of European

descent [4], with low power to detect association for alleles of low

frequency compared to more common alleles.

A compelling illustration of this second limitation was provided

by the recent discovery of the association at the KCNQ1 locus with

type 2 diabetes risk (with an estimated odds ratio = 1.2) in two

contemporary GWAS in East-Asian population samples [5,6]. The

associated SNP (rs2283228) has a minor allele frequency of ,40%

in East-Asian samples but a minor allele frequency of ,5% in

European samples [7]. At this allele frequency, the association had

little power to be discovered (at p,561028) in the series of GWAS

in European-derived samples performed ahead of the two East-

Asian studies [8,9,10,11,12], even though the SNP was well tagged

in European samples. After its initial discovery in the East-Asian

samples, the association was successfully replicated as a pre-

specified hypothesis at a more liberal significance threshold. This

finding raises the question to what extent power is affected by the

focus on samples of European ancestry, and how power to detect

association of genetic variation segregating at low frequency in

European populations could be heightened by broadening GWAS

efforts to a more diverse set of populations.

To this end, we evaluate here the relative benefit of performing

future genome studies in worldwide populations (‘‘second phase’’),

preceded by an initial GWAS in a European population (‘‘first

phase’’). Using the empirically observed allele frequencies in

population samples represented by HapMap Phase 3 and the 1000

Genomes Project, we quantify the impact of frequency differences

between populations on the power to find novel association of

modest effect (GRR #1.5), assuming that genome-wide associa-

tion results are combined in the two GWAS phases. We also

address the implications of such allele frequency differences for
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replicating bona fide associations (most discovered in European

samples) in different populations.

Overall, we show that there are substantial power gains to be

had by focusing on large multiethnic studies. Additionally, allele

frequency fluctuations between global populations and their

impact on power must be considered in replication studies.

Methods

We computed power to detect an association at genome-wide

significance (p,561028) using a theoretical model of log-additive

(multiplicative) effects, allowing us to perform all calculations

efficiently. For each SNP, we separately computed the non-

centrality x2 parameter (NCP) in the first and second phase as a

function of risk allele frequency, case-control sample size, and

assumed effect size (genotype relative risk, GRR) (Text S1). In

phase 1, we used the empirically observed allele frequencies in

CEU (Utah residents with Northern and Western European

ancestry collected by the Centre d’Etude du Polymorphisme

Humain) to mimic the fact that most GWAS to date have tested

European samples. In phase 2, we used the allele frequencies in

any of the population panels represented in HapMap 3 or 1000

Genomes (see below). For multiethnic scenarios in phase 2, we

computed the NCPs per population. By summing the NCPs in all

populations in phases 1 and 2, we derived the asymptotic power

for a given SNP to reach a p-value of 561028 (Text S1). For each

SNP, we averaged the power for both alleles simulated as the risk-

increasing allele (GRR .1). We repeated this procedure across all

1,440,616 SNPs present in HapMap 3 or 3,327,757 SNPs present

in 1000 Genomes, and report the average genome-wide power

across all SNPs, and the average power for SNP subsets stratified

by the minor allele frequency in CEU (where we refer to 1–5% as

low-frequency alleles). We varied the total sample size of each

scenario between 10,000, 20,000 and 80,000 samples (Table 1).

We varied the GRR between 1.1 and 1.5, following a

multiplicative risk model and assumed a fixed effect between

different populations in phases 1 and 2.

We note that our approach is not to be confused with a two-

stage replication design (as described, for example, in [13]) where

only a limited set of SNPs are taken from the phase 1 (based on

some p-value threshold) for additional testing in phase 2. Instead,

we leverage the idea that genome-wide association data sets are

combined in collaborative spirit, as is now routinely done for locus

discovery.

