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Abstract
Mammography is the most common modality for breast cancer detection and diagnosis and is often
complemented by ultrasound and MRI. However, similarities between early signs of breast cancer
and normal structures in these images make detection and diagnosis of breast cancer a difficult task.
To aid physicians in detection and diagnosis, computer-aided detection and computer-aided
diagnostic (CADx) models have been proposed. A large number of studies have been published for
both computer-aided detection and CADx models in the last 20 years. The purpose of this article is
to provide a comprehensive survey of the CADx models that have been proposed to aid in
mammography, ultrasound and MRI interpretation. We summarize the noteworthy studies according
to the screening modality they consider and describe the type of computer model, input data size,
feature selection method, input feature type, reference standard and performance measures for each
study. We also list the limitations of the existing CADx models and provide several possible future
research directions.
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Radiological imaging, which often includes mammography, ultrasound (US) and MRI, is the
most effective means, to date, for early detection of breast cancer [1]. However, differentiating
between benign and malignant findings is difficult.

Successful breast cancer diagnosis requires systematic image analysis, characterization and
integration of numerous clinical and mammographic variables [2], which is a difficult and
error-prone task for physicians. This leads to low positive predictive value of imaging
interpretation [3].

The integration of computer models into the radiological imaging interpretation process can
increase the accuracy of image interpretation. There are two broad categories of computer
models in breast cancer diagnosis: computer-aided detection (CADe) and computer-aided
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diagnostic (CADx) models. CADe models are computerized tools that assist radiologists in
locating and identifying possible abnormalities in radiologic images, leaving the interpretation
of the abnormality to the radiologist [4]. The potential for CADe models to improve detection
of cancer has been investigated in several retrospective studies [5–8] as well as carefully
controlled prospective studies [9–12]. For a review of CADe studies, the reader is referred to
recent review articles by Hadjiiski et al. [13] and Nishikawa [14]. CADx models are decision
aids for radiologists characterizing findings from radiologic images (e.g., size, contrast and
shape) identified either by a radiologist or a CADe model [15]. CADx models have been
demonstrated to increase the accuracy of mammography interpretation in several studies.
Encouraged by promising results in mammography interpretation, numerous CADx models
are being developed to help in breast US and MRI interpretation.

There are two reviews of CADx models, but neither are comprehensive in nature. The first, by
Elter and Horsch, focuses on CADx models in mammography interpretation, but not in US
and MRI, and concentrates on technical aspects of model development rather than more
clinically relevant considerations [16]. The second, by Dorrius and van Ooijen, focuses on MRI
CADx models [17]. Here we provide a comprehensive review for mammography, US and MRI
CADx models in breast cancer diagnosis. We start by summarizing CADx models proposed
for mammography interpretation. We then describe CADx models in US and MRI. We
conclude by discussing several common limitations of existing research on CADx models and
provide possible future research directions.

Mammography CADx models
Early work involving CADx models in mammography interpretation dates back to 1993. A
summary list for primary mammography CADx models is presented in TABLE 1.

Early work of CADx research used artificial neural networks (ANNs) and Bayesian networks
(BNs). The first CADx model was proposed by Wu et al., who developed an ANN to classify
lesions detected by radiologists as malignant or benign [18]. They demonstrated that their
simple ANN, which was built using 14 radiologist-extracted mammography features and
trained on a small set of data, achieved higher area under the curve (AUC) of the receiver
operating characteristic (ROC) curve than a group of attending radiologists without computer
aid (0.89 vs 0.84). Baker et al. later built more complex ANN models, where the inputs included
Breast Imaging Reporting and Data System (BI-RADS) descriptors as well as variables related
to the patient’s medical history [19]. Their approach was later extended and evaluated by others
[20–23]. Fogel et al. also built one of the early ANN models that prospectively examined
suspicious masses as a second opinion to radiologists [24]. Kahn et al. developed one of the
first BN models to classify mammographic lesions as benign and malignant [25]. They used
radiologist-extracted mammography features as the input to their model and demonstrated that
BNs had a potential to help radiologists making diagnostic decisions.

