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Worm-like snakes (scolecophidians) are small,
burrowing species with reduced vision. Although
largely neglected in vertebrate research, knowl-
edge of their biogeographical history is crucial
for evaluating hypotheses of snake origins. We
constructed a molecular dataset for scolecophi-
dians with detailed sampling within the largest
family, Typhlopidae (blindsnakes). Our results
demonstrate that scolecophidians have had a
long Gondwanan history, and that their initial
diversification followed a vicariant event: the
separation of East and West Gondwana approxi-
mately 150 Ma. We find that the earliest
blindsnake lineages, representing two new
families described here, were distributed on the
palaeolandmass of India1Madagascar named
here as Indigascar. Their later evolution out of
Indigascar involved vicariance and several
oceanic dispersal events, including a westward
transatlantic one, unexpected for burrowing
animals. The exceptional diversification of scole-
cophidians in the Cenozoic was probably linked
to a parallel radiation of prey (ants and termites)
as well as increased isolation of populations
facilitated by their fossorial habits.
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1. INTRODUCTION
Of the two major divisions of snakes, scolecophidians
are the most poorly known in terms of species diversity,
phylogeny, biogeography and ecology (Greene 1997).
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They feed on small social insects (ants, termites and
their larvae), and do so on a frequent basis (Cundall &
Greene 2000). They include the smallest snakes
and rarely exceed 30 cm in length (Hedges 2008).
Most species have greatly reduced eyes and head
scalation, a pinkish or brownish, tubular-shaped body
with smooth scales, and are frequently mistaken for
earthworms by non-scientists. Scolecophidians are
distributed on all continents except Antarctica, but
most species inhabit the southern continents and
tropical islands (Uetz et al. 2010).

Scolecophidians include approximately 400 species
divided into three families: Anomalepididae (anomale-
pidids, approx. 17 species), Leptotyphlopidae
(threadsnakes, approx. 120 species) and Typhlopidae
(blindsnakes, approx. 260 species) (Adalsteinsson
et al. 2009; Uetz et al. 2010). All three occur in the
New World tropics, with the anomalepidids restricted
to that region. Threadsnakes also occur in Africa,
Arabia and southwest Asia, whereas blindsnakes are
even more broadly distributed, occurring in Africa,
Madagascar, southeastern Europe, southern Asia and
Australia (Adalsteinsson et al. 2009).

Remarkably, for a lineage of terrestrial vertebrates,
only two higher level scolecophidian phylogenies are
available. The first one is an unpublished PhD disser-
tation based on an analysis of mostly internal anatomy
(Wallach 1998). The second is a recent molecular
study of threadsnakes using sequences of nine mito-
chondrial and nuclear genes (Adalsteinsson et al. 2009).

Snakes in general and scolecophidians in particular
have a Gondwanan origin (Vidal et al. 2009). Thread-
snakes originated on West Gondwana (Africa and
South America), as did anomalepidids (Adalsteinsson
et al. 2009). The wide distribution of blindsnakes on
Gondwana, and their fossorial (burrowing) habits,
suggests that continental drift influenced the early
evolutionary history of this family as well. However,
they lack a significant fossil record and therefore details
are unclear. Did oceanic dispersals also occur? If
so, which continents were occupied by blindsnakes
ancestrally and which ones were colonized later by
dispersal? These are questions that we address here
with a new molecular dataset.
2. MATERIAL AND METHODS
We constructed a molecular dataset for 96 scolecophidian species
from the three recognized families, with detailed sampling of the lar-
gest family, Typhlopidae. The dataset comprised of five nuclear
protein-coding genes (recombination-activating gene 1: RAG1, ame-
logenin: AMEL, brain-derived neurotrophic factor: BDNF,
neurotrophin 3: NT3 and bone morphogenetic protein 2: BMP2)
for 101 taxa (85% of the sequences were newly determined, i.e.
402 sequences that have been deposited in GenBank under accession
numbers GU902304–GU902705). Phylogenies were built using
probabilistic approaches (maximum-likelihood (ML) and Bayesian
inferences) and dating analyses were performed according to the
Bayesian relaxed molecular clock approach (figure 1; electronic
supplementary material).
3. RESULTS AND DISCUSSION
The resulting ML and Bayesian phylogenetic trees
show remarkable consistency. Among Scolecophidia,
five main clades diverged in the Jurassic and Cretac-
eous, between 159 (154–167) and 97 (112–81) Myr
ago: these are (i) anomalepidids; (ii) threadsnakes;
(iii) Typhlops hedraeus (Philippines) and Typhlops mirus
This journal is q 2010 The Royal Society
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Figure 1. (Caption opposite.)
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Figure 1. (Opposite.) A timetree of scolecophidians based on the analysis of DNA sequences from five nuclear protein-coding
genes. Inferred biogeographical events are indicated at nodes on the timetree (clades also defined by vertical bars next to taxon

names). Nodes with black circles are supported by posterior probability . 95% and ML bootstrap probability . 70%. Inset in the
upper left shows positions of the continents at three periods in the Earth’s history, after Scotese (2009): Late Jurassic (152 Ma),
mid-Cretaceous (95 Ma) and Mesozoic–Cenozoic boundary (66 Ma). Labels on landmasses are: Af (Africa), An (Antarctica), Au
(Australia), EG (East Gondwana), I (India), M (Madagascar), Im (Indigascar), NA (North America), SA (South America) and
WG (West Gondwana). Labels on the time scale are K (Cretaceous), J (Jurassic), Ng (Neogene) and Pg (Palaeogene).
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(Sri Lanka); (iv) the Malagasy genus Xenotyphlops; and
(v) all the remaining blindsnakes (Eurasia, Australasia,
Africa, Madagascar, South America, West Indies). The
deep splits between the three main blindsnake clades
((iii)–(v) above) are strongly supported (bootstrap
probability values, 91–100%; posterior probability
values, 100%) and are older than divergences among
all other families of living snakes (Vidal et al. 2009).
For this reason, we erect the two newly discovered
clades ((iii)–(iv) above) to familial rank and redefine
the Superfamily Typhlopoidea to include only the
three blindsnake families.