We obtain empirical allele frequencies for SNPs from two

sources: HapMap 3 and the 1000 Genomes Project. The HapMap

3 resource comprises genome-wide SNP data from 11 population

samples [14]: CEU (Utah residents with Northern and Western

European ancestry collected by the Centre d’Etude du Poly-

morphisme Humain), TSI (Toscans in Italy), CHB (Han Chinese

in Beijing, China), JPT (Japanese from Tokyo, Japan), CHD

(Chinese in Metropolitan Denver, Colorado), YRI (Yoruba in

Ibidan, Nigeria), MKK (Massai in Kinyawa, Kenya), LWK

(Luhya in Webuye, Kenya), ASW (African ancestry in southwest

USA), GIH (Gujarati Indians in Houston, Texas), and MXL

(Mexican ancestry in Los Angeles, California). In total, 1184

samples have been genotyped on the Illumina Human-1M and

Affymetrix 6.0 arrays, and SNP genotypes merged and processed

for quality control. Our analysis is restricted to the allele

frequencies of 1,440,616 SNPs that are QC-passing and

polymorphic in at least one of the eleven populations (referred

to as the consensus data). To remove bias due to different sample

sizes of these populations, we randomly selected 50 unrelated

founders (100 unique chromosomes, dictated by MXL, the

smallest sample) from each population in the consensus genotype

data to compute unbiased allele frequencies.

We also used frequency estimates from low-coverage sequenc-

ing data in four population panels (CEU, CHB, JPT, and YRI)

generated in Pilot 1 of the 1000 Genomes Project [15]. The data

we use here was generated in 60 founder individuals of CEU, 30 of

CHB, 30 of JPT, and 59 of YRI, resulting in three analysis panels

of similar sample size (CEU, CHB+JPT and YRI).

As a complementary analysis, we performed a power analysis

for a specific set of 182 unique SNPs (189 reported associations; 7

SNPs reported for multiple diseases) that have recently been

described as significantly associated to 26 complex diseases (taken

from http://www.genome.gov/GWAStudies/, accessed on 28

September 2009). For most of these associations, the effect sizes

range from 1.1 to 1.3. Based on the observed allele frequencies in

each of the HapMap 3 populations, we computed the sample size

required to replicate the association at 80% power (at a nominal

p,0.05) for the reported risk allele, taking the reported odds ratio

as the GRR in a multiplicative model. This analysis reflects the

testing of a specific hypothesis (instead of discovery across the

whole genome) based on bona fide associations reported by GWAS

performed to date.

Results

We compared three main scenarios where the key difference

was the total sample size (Table 1). First we explored the simple

scenario where phases 1 and 2 are performed in 5,000 samples

from the CEU population panel (Table S1). Power was, as

expected, consistently lower across the entire range of effect sizes

and allele frequencies compared to a sample size of 20,000 (Table
S2) and 80,000 (Table S3).

At a sample size of 20,000, the aggregate power across all 1.4

million SNPs considered was 82% at an effect size (GRR) of 1.5,

but fell to 8% at a GRR of 1.1 (Table S2). Across the different

effect sizes, power was largely driven by the power contribution of

common alleles (MAF .10%). At a modest GRR of 1.2, the

power of common alleles was 87% and rose to nearly 100% at a

Table 1. Overview of the three main GWAS scenarios.

Total
Sample Size Phase 1 Phase 2

Cases/controls HapMap panel Cases/controls HapMap panel

10,000 2,500/2,500 CEU 2,500/2,500 CEU, TSI, CHB, CHD, JPT, YRI, MKK, LWK, ASW, MXL, or GIH

20,000 5,000/5,000 CEU 5,000/5,000 CEU, TSI, CHB, CHD, JPT, YRI, MKK, LWK, ASW, MXL, or GIH

80,000 10,000/10,000 CEU 30,000/30,000 CEU, TSI, CHB, CHD, JPT, YRI, MKK, LWK, ASW, MXL, or GIH, or CEU+CHB+YRI
or CEU+CHB+YRI+MXL+GIH+ASW or CEU+CHB+YRI+MXL+GIH+ASW

doi:10.1371/journal.pone.0012600.t001

Power of Multiethnic GWAS
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GRR of 1.5. For lower frequency variants (MAF #5%), power to

detect an association remained low. For a GRR of 1.1 or 1.2,

power for SNPs with 1–5% frequency was essentially zero, but

rose to 65% when GRR was 1.5. Increasing the effect size reduced

the minimum allele frequency at which an association could be

detected. For a variant of 3% frequency, there was virtually no

power to detect at an effect size of 1.2 but almost 60% power to

detect it at a GRR of 1.4.