Jiang et al. trained an ANN to differentiate malignant and benign clustered microcalcifications
[26]. The microcalcifications were initially identified by the radiologists and eight features of
these microcalcifications were automatically extracted by an image-processing algorithm. The
training and testing data included 107 cases (40 malignant) from 53 patients. This retrospective
study only included microcalcifications that underwent biopsy. Five radiologists participated
in the observer study. ROC analysis was used to assess performance. The average cumulative
AUC values for the ANN and the radiologists were 0.92 and 0.89, respectively. While the
cumulative AUCs did not have a significant difference (p = 0.22), the comparison of AUCs
over the 0.90 sensitivity threshold yielded statistically significant differences (p < 0.05). Jiang
et al. later extended this model to classify lesions as malignant or benign for multiple-view
mammograms [27]. They found that the use of a CADx model decreased the number of biopsied
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benign lesions while increasing the biopsy recommendations for malignant clusters. In a
follow-up study, Jiang et al. demonstrated that, in addition to its diagnostic power, their ANN
model had the potential to reduce the variability among radiologists in the interpretation of
mammograms [28]. In another study, they compared their CADx model with independent
double readings on 104 mammograms (46 malignant) containing clustered microcalcifications
and reported more significant improvements in the ROC performance when the CADx model
was used as compared with the independent double readings [29]. More recently, Rana et al.
applied the CADx model developed by Jiang et al. on screen-film mammograms [26,27] to
full-field digital mammograms [30]. They concluded that their CADx model maintained
consistently high performance in classifying calcifications in full-field digital mammograms
without requiring substantial modifications from its initial development on screen-film
mammograms.

Markopoulos et al. compared three radiologists’ diagnostic accuracies with or without
computer aid [31]. The computer analysis utilized an ANN in diagnosis of clustered
microcalcifications on mammograms. This retrospective study included 240 suspicious
microcalcifications (108 malignant), which were identified by radiologists and extracted by an
image-processing algorithm. The inputs to the ANN included eight features of the
calcifications. Biopsy was the reference standard. The AUC of the CADx was 0.937, which
was significantly higher than that of the physician with the highest performance (AUC = 0.835,
p = 0.012). The authors concluded that CADx models also have the potential to help improve
the diagnostic accuracy of radiologists.

Huo et al. also used ANNs to classify mass lesions detected on screen-film mammograms
[32,33]. They automated the feature extraction process to reduce the intra-observer variability
[28,34]. In a follow-up study, Huo et al. used different sets of data for training and testing
instead of a single database [35]. Their database included 50 biopsy-proven malignant masses,
50 biopsy-proven benign masses and ten cysts proved by fine needle aspiration. The inputs to
the ANN included four characteristics of masses (margin, sharpness, density and texture) that
were automatically extracted by an image processing algorithm. When the CADx model was
used, the average AUC of the radiologists increased from 0.93 to 0.96 (p < 0.001),
demonstrating the generalizability of CADx models to distinct datasets. More recently, Li et
al. converted the CADx model developed by Huo et al. on screen-film mammograms to apply
to full-field digital mammograms [36]. They evaluated the performance of this CADx model
using the AUC at various stages of the conversion process and concluded that CADx models
had a potential to aid physicians in the clinical interpretation of full-field digital mammograms.