Gerrhopilidae Vidal, Wynn, Donnellan and Hedges,
new family, with the genus Gerrhopilus Fitzinger, 1843
as type genus. Included genus: Gerrhopilus. Gerrhopilus
comprises the former Typhlops ater species group
(McDowell 1974), diagnosable by the presence of
gland-like structures ‘peppered’ over the scales of the
head (minimally the rostral and nasals, but often
other scales on the head and chin). A divided preocular
and/or ocular is common and all species have overlap
of the preocular (or subpreocular when present) by the
second supralabial (except G. tindalli ). Included
species are: G. andamanensis, G. ater, G. beddomii,
G. bisubocularis, G. ceylonicus, G. depressiceps, G. floweri,
G. fredparkeri, G. hades, G. hedraeus, G. inornatus,
G. mirus, G. mcdowelli, G. oligolepis and G. tindalli.

Xenotyphlopidae Vidal, Vences, Branch and
Hedges, new family, with the genus Xenotyphlops
Wallach and Ineich, 1996 as type genus. Included
genus: Xenotyphlops. Xenotyphlops is distinguishable
externally by its greatly enlarged and nearly circular
rostral shield that is nearly vertical in the lateral
aspect and a single enlarged anal shield. Internally
Xenotyphlops is unique among blindsnakes in lacking
a tracheal lung and possessing an unexpanded tracheal
membrane, type G tracheal foramina and a long
heart–liver gap (Wallach et al. 2007). Included species
are X. grandidieri and X. mocquardi.

Threadsnakes and typhlopoids are closest relatives
and their divergence has been dated back to 154
(163–136) Myr ago (Vidal et al. 2009) and 155 (182–
129) Myr ago (this study). Because West Gondwana
drifted from East Gondwana (Antarctica, Madagascar,
India and Australia) 166–116 Myr ago (Ali & Aitchison
2008) and the basal typhlopoid lineages are present on
the palaeolandmass of Indigascar, it can be inferred
that typhlopoids have an East Gondwanan origin. In
turn, this infers that the split between typhlopoids and
threadsnakes is the result of a vicariant event: the separ-
ation of East and West Gondwana. The subsequent split
of Indigascar into India and Madagascar may explain
the earliest divergence in the typhlopoid tree (figure 1).

The Typhlopidae includes four major clades: a Eur-
asian one spawning the Australasian radiation of
Biol. Lett. (2010)
species, an African clade, a second Malagasy clade
(separate from Xenotyphlopidae) and a South Ameri-
can clade spawning the West Indian radiation. These
clades diverged between 63 (78–49) and 59 (74–46)
Myr ago, just after the end-Cretaceous extinctions, as
was the case with microhylid and ranoid frogs (Van
der Meijden et al. 2007). This corresponded to a
time when sea levels were lower and continental con-
nections were forming (Smith et al. 1994; Miller
et al. 2005), facilitating land or flotsam dispersal
among continents and islands. Subsequent diversifica-
tion of clades during the Cenozoic was parallel to that
of primary food sources—ants and termites (Thorne
et al. 2000; Brady et al. 2006). The fossorial habits of
these snakes also makes them more prone to isolation.
Recent studies have indicated that scolecophidians
harbour a large hidden diversity of species (Thomas &
Hedges 2007; Adalsteinsson et al. 2009).

The large Eurasian/Australasian group must have
originated by dispersal northwards from Gondwana—
as did afrophidian snakes—either out of Africa through
Europe and Asia (Laurasia) or out of India
(Gheerbrant & Rage 2006; Ali & Aitchison 2008;
Vidal et al. 2009). Within this group, the Australian
radiation is relatively recent, 28 (19–39) Myr ago,
and apparently reached Australia by oceanic (flotsam)
dispersal from Southeast Asia or Indonesia. Another
insular radiation occurred in the West Indies,
originating by dispersal from South America during
the mid-Cenozoic, 33 (44–23) Myr ago, as did the
vast majority of West Indian terrestrial vertebrates
(Hedges 2006). Finally, because all major splits
among typhlopids are more recent than 63 (49–
78) Myr ago, and because Africa broke from South
America 100 Ma, only westward—not eastward—
transatlantic dispersal can explain the presence of
blindsnakes in South America. Until now, only six or
seven transatlantic events were known in terrestrial
vertebrates, all following the prevailing westward water
currents (Vidal et al. 2008; Adalsteinsson et al. 2009).
Transatlantic journeys during the Cenozoic would
have taken at most six months (Houle 1999), not an
insurmountable task for vertebrates with a low food
requirement and most likely travelling along with their
invertebrate prey. Our molecular timing results support
the conclusion that oceanic dispersal should not be dis-
missed as a possible biogeographical mechanism for
organisms that otherwise appear to be poorly adapted
for an overseas journey (Vidal et al. 2008). Thus,
blindsnakes—and scolecophidians in general—have
had a long evolutionary history that has been influenced
by both continental drift and ancient ocean currents.
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