For a sample size of 80,000 samples, power to detect an

association of a lower frequency allele (MAF #5%) remained low

at smaller effect sizes. Power is ,3% at GRR = 1.1 (but ,89% for

common variants with the same effect size), and did not rise above

the 80% power threshold until a GRR of 1.3 (Table S3).

Next we compared the two European samples (CEU and TSI)

in phase 2 and found that the aggregate estimates for both

populations were very similar for all scenarios considered. A power

gain in TSI could be observed for lower-frequency variants at

smaller total sample sizes (10,000 and 20,000), including variants

that appear monomorphic in CEU (which by definition cannot

contribute power). This effect, however, was balanced by a power

loss in TSI for the largest sample size (80,000), due to the total

number of monomorphic SNPs in TSI (241,688 SNPs compared

to 199,821 monomorphic SNPs in CEU; Figure S1) and the

amplification of their inability to contribute power by the large

number of samples.

Performing phase 2 of the GWAS in a non-European

population panel demonstrated a marked power gain for alleles

with low frequency in CEU (MAF #5%), in a trend that remained

true with increasing sample size or greater effect sizes (Figure 1
and Figure S2 for alleles of 5–10% frequency in CEU). Any of

the African population panels (YRI, MKK, or LWK) and the

admixed African-American (ASW) panel provided the greatest

power gain as compared to a GWAS performed in CEU samples.

For a sample size of 20,000, the power to detect low-frequency

variants (MAF #5%) with a GRR of 1.2 was close to zero in CEU,

but about 40% in YRI. At a GRR of 1.4, power was about 50% in

CEU but 80% in the African population samples. These results

demonstrate that there is a notable gain in power for this class of

variants by moving into an African population sample for phase 2.

Power for alleles of low frequency in CEU also increased by

performing phase 2 in samples from one of the East-Asian

populations (CHB, CHD, or JPT) though the gain was not as

significant as that provided by moving to an African population

sample or a sample from the admixed ASW panel in phase 2. The

other admixed population panels (GIH, MXL) also improved

power, but to a lesser degree than one of the East-Asian panels.

For a sample size of 80,000, performing phase 2 of the GWAS

in a non-European population sample continued to yield a net

gain in power, but only for those alleles that have low frequency in

CEU and for smaller effect sizes (Figure 2). For larger effect sizes

(GRR .1.3), polymorphic SNPs in CEU (especially those at lower

frequency where power can still be improved) continued to gain in

power, while the power for many of the other populations reached

a plateau due to a comparatively larger slice of apparently

monomorphic SNPs (Figure S1), an effect due to ascertainment

bias of the SNP genotyping platforms used in HapMap 3.

Figure 1. Power to detect association for lower-frequency alleles (#5%) in CEU based on HapMap 3 data. Power is given for various
individual population panels (CEU, TSI, YRI, MKK, LWK, and ASW), a panel with major continental representation (CEU+CHB+YRI) and a cosmopolitan
panel with major continental representation and admixed populations (GIH, MXL, and ASW) interrogated in phase 2, aggregated over those alleles
that have lower frequency (1–5%) in CEU.
doi:10.1371/journal.pone.0012600.g001

Power of Multiethnic GWAS
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We also examined the utility of two different multiethnic samples

in phase 2. One multiethnic sample comprised the major

continental population panels (CEU+YRI+CHB) while the second

comprised the major continental panels in addition to the admixed

panels (CEU+YRI+CHB+GIH+MXL+ASW). Although the power

gain for alleles of lower frequency in CEU was noticeable in both

multiethnic panels, the best power was obtained for the ‘‘cosmo-

politan’’ panel with representation from the major continental

groups as well as the admixed populations (Figures 1 and 2).