Floyd et al. proposed a case-based reasoning (CBR) approach, in which the classification is
based on the ratio of the matched malignant cases to total matches in the database [37]. The
primary advantage of the CBR method over an ANN is the transparent reasoning process that
leads to the system’s diagnosis. However, a key limitation of CBR is that a new case might
not have any match in the database. This CBR analysis included 500 (174 malignant) cases.
Of these 500 cases, 232 were masses alone, 192 were microcalcifications alone and 29 were
combinations of masses and associated microcalcifications. The inputs to the CBR included
ten features from the BI-RADS lexicon (five mass descriptors and five calcification
descriptors) and a descriptor from clinical data. Biopsy was the reference standard. Two
radiologists were asked to describe each lesion using the BI-RADS lexicon. The input dataset
contained both retrospective (206 cases) and prospective (194 cases) data. The performance
of the CBR model was compared with that of an ANN. While the ANN slightly outperformed
the CBR (AUC = 0.86 vs 0.83, respectively), the study did not report statistical significance
of this difference.
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Elter et al. evaluated two novel CADx approaches that predicted breast biopsy outcomes
[38]. The study retrospectively analyzed cases that contained masses or calcifications but not
both. The dataset included 2100 masses (1045 malignant) and 1359 calcifications (610
malignant) that were extracted from mammograms in a public database and double reviewed
by radiologists. The positive cases included histologically proven cancers, while negative cases
were followed up for a 2-year period. The inputs to the CADx model included patient age and
five features from the BI-RADS lexicon (two mass descriptors and three calcification
descriptors). Elter et al. used two types of CADx systems: a decision tree and a CBR. An ANN
was also implemented to compare its performance to that of the two proposed models. The
models were evaluated based on ROC analysis. Contrary to the findings by Floyd et al. [37],
they found that the CBR out-performed the ANN (AUC = 0.89 vs 88, respectively, p < 0.001),
while the ANN performed better than the decision tree (AUC = 0.88 vs 0.87, respectively, p
< 0.001). The authors concluded that both systems could potentially reduce the number of
unnecessary biopsies with more accurate prediction of breast biopsy outcomes. However, the
differences in AUC performances were small, raising the possibility that they may not be
clinically significant.

Chan et al. retrospectively evaluated the effects of a linear discriminant classifier on
radiologists’ characterization of masses [34]. The dataset included 253 mammograms (127
malignant). Biopsy was the reference standard. The findings were initially identified by a
radiologist and 41 features of these findings (texture and morphologic features) extracted by
an image-processing algorithm were used as inputs to the linear discriminant classifier. Six
reading radiologists evaluated the mammograms with and without CADx. The classification
performance was evaluated by ROC analysis. The average AUC of the reading radiologists
without CADx was 0.87 and improved to 0.91 with CADx (p < 0.05). Hadjiiski et al. performed
similar studies to evaluate a CADx model and particularly investigated the extent of increase
in diagnostic accuracy when more mammographic information was available [39,40].
Specifically, they evaluated two scenarios: the increase in the performance of CADx when
trained on serial mammograms [39] and the increase in the performance of CADx when trained
with interval change analysis, which used interval change information extracted from prior and
current mammograms [40]. For both scenarios, they reported superior AUCs for the
radiologists with CADx when compared with the radiologists without CADx (for the first
scenario AUC = 0.85 vs 0.79, respectively, p = 0.005; and for the second scenario AUC = 0.87
vs 0.83, respectively, p < 0.05) and, thus, a significant improvement of the radiologists’
diagnostic accuracy.

Gupta et al. retrospectively studied 115 biopsy-proven masses or calcification lesions (51
malignant) using a linear discriminant analysis (LDA)-based CADx model [41]. The images
and case records were obtained from a public database. This study compared the performance
of the LDA while using different descriptors for one mammographic view and two
mammographic views. The attending radiologists described each abnormality using BI-RADS
descriptors and categories. The inputs to the CADx model included patient age and two features
from the BI-RADS lexicon (mass shape and mass margin). While the CADx with two
mammographic views outperformed that with one mammographic view (AUC = 0.920 vs
0.881, respectively), the difference was not statistically significant (p = 0.056).

Wang et al. built and evaluated three BNs [42]. One of the BNs was constructed based on a
total of 13 mammographic features and patients’ characteristics. The other two BNs were
hybrid classifiers, one of which was constructed by averaging the outputs from two
subnetworks of mammographic-only or non-mammographic features. The third classifier used
logistic regression (LR) to compute the outputs from the same subnetworks. This retrospective
study included 419 cases (92 malignant). The verification of positive cases included biopsy
and/or surgical reports, while negative cases were followed up for at least a 2-year period. The
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input features included four mammographic findings and nine descriptors from clinical data.
The features were manually extracted by radiologists. The AUC for the BN that incorporated
all 13 features was 0.886 and the AUCs for the BNs that included only mammographic features
and patient characteristics were 0.813 and 0.713, respectively. The BN that included the full
feature set was significantly better than both of the hybrid BNs (p < 0.05).

