Skip to main content
. Author manuscript; available in PMC: 2011 Apr 1.
Published in final edited form as: Imaging Med. 2010 Jun 1;2(3):313–323. doi: 10.2217/IIM.10.24

Table 1.

Summary of computer-aided diagnostic models in mammography interpretation.

Study (year) Size of
dataset (n)
Model AUC Reader
study
Ref.
Jiang et al. (1996) 107 ANN 0.92 Yes [26]
Markopoulos et al. (2001) 240 ANN 0.937 Yes [31]
Huo et al. (2002) 110 ANN 0.96 Yes [35]
Floyd et al. (2000) 500 CBR 0.83 No [37]
Elter et al. (2007) 2100 DT/CBR 0.87/0.89 No [38]
Chan et al. (1999) 253 LDC 0.91 Yes [34]
Gupta et al. (2006) 115 LDA 0.92 No [41]
Wang et al. (1999) 419 BN 0.886 No [42]
Chhatwal et al. (2009) 62,219 LR 0.963 Yes [43]
Burnside et al. (2009) 62,219 BN 0.960 Yes [44]
Ayer et al. (2010) 62,219 ANN 0.965 Yes [45]
Bilska-Wolak et al. (2005) 151 LRbC 0.88 No [46]

ANN: Artificial neural network; AUC: Area under the curve; BN: Bayesian network; CBR: Case-based reasoning; DT: Decision tree; LDA: Linear discriminant analysis; LDC: Linear discriminant classifier; LR: Logistic regression; LRbC: Likelihood ratio-based classifier.