During the course of this study, we had access to low-coverage

pilot data from the 1000 Genomes Project, which allowed us to

replicate these relationships across 3,327,757 detected variable

sites with estimated allele frequencies in the CEU, CHB, JPT and

YRI panels across the whole genome, essentially free of

ascertainment bias. Overall, the power estimates based on these

allele frequency distributions were unchanged (Tables S4, S5
and S6), compared to the HapMap 3-based results, also for a

lowered discovery threshold of p,161028 to reflect increased

variation in African samples (data not shown).

Consistent with the HapMap 3-based results, power to detect

an association was driven primarily by common variation and

power to detect lower-frequency variants remained limited for

GWAS scenarios exclusively in European samples (Tables S4,
S5 and S6). For lower-frequency variants (MAF #5%), the 80%

power threshold was not reached until the sample size was

80,000 and the effect size was 1.3 (Figure 3), exactly as was

observed in the HapMap 3 dataset. Performing phase 2 in

African ancestry samples increased power to detect alleles of

lower frequency in CEU (Figure 4 and Figure S3 for alleles of

5–10% frequency in CEU). Power was also increased by

including samples of East-Asian ancestry in phase 2, but to a

lesser extent than samples of African ancestry. Following a

multiethnic approach by combining samples from the CEU,

CHB, JPT and YRI panels, we see again a power improvement

for lower frequency alleles (in CEU). At an effect size of 1.2 and

a total sample size of 80,000, utilizing the multiethnic approach

in phase 2 increased power to detect low-frequency variants in

CEU to 85%, in comparison to 60% power when only European

samples are tested in phase 2. These results indicate a potential

gain in power to detect alleles of lower frequency in European

samples by performing a second phase of GWAS in samples of

African descent (Figures 3 and 4).

To illustrate the impact of allele frequency differences between

populations, we focus on two specific scenarios: one GWAS in

which phase 1 and phase 2 are performed in 10,000 European

(CEU) samples (20,000 total samples), and a second GWAS in

which phase 1 tests 10,000 European (CEU) samples and phase 2

tests 10,000 African (YRI) samples (Figure 5). Of all .3 million

SNPs with allele frequency estimates in CEU and YRI from 1000

Genomes, we can identify four categories: (1) SNPs that reached

power $80% in both scenarios (65.6% of all .3 million SNPs), (2)

SNPs with power $80% in only the European GWAS (6.5%), (3)

SNPs with power $80% in only the GWAS with YRI samples in

phase 2 (9.3%), and (4) SNPs that do not reach 80% power in

either scenario (18.6%). Most of the power gain (3.3%) for the

CEU+YRI design (relative to CEU+CEU) is due to alleles that are

15–40% higher in frequency in YRI compared to CEU. For these

alleles that are 15–40% more common in YRI, the net gain in

Figure 2. Power as a function of allele frequency (#5%) in CEU based on HapMap 3 data. For a sample size of 80,000 and a modest effect
size (GRR of 1.1 and 1.2), power is given for CEU, CHB, YRI, and two multiethnic panels (‘‘major continental’’, CEU+CHB+YRI, and ‘‘cosmopolitan’’,
CEU+CHB+YRI+ASW+GIH+MXL) in phase 2. Including non-European samples in phase 2 improves power to detect an association for alleles that have
lower frequency in CEU.
doi:10.1371/journal.pone.0012600.g002

Power of Multiethnic GWAS
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Figure 3. Power to detect association for lower-frequency alleles (#5%) in CEU using 1000 Genomes Project data. Power is given for
three individual panels (CEU, CHB+JPT, YRI), and a multiethnic panel (CEU+CHB+JPT+YRI) in phase 2, aggregated over those alleles that have lower
frequency (1–5%) in CEU.
doi:10.1371/journal.pone.0012600.g003

Figure 4. Power as a function of allele frequency (#5%) in CEU using 1000 Genomes Project data. For a sample size of 80,000 and
modest effect size (GRR of 1.1 and 1.2), power is given for three individual panels (CEU, CHB+JPT, YRI) and a multiethnic panel in phase 2. Including
non-European samples in phase 2 improves power to detect an association for alleles that have lower frequency in CEU.
doi:10.1371/journal.pone.0012600.g004