Recently, Chhatwal et al. [43] and Burnside et al. [44] developed a LR and BN, respectively,
based on a consecutive dataset from a breast imaging practice consisting of 62,219
mammography records (510 malignant). The input features included 36 variables based on BI-
RADS descriptors for masses, calcifications, breast density, associated findings and patients’
clinical descriptors. The input dataset was recorded in the national mammography database
format, which allowed the use of these models in other healthcare institutions. Contrary to most
studies in the literature, they included the nonbiopsied mammograms in their training dataset
and used cancer registries as the reference standard instead of the biopsy results. They analyzed
the performance of the CADx models using ROC analysis and concluded that their CADx
models performed better than that of the radiologists in aggregate (AUCs = 0.963 and 0.960
for LR and BN, respectively, vs 0.939 for the radio logist; p < 0.05). More recently, Ayer et
al. developed an ANN model using the same dataset and demonstrated that the ANN model
achieved slightly a higher AUC (0.965) than that of the LR and BN models as well as the
radiologists [45]. Additionally, Ayer et al. extended the performance analysis of the CADx
models from discrimination (classification) to calibration metrics, which assessed the ability
of this ANN model to accurately predict the cancer risk for individual patients.

Bilska-Wolak et al. conducted a preclinical evaluation of a previously developed CADx model,
a likelihood ratio-based classifier, on a new set of data [46]. The model retrospectively
evaluated 151 new and independent cases (42 malignant). Biopsy was the reference standard.
Suspicious masses were detected and described by an attending radiologist using 16 different
features from the BI-RADS lexicon and patient history. The authors evaluated the CADx model
based on ROC analysis and sensitivity statistics. The average AUC was 0.88. The model
achieved 100% sensitivity at 26% specificity. The results were compared with an ANN model
created using the same datasets. The AUC of the ANN was lower than that of the likelihood
ratio-based classifier. Bilska-Wolak et al. concluded that their CADx model showed promising
results that could reduce the number of false-positive mammograms.

US CADx models
Ultrasound imaging is an adjunct to diagnostic mammography, where CADx models could be
used for improving diagnostic accuracy. CADx models developed for US scans date back to
late 1990s. In this section, we review studies that apply CADx systems to breast sonography
or US-mammography combination in distinguishing malignant from benign lesions. A
summary list for the primary US CADx models is presented in TABLE 2.

Giger et al. classified malignant lesions in a database of 184 digitized US images [47]. Biopsy,
cyst aspiration or image interpretation alone were used to confirm benign lesions, whereas
malignancy was proven at biopsy. The authors utilized an LDA model to differentiate between
benign and malignant lesions using five computer-extracted features based on lesion shape and
margin, texture, and posterior acoustic attenuation (two features). ROC analysis yielded AUCs
of 0.94 for the entire database and 0.87 for the database that only included biopsy- and cyst-
proven cases. The authors concluded that their analysis demonstrated that computerized
analysis could improve the specificity of breast sonography.

Chen et al. developed an ANN to classify malignancies on US images [48]. A physician
manually selected sub-images corresponding to a suspicious tumor region followed by
computerized analysis of intensity variation and texture information. Texture correlation
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between neighboring pixels was used as the input to the ANN. The training and testing dataset
included 140 biopsy-proven breast tumors (52 malignant). The performance was assessed by
AUC, sensitivity and specificity metrics, which yielded an AUC of 0.956 with 98% sensitivity
and 93% specificity at a threshold level of 0.2. The authors concluded that their CADx model
was useful in distinguishing benign and malignant cases, yet also noted that larger datasets
could be used to improve the performance.

Later, Chen et al. improved on a previous study [48] and devised an ANN model composed
of three components: feature extraction, feature selection, and classification of benign and
malignant lesions [49]. The study used two sets of biopsy-proven lesions; the first set with 160
digitally stored lesions (69 malignant) and the second set with 111 lesions (71 malignant) in
hard-copy images that were obtained with the same US system. Hard-copy images were
digitized using film scanners. Seven morphologic features were extracted from each lesion
using an image-processing algorithm. Given the classifier, forward stepwise regression was
employed to define the best performing features. These features were used as inputs to a two-
layer feed-forward ANN. For the first set, the ANN achieved an AUC of 0.952, 90.6%
sensitivity and 86.6% specificity. For the second set, the ANN achieved an AUC of 0.982,
96.7% sensitivity and 97.2% specificity. The ANN model trained on each dataset was
demonstrated to be statistically extendible to other datasets at a 5% significance level. The
authors concluded that their ANN model was an effective and robust approach for lesion
classification, performing better than the counterparts published earlier [47,48].

Horsch et al. explored three aspects of an LDA classifier that was based on automatic
segmentation of lesions and automatic extraction of lesion shape, margin, texture and posterior
acoustic behavior [50]. The study was conducted using a database of 400 cases with 94
malignancies, 124 complex cysts and 182 benign lesions. The reference standard was either
biopsy or aspiration. First, marginal benefit of adding a feature to the LDA model was
investigated. Second, the performance of the LDA model in distinguishing carcinomas from
different benign lesions was explored. The AUC values for the LDA model were 0.93 for
distinguishing carcinomas from complex cysts and 0.72 for differentiating fibrocystic disease
from carcinoma. Finally, eleven independent trials of training and testing were conducted to
validate the LDA model. Validation resulted in a mean AUC of 0.87 when computer-extracted
features from automatically delineated lesion margins were used. There was no statistically
significant difference between the best two- and four-feature classifiers; therefore, adding
features to the LDA model did not improve the performance.

Sahiner et al. investigated computer vision techniques to characterize breast tumors on 3D US
volumetric images [51]. The dataset was composed of masses from 102 women who underwent
either biopsy or fine-needle aspiration (56 had malignant masses). Automated mass
segmentation in 2D and 3D, as well as feature extraction followed by LDA, were implemented
to obtain malignancy scores. Stepwise feature selection was employed to reduce eight
morphologic and 72 texture features into a best-feature subset. An AUC of 0.87 was achieved
for the 2D-based classifier, while the AUC for the 3D-based classifier was 0.92. There was no
statistically significant difference between the two classifiers (p = 0.07). The AUC values of
the four radiologists fell in the range of 0.84 to 0.92. Comparing the performance of their model
to that of radiologists, the difference was not statistically significant (p = 0.05). However, the
partial AUC for their model was significantly higher than those of the three radiologists (p <
0.03, 0.02 and 0.001).

Drukker et al. used various feature segmentation and extraction schemes as inputs to a Bayesian
neural network (BNN) classifier with five hidden layers [52]. The purpose of the study was to
evaluate a CADx workstation in a realistic setting representative of clinical diagnostic breast
US practice. Benign or malignant lesions that were verified at biopsy or aspiration, as well as
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those determined through imaging characteristics on US scans, MR images and mammograms,
were used for the analysis. The authors included non-biopsied lesions in the dataset to make
the series consecutive, which more accurately reflects clinical practice. The inputs to the
network included lesion descriptors consisting of the depth:width ratio, radial gradient index,
posterior acoustic signature and autocorrelation texture feature. The output of the network
represented the probability of malignancy. The study was conducted on a patient population
of 508 (101 had breast cancer) with 1046 distinct abnormalities (157 cancerous lesions).
Comparing the current radiology practice with the CADx workstation, the CADx scheme
achieved an AUC of 0.90, corresponding to 100% sensitivity at 30% specificity, while
radiologists performed with 77% specificity for 100% sensitivity when only nonbiopsied
lesions were included. When only biopsy-proven lesions were analyzed, computerized lesion
characterization outperformed the radiologists.