Power of Multiethnic GWAS
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power relative to the European GWAS is 24.2%. Power for alleles

of high frequency in CEU is saturated with little room for

improvement; including more European samples will contribute

only limited additional power. Power for alleles of lower frequency

in CEU is certainly not saturated, and including samples of

African descent in phase 2 results in a marked power gain for those

polymorphisms that are relatively common in the African

population. The gain in power resulting from using samples of

African descent in phase 2 appears to be largely driven by alleles

that have higher frequency in African samples than in European

samples (Table 2).

Lastly, we tested how allele frequency differences between

populations could influence the power (or sample size required) for

replicating a reported association (Table S7). For 182 (unique)

SNPs previously described as bona fide associations discovered in a

European sample, we found that 57 SNPs (30% of the reported

associations) required a total sample size of at least 2,500 (with a

case/control ratio of 1:1) to replicate the observed effect at 80%

power in another European population sample. Performing

replication studies in a non-European population may change

the required sample size, reflecting allele frequency changes

between populations (assuming a constant effect size). For 90

Figure 5. The relationship between allele frequency differences between CEU and YRI and power. We plot the histogram of all SNPs in
the 1000 Genomes Project data as a function the allele frequency difference between CEU and YRI (excluding SNPs monomorphic in both CEU and
YRI). The histogram is colour-coded by the estimated change in power by performing phase 2 in YRI instead of CEU, assuming a total sample size of
20,000 (10,000 in CEU in phase 1, and 10,000 in YRI in phase 2) and a GRR of 1.2. Allele frequency differences from +15% to +40% in YRI result in a
positive gain in power (in red), which is compensated by SNPs that are common in CEU (in blue). We divide the histogram into 4 categories: (1) SNPs
with at least 80% power in both scenarios (CEU in phase 2 or YRI in phase 2) (65.6% of all SNPs considered), (2) SNPs with at least 80% power to
detect an association in the European GWAS (CEU in phase 2) (6.5% of all SNPs considered), (3) SNPs with at least 80% power in the African GWAS (YRI
in phase 2) (9.3%), and (4) SNPs that do not reach 80% in either of these two scenarios (18.6%). As alleles of higher frequency in CEU are mostly
saturated for power, including additional European samples in GWAS will only marginally increase power, whereas alleles of lower frequency in CEU
may substantially benefit in terms of power from elevated frequencies in African populations.
doi:10.1371/journal.pone.0012600.g005

Table 2. Number of SNPs with higher or lower minor allele frequency in YRI or CHB+JPT, as compared to CEU in Pilot 1 of 1000
Genomes.

Allele Frequency Difference YRI (% of total SNPs) CHB+JPT (% of total SNPs)

Less common in CEU 1499386 (45.06%) 1518752 (45.64%)

Equal to CEU 14321 (0.43%) 93843 (2.82%)

More common in CEU 1814051 (54.51%) 1715163 (51.54%)

We have ignored allele flips (where the minor allele in CEU is the major allele in YRI or CHB+JPT), in order to estimate how many SNPs would be expected to have better
power in YRI or CHB+JPT (due to a higher minor allele frequency).
doi:10.1371/journal.pone.0012600.t002

Power of Multiethnic GWAS

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12600



reported associations (48%), a potential efficiency gain can be

achieved, as the effect could be replicated in a non-European

population with a smaller sample size than that required in a

European population. On the other hand, for 42 (22%) of the

reported associations, the sample size required for replication in a

non-European population was greater than that required for

replication in a European population.

Discussion

In this work, we have performed a quantitative analysis of how

allele frequency differences between populations affect the power

of genome-wide association studies, conditional on a first wave of

GWAS performed strictly in European samples. Probably the most

important observation is that genome-wide studies in a diverse set

of population samples can offer improved power for discovery as

compared to a study that exclusively focuses on European

population samples, and that this effect is dominated by those

alleles at lower frequency in European populations. Given the

investment made to date in GWAS of European samples, the

implication of this result is that a second, future wave of genomic

association studies would seem to benefit from broad inclusion of

non-European samples.

Our approach has limitations, however, and makes some

assumptions about the underlying genetic model that are worth

highlighting here. First, HapMap examines a biased set of SNPs

[16]. The HapMap 3 data set used here is limited to SNPs on the

Illumina Human-1M and Affymetrix 6.0 arrays. Both platforms

have a strong bias towards polymorphisms of high frequency in

European populations, and provide rather poor representation of

low-frequency variants or polymorphisms unique to non-Europe-

an populations. No explicit attempt was made to reconstruct (in an

unbiased way) the full allele frequency spectrum in these

populations (see, for example, [17]). Our initial aim was simply

to mimic the situation in which these arrays would be used in an

actual genome-wide study in any of the populations represented by

the HapMap 3 collection. We argue that our results for these SNPs

are relevant and realistic, since these arrays are still today state-of-

the-art in terms of their SNP density and coverage (though likely

not for long). Importantly, the results we obtain with the 1000

Genomes Project pilot data directly address this concern. Whole-

genome sequencing resulted in near-complete ascertainment of

3,327,757 variants in the same HapMap samples, essentially free

of ascertainment bias. Our calculations based on these variants in

the four HapMap panels still indicate that a multiethnic approach

for future disease studies is going to improve power to discover

novel susceptibility loci.

Second, we limited the HapMap 3 analysis to only 100 founder

chromosomes in each of the populations to ensure identical

precision in the allele frequency estimates of the respective

populations. Consequently, we are unable to simulate power for

lower-frequency or rare variants. The rapid advances in DNA

sequencing platforms will help build the tools to query those

variants in the near future in a comprehensive fashion, mitigating

some of the shortcomings of HapMap-inspired SNP arrays. In the

absence of empirical data on lower-frequency variants in this

study, however, we predict that a multiethnic approach will also be

beneficial for the study of rare variation, given that rare variation

is more likely to be population-specific.

Third, we have made no attempt to model the LD between

the (hidden) causal variant and the tested SNPs. For many

susceptibility loci, the genetic architecture of risk alleles remains

unknown despite ferocious efforts to fine-map the genetic

culprits. For the sake of simplicity, our aim was to simulate

the observed behavior of associations at common (tag) SNPs

consistent with validated associations recorded to date, regard-

less of the constellation of causal variants underlying them. In a

scenario where a tag SNP captures the causal variant in a

consistent manner across multiple populations, this approxima-

tion would not be expected to change the result. However, if the

LD structure between the tag SNP and the causal variant is

markedly different between populations, this could lead to a

reduction of power. An extreme example is what others have

referred to as the ‘‘flip-flop’’ phenomenon, where different

populations can show opposite directions of the effect at the tag

SNP (that is, risk in one population and protective in another)

[18,19]. Although it is at present unclear how widespread this

phenomenon is, we emphasize that this concern will be

alleviated when all polymorphisms can be directly tested (either

through complete sequencing or through whole-genome impu-

tation). Either way, sequencing data, such as that generated by

the 1000 Genomes Project, will help mitigate concerns about

underlying LD patterns. The results based on the 1000 Genomes

Project data (with much more complete representation of

variation across the genome) clearly indicate that, as long as

the effect is shared across populations, using samples from non-

European populations can yield a gain in power for discovery.

The general agreement with the 1000 Genomes results also

indicates that the ascertainment bias of the HapMap 3 data was

not a significant limitation, at least for the purposes of this

analysis.

Fourth, the disease model employed assumes that the effect

size is constant between populations. In other words, we have

not specifically modeled biological heterogeneity of the allelic

effect, or accounted for phenotype differences (including

incidence rate or prevalence) between populations. It remains

to be seen to what extent the effects of causal variants are

variable between populations, but so far the evidence for

common polymorphisms seems to suggest that heterogeneity is

limited with reproducible effect sizes between populations

(including the KCNQ1 example that motivated this study), even

if for most of the bona fide loci we still do not know the causal

variants driving the effect. Under a model of biological

heterogeneity for a given locus, we expect the power benefit to

evaporate only in the scenario that the causal effect is only

present in specific populations, or in the more extreme scenario

that the effect is even reversed.