In routine clinical practice, radiologists often combine the results from mammography and US,
if available, when making diagnostic decisions. Several studies demonstrated that CADx could
be useful in the differentiation of benign findings from malignant breast masses when
sonographic data are combined with corresponding mammographic data. Horsch et al.
evaluated and compared the performance of five radiologists with different expertise levels
and five imaging fellows with or without the help of a BNN [53]. The BNN model utilized a
computerized segmentation of the lesion. Mammographic features used as the input included
spiculation, lesion shape, margin sharpness, texture and gray level. Sonographic input features
included lesion shape, margin, texture and posterior acoustic behavior. All features were
automatically extracted by an image-processing algorithm. This retrospective study examined
a total of 359 (199 malignant) mammographic and 358 (67 malignant) sonographic images.
Additionally, 97 (39 malignant) multimodality cases (both mammogram and sonogram) were
used for testing purposes only. Biopsy was the reference standard. The performances of each
radiologist/imaging fellow or pair of observers were quantified by the AUC, sensitivity and
specificity metrics. Average AUC without BNN was 0.87 and with BNN was 0.92 (p < 0.001).
The sensitivities without and with BNN were 0.88 and 0.93, respectively (p = 0.005). There
was not a significant difference in specificities without and with BNN (0.66 vs 0.69, p = 0.20).
The authors concluded that the performance of the radiologists and imaging fellows increased
significantly with the help of the BNN model.

In another multimodality study, Sahiner et al. investigated the effect of a multimodal CADx
system (using mammography and US data) in discriminating between benign and malignant
lesions [54]. The dataset for the study consisted of 13 mammography features (nine
morphologic, three spiculation and one texture) and eight 3D US features (two morphologic
and six texture) that were extracted from 67 biopsy-proven masses (35 malignant). Ten
experienced readers first gave a malignancy score based on mammography only, then re-
evaluated based on mammography and US combined, and were finally allowed to change their
minds given the CADx system’s evaluation of the mass. The CADx system automatically
extracted the features, which were then fed into a multimodality classifier (using LDA) to give
a risk score. The results were compared using ROC curves, which suggested statistically
significant improvement (p = 0.05) when the CADx system was consulted (average AUC =
0.95) over readers’ assessment of combined mammography and US without the CADx
(average AUC = 0.93). Sahiner et al. concluded that a CADx system combining the features
from mammography and US may have the potential to improve radiologist’s diagnostic
decisions [54].

As discussed previously, a variety of sonographic features (texture, margin and shape) are used
to classify benign and malignant lesions. 2D/3D Doppler imaging provides additional
advantages in classification when compared with grayscale, by demonstrating breast lesion
vascularity. Chang et al. extracted features of tumor vascularity from 3D power Doppler US
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images of 221 lesions (110 benign) and devised an ANN to classify lesions [55]. The study
demonstrated that CADx, using 3D power Doppler imaging, can aid in the classification of
benign and malignant lesions.

In addition to the aforementioned studies, there are other works that developed and evaluated
CADx systems in differentiating between benign and malignant lesions. Joo et al. developed
an ANN that was demonstrated to have potential to increase the specificity of US
characterization of breast lesions [56]. Song et al. compared an LR and an ANN in the context
of differentiating between malignant and benign masses on breast sonograms from a small
dataset [57]. There was no statistically significant difference between the performances of the
two methods. Shen et al. investigated the statistical correlation between the computerized
sonographic features, as defined by BI-RADS, and the signs of malignancy [58]. Chen and
Hsiao evaluated US-based CADx systems by reviewing the methods used in classification
[59]. They suggested the inclusion of pathologically specific tissue-and hormone-related
features in future CADx systems. Gruszauskas et al. examined the effect of image selection
on the performance of a breast US CADx system and concluded that their automated breast
sonography classification scheme was reliable even with variation in user input [60]. Recently,
Cui et al. published a study focusing on the development of an automated method segmenting
and characterizing the breast masses on US images [61]. Their CADx system performed
similarly whether it used automated segmentation or an experienced radiologist’s
segmentation. In a recent study, Yap et al. designed a survey to evaluate the benefits of
computerized processing of US images in improving the readers’ performance of breast cancer
detection and classification [62]. The study demonstrated marginal improvements in
classification when computer-processed US images alongside the originals are used in
distinguishing benign from malignant lesions.