Lastly, we have not dealt with the practical problem of

population stratification, where the test statistic can be inflated

due to intrinsic allele frequency differences between cases and

controls (due to some bias in ancestry in both groups). Our results

are based on ideal conditions where cases and controls are, by

definition, sampled from the same population. Yet, it is worth

pointing out the potential pitfalls of not correcting for population

structure in association analyses [20].

We have focused only on the discovery of novel loci, not on

fine-mapping causal variants within already established loci.

The localization of the causal variants is a different question

beyond the scope of this analysis, but a multiethnic approach

will likely be helpful for that purpose as well, as linkage

disequilibrium differences between populations can be exploited

to narrow the genomic window that harbors the causal variant

[21,22]. Altogether, this analysis gives a robust indication of the

potential benefit of performing whole-genome association

studies in a diverse set of population samples, a strategy that

has thus far been underutilized [4]. This benefit can be expected

for data sets acquired using SNP arrays as well as data from

sequencing.
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Supporting Information

Text S1 R script for computing power.

Found at: doi:10.1371/journal.pone.0012600.s011 (0.03 MB

DOC)

Figure S1 Number of monomorphic SNPs in the HapMap 3

population panels. The number of monomorphic SNPs in each

population panel are displayed, stratified by minor allele frequency

in CEU.

Found at: doi:10.1371/journal.pone.0012600.s001 (1.94 MB TIF)

Figure S2 Power to detect an association for common alleles (5–

10%) based on HapMap 3 data. The impact on power of

switching to non-European samples in stage 2 of the GWAS is

limited primarily to alleles of lower frequency in CEU. Testing

non-European samples for alleles of common frequency in CEU

yields a small (or no) increase in power.

Found at: doi:10.1371/journal.pone.0012600.s002 (1.93 MB TIF)

Figure S3 Power to detect an association for common alleles (5–

10%) based on 1000 Genomes data. Consistent with our

observations in the HapMap data, the improvement in power

achieved by using non-European samples is limited to alleles of

lower frequency in CEU.

Found at: doi:10.1371/journal.pone.0012600.s003 (1.93 MB TIF)

Table S1 Power to detect an association for a sample size of

10,000 using HapMap 3 data. Power is aggregated over all 1.4

million SNPs, over lower-frequency (1–5%) alleles, and over

subsets of SNPs stratified by minor allele frequency in CEU.

Calculations were made using allele frequencies from all 11

HapMap 3 population panels. GRR is varied between 1.1 and 1.5.

Data points referred to in the paper and in figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s004 (0.03 MB

XLS)

Table S2 Power to detect an association for a sample size of

20,000 using HapMap 3 data. Calculations were made using

HapMap 3 data. Data points referred to in the paper and in

figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s005 (0.03 MB

XLS)

Table S3 Power to detect an association for a sample size of 80,000

using HapMap 3 data. Power is calculated for individual population

panels as well as multiethnic GWAS, in which samples for stage 2 of

the GWAS are drawn from the major continental population panels

or the major continental plus the admixture population panels. Data

points referred to in the paper and in figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s006 (0.04 MB

XLS)

Table S4 Power to detect an association for a sample size of

10,000 using 1000 Genomes data. Population panels in the 1000

Genomes data are CEU, CHB+JPT, and YRI. Data points

referred to in the paper and in figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s007 (0.02 MB

XLS)

Table S5 Power to detect an association for a sample size of

20,000 using 1000 Genomes data. Data points referred to in the

paper and in figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s008 (0.02 MB

XLS)

Table S6 Power to detect an association for a sample size of

80,000 using 1000 Genomes data. Power for individual population

panels as well as multiethnic GWAS is calculated for this sample

size, as in the HapMap 3 analysis. Data points referred to in the

paper and in figures appear in bold.