MRI CADx models
Dynamic contrast-enhanced MRI of the breast has been increasingly used in breast cancer
evaluation and has been demonstrated to have potential to improve breast cancer diagnosis.
The major advantage of MRI over other modalities is its ability to depict both morphologic
and physiologic (kinetic enhancement) information [63]. Despite the advantages of MRI, it is
a technology that is continuously evolving and is not currently cost effective for screening the
general population [64,65]. Nevertheless, breast MRI is promising in terms of its high
sensitivity, especially for high-risk young women with dense breasts. However, specificity has
been highly variable in detection of breast cancer [17]. As a way of improving specificity,
CADx models to aid discrimination of benign from malignant lesions in MRI imaging would
be valuable. There are numerous CADx studies based on breast MRI. Generally, both
morphologic and kinetic (enhancement) features are used in these studies to predict benign
versus malignant breast lesions. In this section of the article, we only discuss the recent articles
(published after 2003) that exemplify distinct aspects of breast MRI CADx research. A
summary list for the primary MRI CADx models is presented in TABLE 3.

Szabó et al. used an ANN to retrospectively determine the discriminative ability of kinetic,
morphologic and combined MRI features [66]. Inputs to the ANN included four morphologic
and nine kinetic features from 105 biopsy-proven breast lesions with 75 malignancies. The
model derived from the most relevant input variables, called the minimal model, resulted in
the highest AUC value (0.771). The model with best kinetic features had an AUC of 0.743, the
model with all features had an AUC of 0.727 and the model with qualitative architectural
features, called the morphologic model, had an AUC of 0.678. The expert radiologists achieved
an AUC of 0.799; therefore, the performance was comparable to that of the minimized model.
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Nattkemper et al. analyzed various machine learning methods using four morphologic and five
kinetic tumor features found on MRI as input [67]. The investigated methods included k-means
clustering, self-organizing maps, Fisher discriminant analysis, k-nearest classifiers, support
vector machines and decision tree. The input dataset included dynamic contrast-enhanced MRI
data of 74 breast lesions (49 malignant). Biopsy was the reference standard. Among the
investigated methods, support vector machines achieved the highest AUC (0.88). They also
demonstrated that, among all the MRI features analyzed, the wash-out type features extracted
by radiologists improved classification performance the most.

Meinel et al. developed an MRI CADx system to improve radiologists’ performance in
classifying breast lesions [68]. An ANN was constructed using 80 biopsy-proven lesions (43
malignant). Inputs to the ANN were the best 13 features from a set of 42, based on lesion shape,
texture and enhancement kinetics information. The performance was assessed by comparison
of AUC values from five human readers diagnosing the tumor with and without the help of the
CADx system. When only the first abnormality shown to human readers was included, ROC
analysis yielded AUCs of 0.907 with ANN assistance and 0.816 without the assistance. The
difference was statistically significant (p < 0.011); therefore, Meinel et al. demonstrated that
their ANN model improves the performance of human readers.

Deurloo et al. combined the clinical assessment of clinically and mammographically occult
breast lesions by radiologists with computer-calculated probability of malignancy of each
lesion into an LR model [69]. Inputs to the LR model included the four best features from a
set of six morphologic and three temporal features. Either biopsy-proven lesions or lesions
showing transient enhancement were included in the study. The difference between the
performance of clinical readings (AUC = 0.86) and computerized analysis (AUC = 0.85) was
not statistically significant (p = 0.99). However, the combined model performed significantly
higher (AUC = 0.91, p = 0.03) when compared with clinical reading without computerized
analysis. The results demonstrated how computerized analysis could complement clinical
interpretation of magnetic resonance images.