Found at: doi:10.1371/journal.pone.0012600.s009 (0.03 MB

XLS)

Table S7 Sample size needed to replicate known GWAS

findings in samples from HapMap 3 population panels. The

sample size needed to replicate a GWAS finding at $80% power

is reported for each of the 11 HapMap 3 population panels.

Sample sizes listed as ‘‘NA’’ are annotated as such because the

particular SNP is monomorphic in that population panel. SNPs

that do not reach 80% power for 150,000 samples are footnoted

and power at 150,000 samples is given.

Found at: doi:10.1371/journal.pone.0012600.s010 (0.06 MB

XLS)

Author Contributions

Conceived and designed the experiments: BFV PIWdB. Performed the

experiments: SLP. Analyzed the data: SLP BFV PIWdB. Contributed

reagents/materials/analysis tools: SLP PIWdB. Wrote the paper: SLP BFV

PIWdB.

References

1. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)
Finding the missing heritability of complex diseases. Nature 461: 747–753.

2. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common
diseases and complex traits. Nat Rev Genet 6: 95–108.

3. Pe’er I, de Bakker PIW, Maller J, Yelensky R, Altshuler D, et al. (2006)
Evaluating and improving power in whole-genome association studies using

fixed marker sets. Nat Genet 38: 663–667.

4. Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, et al. Genome-

wide association studies in diverse populations. Nat Rev Genet 11: 356–366.

5. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, et al. (2008) SNPs

in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and

European populations. Nat Genet 40: 1098–1102.

6. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. (2008) Variants in

KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet
40: 1092–1097.

7. McCarthy MI (2008) Casting a wider net for diabetes susceptibility genes. Nat
Genet 40: 1039–1040.

8. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-wide
association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885.

9. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, et al. (2007)
Genome-wide association analysis identifies loci for type 2 diabetes and

triglyceride levels. Science 316: 1331–1336.

10. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007)

Replication of genome-wide association signals in UK samples reveals risk loci

for type 2 diabetes. Science 316: 1336–1341.

11. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-
wide association study of type 2 diabetes in Finns detects multiple susceptibility

variants. Science 316: 1341–1345.

12. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T,

et al. (2007) A variant in CDKAL1 influences insulin response and risk of type 2
diabetes. Nat Genet 39: 770–775.

13. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-
stage genome-wide association studies. Genet Epidemiol 31: 776–788.

14. International HapMap 3 Consortium (2010) Integrating common and rare
genetic variation in diverse human populations. Nature, In press.

15. Genomes: A Deep Catalog of Human Genetic Variation (accessed 2010) http://

www.1000genomes.org/.

16. Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005)

Ascertainment bias in studies of human genome-wide polymorphism. Genome
Res 15: 1496–1502.

17. Keinan A, Mullikin JC, Patterson N, Reich D (2007) Measurement of the
human allele frequency spectrum demonstrates greater genetic drift in East

Asians than in Europeans. Nat Genet 39: 1251–1255.

18. Zaykin DV, Shibata K (2008) Genetic flip-flop without an accompanying change

in linkage disequilibrium. Am J Hum Genet 82: 794–796; author reply 796-797.

19. Lin PI, Vance JM, Pericak-Vance MA, Martin ER (2007) No gene is an island:

the flip-flop phenomenon. Am J Hum Genet 80: 531–538.

20. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to

population stratification in genome-wide association studies. Nat Rev Genet 11:

459–463.

Power of Multiethnic GWAS

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12600



21. Teo YY, Small KS, Fry AE, Wu Y, Kwiatkowski DP, et al. (2009) Power

consequences of linkage disequilibrium variation between populations. Genet
Epidemiol 33: 128–135.

22. Zaitlen N, Pasaniuc B, Gur T, Ziv E, Halperin E (2010) Leveraging genetic

variability across populations for the identification of causal variants. Am J Hum
Genet 86: 23–33.

Power of Multiethnic GWAS

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12600