There are several other studies that addressed the use of CADx systems in MRI of the breast.
Williams et al. evaluated the sensitivity of computer-generated kinetic features from
CADstream, the first CADx system for breast MRI, for 154 biopsy-proven lesions (41
malignant) [70]. The study suggested that computer-aided classification improved radiologists’
performance. Lehman et al. compared the accuracy of breast MRI assessments with and
without the same software, CADstream [71]. They concluded that the software may improve
the accuracy of radiologists’ interpretation; however, the study was conducted on a small set
of 33 lesions (nine malignant). Nie et al. investigated the feasibility of quantitative analysis of
MRI images [72]. Morphology/texture features of breast lesions were selected by an ANN and
used in the classification of benign and malignant lesions. Baltzer et al. investigated the
incremental diagnostic value of complete enhancing lesions using a CADx model [73]. The
study reported improvement in specificity with no statistical significance. In a different study,
Baltzer et al. investigated both automated and manual measurement methods to assess contrast
enhancement kinetics [74]. They analyzed and compared evaluation of contrast enhancements
via curve-type assessment by radiologists, region of interest and CADx. The methods proved
diagnostically useful although no statistically significant difference was found.

Future perspective
There have been significant advances in CADx models in the last 20 years. However, several
issues remain open for future researchers. First and most notably, almost all of the existing
CADx models are trained and tested on retrospectively collected cases that may not represent
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the real clinical practice. Large prospective studies are required to evaluate the performance
of CADx models in real life before employing them in a clinical setting.

Second, an objective comparative performance evaluation of the existing CADx models is
difficult because the reported performances depend on the dataset used in model building. One
approach to a systematic performance comparison would be to use large and consistent,
publicly available datasets for testing purposes. However, although this approach will give
some idea about the realistic/comparable performances of the CADx systems, it would not be
completely accurate because a CADx model performing the best on one dataset might be
outperformed by another CADx model on another dataset.

Third, a frequently ignored issue in CADx model development is the clinical interpretability
of the model. Aspects of the CADx model that allow clinical interpretations significantly
influence the acceptance of the CADx model by the physicians. Most of the existing CADx
models are based on ANNs. Although ANNs are powerful in terms of their predictive abilities,
their parameters do not carry any real-life interpretation, hence, they are often referred to as
‘black boxes’. Other models such as LR, BN or CBR allow direct clinical interpretation.
However, the number of such studies is significantly limited as compared with ANN models.

Fourth, performance assessment of the CADx models are usually limited to discrimination
(classification) metrics (e.g., sensitivity, specificity and AUC). On the other hand, the accuracy
of risk prediction for individual patients, referred to as calibration, is often ignored. Although
discrimination assesses the ability to correctly distinguish between benign and malignant
abnormalities, it does not tell much about the accuracy of risk prediction for individual patients
[75]. However, clinical decision-making usually involves decisions for individual patients
under uncertainty; therefore, it is aided more effectively by accurate risk estimates [75,76].
That is, calibration is sometimes as equivalently important as discrimination; therefore, future
studies should consider measuring calibration performance as well.

Last but not least, breast cancer diagnosis often involves information collected from several
sources, such as information from multiple mammographic views, prior screening history and
additional examinations (e.g., US and MRI). However, most CADx models are built to process
the information obtained from a single source. Therefore, future CADx models should aim to
incorporate all possible information from various sources when making recommendations to
radiologists.

Executive summary

Computer-aided detection & diagnosis

• Although radiological imaging is the most effective means of early detection of
breast cancer, differentiating between benign and malignant findings is difficult.

• To aid physicians in detection and diagnosis, computer-aided detection and
computer-aided diagnostic (CADx) models have been proposed.

• Computer-aided detection models are computerized models that assist radiologists
in locating and identifying possible abnormalities in radiologic images.

• CADx models are decision aids to radiologists in characterizing findings from
radiologic images identified either by a radiologist or a computer-aided detection
model.

• In this article, we provide a comprehensive review of CADx models developed
for radiologic imaging modalities (i.e., mammography, ultrasound and MRI) in
breast cancer diagnosis.
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Future perspective

• Large prospective studies are required to evaluate the performance of CADx
models in real life before they can be used in clinics.

• CADx models that allow direct clinical interpretation are encouraged.

• The use of large and consistent publicly available datasets is recommended for
testing and comparing various available CADx models.

• Performance evaluation of CADx models should not be limited to discrimination,
but should be extended to calibration.

• Future CADx models should aim to incorporate all possible information from
different sources when making recommendations to radiologists.
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